

MAD Center Advisory Board Meeting, November 14, 1997

Students: J.M. Grasmeyer, A. Naghshineh-Pour, P.A. Tetrault, M. Colangelo Faculty: B. Grossman, R.T. Haftka, R.K. Kapania, W.H. Mason, J.A. Schetz

Multidisciplinary Analysis and Design (MAD) Center for Advanced Vehicles

Problem Statement

Responding to Dennis Bushnell's challenge:

- Apply MDO methodology to a transonic, truss-braced wing design to seek a major increase in performance
- Minimize Takeoff Gross Weight
- Use the mission profile of the Boeing 777-200IGW

Multidisciplinary Analysis and Design (MAD) Center for Advanced Vehicles

Technology Integration

- High aspect ratio via strut bracing
- Laminar flow via low sweep
- Tip-mounted engines

Special Challenges

- Wing-strut interference drag
 - CFD Design
- Engine-out condition
 - Circulation control on vertical tail
- Aeroelasticity
 - Load alleviation and active control

Single-Strut Optimization

- Objective function: minimize takeoff gross weight
- 17 design variables
 - 12 wing shape variables
 - 2 weight variables
 - Optimum strut force
 - Altitude
 - Circulation control
- 7 constraints
 - Weight convergence
 - Range
 - C_{Lmax} at a given approach speed
 - Maximum allowable section C_I
 - Fuel volume
 - Engine-out at minimum control speed
 - 80 meter gate box limit

Multidisciplinary Approach

Interference Drag Approach

- Estimate the Drag Penalty of the Wing-Strut Junction
- Use CFD Tools to Generate "Empirical" ΔC_D Data
 - CFD code: USM3D
 - Inviscid/Euler formulation at this stage
 - Unstructured grid generation with GRIDTOOL
- Study Various Configurations
 - Single/Multiple strut designs
 - Arch-shaped strut
- Parametrically Vary the Shape of the Strut to Minimize the Drag

Wing-Strut Configuration $M=0.75, \alpha=0^{\circ}$

Multidisciplinary Analysis and Design (MAD) Center for Advanced Vehicles

Dept. of Aerospace and Ocean Engineering Virginia Tech

Structural Optimization

- Determine the minimum bending material weight for a given configuration
 Bilinear Strut
- Piecewise linear beam theory
- Critical load cases
 - 2.5 g's: strut in tension
 - 1.0 g: strut inactive in compression
 - Strut buckling is the critical design issue
- Future Work
 - Include aeroelastic effects using NASTRAN
 - Create response surface from FEM optimizations
 - Evaluate other load cases such as landing and taxi bump

Deflection

Stiffness

2

g's

Baseline Cantilever

"Optimum" Cantilever (Obtained with VT MDO tools)

Optimum Single-Strut

- Statically Stable
- Completely Turbulent
- Relaxed Static Stability
- Partially Laminar
- Rubber Engine Sizing
- Relaxed Static Stability
- Partially Laminar
- Rubber Engine Sizing
- Circulation Control for Engine-Out

Configuration Comparison

	Base Cant	Opt Cant	Opt SS
Wing Span (ft)	199.9	208.2	232.3
Wing Area (f)	4,607	4,244	3,606
Aspect Ratio	8.7	10.2	15.0
Inboard Wing Sweep (deg)	31.6	33.6	25.6
Outboard Wing Sweep (deg)	31.6	33.6	25.6
Strut Sweep (deg)	N/A	N/A	14.5
Inboard Wing t/c	13.0%	12.5%	8.9%
Outboard Wing t/c	10.9%	10.2%	4.6%
Strut t/c	N/A	N/A	4.60%
Cruise L/D / Max L/D	18.6/20.2	21.9/24.3	28.4/30.0
Specific Range (nmi/1000 lb)	26	34	54
Seat Miles per Gallon (seats*nmi/	gal) 60 76		112
Wing Weight (Ib)	77,701	78,585 58,564	
Takeoff Gross Weight (lb)	636,063	562,080	461,420

Drag Comparison

Multidisciplinary Analysis and Design (MAD) Center for Advanced Vehicles

Dept. of Aerospace and Ocean Engineering Virginia Tech 9

Weight Comparison

Multidisciplinary Analysis and Design (MAD) Center for Advanced Vehicles

Discussion of Results

- Strut alleviates large span weight penalty and allows a reduction of t/c
- Increased span reduces induced drag
- Decreased t/c allows some unsweeping of the wing and some reduction in wave drag
- Parasite drag is reduced via increased laminar flow
 - Higher AR means smaller chords and smaller Re
 - Unsweeping wing reduces cross-flow instability
 - Decreasing t/c allows more favorable pressure gradients and delays shock formation
- **Result:** Synergistic increase in overall aircraft efficiency

Innovative Concepts

Multidisciplinary Analysis and Design (MAD) Center for Advanced Vehicles

Dept. of Aerospace and Ocean Engineering Virginia Tech 12

Rapid Prototyping

- A solid model is created in I-DEAS
- Fused Deposition Modeling is used to create a plastic model

On-screen Visualization

- Fortran subroutine creates DXF file
- AutoCAD and Infini-D are used to create rendered images and animations

Current Conclusions

% Im	provement Over —	Baseline Cantilever	Optimum Cantilever
	Takeoff Gross Weight	- 27%	- 18%
	Fuel Weight	- 46%	- 32%
	L/D	+53%	+30%
	Seat-Miles/Gallon	+87%	+47%

- The strut-braced wing configuration achieves a significant increase in performance
- This merits further study

Future Work

- Broaden the parameter set to allow optimization of more complex and innovative truss geometries
- Refine analyses
 - Create a structural response surface with finite element model optimizations
 - Create a response surface from CFD interference drag analyses
 - Include aeroelastic effects
 - Utilize load alleviation at the critical load cases
- Design a wind tunnel model