skip to main content

AOE Home / About / AOE seminars / Archive / 2017 

Protective Aircraft Seat Design Using Magnetorheological Systems

  • Feburary 6, 2017
  • 4:00 p.m.
  • Dr. Norman M. Werely
  • University of Maryland

  • Faculty Host: Dr. Rakesh Kapania

Abstract: The ability to dissipate energy in vehicle systems, especially with the goal of protecting occupants from potentially injurious vibration, repetitive shock, crash and blast loads, is becoming a critical issue as the cumulative impact of these load spectra on chronic health and acute injury are becoming better understood. Energy is dissipated utilizing a stroking element, such as a hydraulic damper or energy absorber. However, it is difficult to anticipate precisely what range occupant mass an isolation system might be expected to protect, or what vibration and shock spectra the system might encounter. Therefore, adaptation of stroking load is required to enable a system to have sufficient adjustability or control capability to effectively dissipate energy across a wide range of anticipated and even unanticipated disturbances. The goals of this research are threefold: (1) to develop field dependent or controllable energy absorbing materials, especially magnetorheological (MR) fluids, (2) to develop magneto-rheological energy absorbers (MREAs) to enable adaptation of stroking load in order to minimize lumbar loads in the human spine and thereby minimizing the potential for injury, and (3) to protect occupants or payloads from a wide range of vibration and shock spectra, as well as to accommodate a population of occupants of different mass. Applications to crew seating and landing gear in rotorcraft will be discussed. The transition of these protective seat technologies to ground vehicles and high speed boats will also be discussed.