
Dynamics and Control 
Preliminary Examination Topics 

 
Specific topics are described in the textbooks indicated below each general topic area. 
 
I. Dynamics 
 

A. Particle and Rigid Body Dynamics (including material covered in AOE 5204) 
 

Meirovitch, Leonard; Methods of Analytical Dynamics, McGraw-Hill, Inc., New York, 
NY, 1970; Ch. 1 - 5 

 
B. Atmospheric Flight Mechanics (including material covered in AOE 3104 & 3134) 
 

Performance: Anderson, John; Introduction to Flight, 4th ed, McGraw-Hill, Inc. New 
York, NY, 1999; Chapter 6 
Stability & Control: Etkin, Bernard, and Loyd Duff Reid; Dynamics of Flight, Stability 
and Control, Third Edition, John Wiley & Sons, Inc., New York, NY, 1996; Ch. 4 - 7 

 
C. Space Flight Mechanics (including material covered in AOE 5204) 

 
Astrodynamics: Bate, Roger, Donald Mueller, and Jerry White; Fundamentals of 
Astrodynamics Dover Publications, New York, NY, 1970; Ch. 1, 2 (Secs. 1-9), 3, 4 
(Except Secs. 3-5), 7 (Sec. 4) 
Spacecraft Dynamics & Control: Hughes, Peter, Spacecraft Attitude Dynamics, John 
Wiley & Sons, Inc., New York, NY, 1986. 

 
II. Control 
 

A. Linear System Theory (including material covered in AOE 5224) 
 

Rugh, Wilson, Linear System Theory, Second Edition, Prentice Hall, Upper Saddle River, 
NJ, 1996; Ch. 1 – 15. 

 
B. Linear Optimal Control (including material covered in AOE 5224) 

 
Kwakernaak, Huibert and Sivan, Raphael; Linear Optimal Control Systems, Wiley 
Interscience, (John Wiley & Sons), New York, NY. 1972, Ch. 3-5 

 
C. Nonlinear System Theory (including material covered in AOE 5344) 

 
Khalil, Hassan, Nonlinear Systems, Third Edition, Prentice Hall, Upper Saddle River, NJ, 
2002; Ch. 1-6, 13-14. 

 



 
AOE PhD Preliminary Written Exam 

Dynamics & Control 
Fall 2009 

 
 
This exam is open-book and open-notes. You may use mathematical software (e.g., 
Mathematica or Matlab) during the exam, but you may not use the internet.  No 
communication of any type, implicit or explicit, concerning this exam is allowed during 
the test. The honor code will be strictly enforced. 
 
Please answer four (and only four) of eight questions, as follows: 
 
• Select and solve two (2) of the first four (4) problems, which focus on dynamics. 
• Select and solve two (2) of the last four (4) problems, which focus on control. 
 
Adhere to the following guidelines in preparing your solutions: 
 
• Start each question on a new sheet of paper.  
• Write only on the front of each page.   
• Write your name at the top of each page.  
 
Finally, complete and sign the honor code pledge below and submit this completed cover 
page with your solutions. 
 

 

I pledge that this assignment has been completed in compliance with the 
Graduate Honor Code and that I have neither given nor received any 
unauthorized aid on this assignment 
 
Signature ______________________________________ 
 
Printed Name ______________________________________ 
 



1. Dynamics Problem  
 

Consider the system shown in the Figure in which a bar is attached via two identical 
springs to the ground. The bar can only rotate around its connection point to the ground 
(i.e. the joint allows rotation by angles and β γ  but no translation). Derive the equations 
of motion for this system using the following assumptions: 
 

- The bar is rigid, of negligible thickness, and it has mass m, length l, and 
transversal moment of inertia around the center of mass, I. 

- The springs are identical, have zero rest-length and spring constant k. 
- The system is subject to a constant gravitational filed g as indicated in the Figure. 
- The position of the three joints attached to the fixed ground is indicated in the 

Figure (i.e. they are all situated in the yz plane and have the indicated coordinates 
in the Cartesian reference frame fixed to the ground, xyz). 

- There is no friction in the system (due to the springs, joints or air) and no other 
external forces/torques act on the system. 

 
You may use the angles indicated in the Figure (even though that is not a requirement). 
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2. Dynamics Problem 
 

A point mass of mass m is placed inside a circular tube of radius r. The tube rotates with 
constant angular velocity ω  around the vertical axis. The system is placed in constant 
gravitational field g, as indicated in the Figure.  

a) Derive the equation of motion using the angle θ  and assuming that there is no 
friction in the system (e.g. between the point mass and tube) and the tube is rigid.  

b) Integrate the equation of motion to obtain a relation of the form 0 0( , , , ) 0f θ θ θ θ =& &  
where 0 0,θ θ&  are initial conditions. 
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AOE Ph.D. Preliminary Examination
Dynamics and Control

Attitude control thrusters are rated according to their “minimum impulse bit,”
p, in N·s, which is the minimum amount of linear momentum that the thruster can
provide in one pulse.

Four thrusters are mounted on a satellite with inertia I, a distance R from the
center of mass, as shown in the figure. The thrusters fire whenever the satellite
strays from an angular window (the “deadband”) of width θ, a technique referred
to as “bang-bang” control. More specifically, the thruster logic is defined so that
the thruster provides a single impulsive thrust whenever the angular error is outside
the deadband and the angular rate is effecting an increase in the angular error. The
direction of the thruster firing is selected to decrease the angular error.

Analyze the planar motion of the spacecraft, making reasonable assumptions
about initial values of θ and θ̇ as well as disturbance torques. Phase plane (θ, θ̇)
sketches for various cases should be included in your analysis.
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Fall 2009 

 
 
Figure 1 below shows the empennage (tail section) of an air-to-air missile.  The flap at the outer trailing 
edge of each fin includes a pinned wheel with scoop-shaped teeth that protrude from the outer edge of the 
flap.  The flow of air over these teeth causes each wheel to spin at a high rate.  The flap is hinged in the 
spanwise direction so that a flap deflection results in a roll moment about the longitudinal axis of the 
missile.  The flap is not actuated, however -- this is a passive roll rate stabilization device.  Provide a 
mathematically convincing analysis that verifies the stabilizing effect of this mechanical feedback device. 
 

     

hingeline
for flap

 
Figure 1. A photograph of the empennage of a high-speed missile (left) and a simplified illustration 

(right).  Note the mechanical roll stabilization device embedded at the outer, trailing edge of each tail fin.  
. 
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Control Problems for Ph.D. Preliminary Examination

Control Problem #1. Consider an LTI system subject to a stationary, zero-mean, Gaussian distur-
bance process whose net effect is as follows:

ẋ = Ax + Bu + w.

The power spectral density ofw(t) is W . Suppose also that the following noisy measurements are
available:

y = Cx + v,

wherev(t) is a stationary, zero-mean, Gaussian white noise process with power spectral density
V . Assume thatA is skew-symmetric,i.e., AT = −A and that(A,B) is controllable and(A,C)
is observable. Then, givenW = CT C andV = I (identity matrix), find an output feedback LQG
controller for this system which renders the closed-loop system stable and minimizes

lim
t→∞

E
{
xT BBT x + uT u

}
.

Note that you need to verify first that the problem is well-posed in the sense that a stabilizing LQG
solution exists.
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Control Problem #2. Consider the linear time-varying system

ẋ(t) =

[
−1 0
e3t −2

]

︸ ︷︷ ︸

A(t)

x(t) +

[
0
1

]

u(t).

(1) Find the state transition matrixΦ(t, t0) corresponding toA(t).

(2) Find the eigenvalues of matrixA(t) for all t ≥ 0. Based on this informationonly, can you
deduce whether the system is stable or not?

(3) Suppose that the initial statex(0) =
[
1 0

]T
and the control inputu(t) = 0 for all t ≥ 0.

Do the system states remain bounded ast → ∞?

(4) Suppose the control input is applied in discrete-time with a sampling periodT , specifically
u will be constant over each time interval[kT, (k + 1)T ) for all non-negative integersk, i.e.

u(t) = uk for all kT ≤ t < (k + 1)T.

Then, using zero-order hold sampling, we obtain the following discrete-time state-space
difference equation:

xk+1 = Āk xk + B̄k uk,

wherexk = x(kT ) anduk = u(kT ) for all integersk ≥ 0. ComputeĀk andB̄k.
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Fall 2009 

 
 

 
 

Figure 1. A mechanical control system. 
 
 
Consider two point masses m and M which are connected by an inextensible cord that passes through a 
small hole in a horizontal plate. The smaller mass m slides along the plate while the larger mass M hangs 
vertically. A control force u acts on M in the vertical direction as shown. Assume there is no friction in 
the system. 
 

1. Derive the equations of motion using your favorite technique. 
2. Compute the rate of change of energy and angular momentum. 
3. Assume a constant (nonzero) value for the angular momentum and find conditions for a circular 

orbit with u = 0. Linearize the radial dynamics about the circular orbit that you found and 
compute the eigenvalues of the linear state matrix. Comment on the stability of this “relative 
equilibrium.” 

4. Assume that r and  are available for feedback and compute the control law u which minimizes 
 

  

 
where R is a positive, scalar constant.  Comment on stability of the desired circular orbit under this choice 
of feedback. 
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Ph.D. Dynamics and Control Examination 
Fall 2009 

 
 
For the following two planar dynamical systems, determine through appropriate analysis whether the 
equilibrium at the origin is 
 

• Uniformly asymptotically stable 
• Globally uniformly asymptotically stable 
• Exponentially stable 
• Globally exponentially stable 

 

System 1.  

  
 
where  is a positive, constant parameter.   
 

 

System 2.  

  

 
where A is a constant, Hurwitz matrix and  is a positive, constant parameter.   
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This exam is open-book and open-notes. You may use mathematical software (e.g., 
Mathematica or Matlab) during the exam, but you may not use the internet.  No 
communication of any type, implicit or explicit, concerning this exam is allowed during 
the test. The honor code will be strictly enforced. 
 
Please answer four (and only four) of eight questions, as follows: 
 
  Select and solve two (2) of the first four (4) problems, which focus on dynamics. 
  Select and solve two (2) of the last four (4) problems, which focus on control. 
 
Adhere to the following guidelines in preparing your solutions: 
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Finally, complete and sign the honor code pledge below and submit this completed cover 
page with your solutions. 
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AOE Ph.D. Preliminary Examination
Dynamics and Control

Aerobraking is a passive orbit control concept useful for placing a spacecraft into
a circular orbit about a planet with a sensible atmosphere (such as Venus, Earth,
and Mars). The desired circular orbit radius will typically be larger than the radius
of the planet plus the sensible atmosphere. The idea is to use active control to
place the spacecraft into a highly elliptical orbit with periapsis inside the sensible
atmosphere and apoapsis well outside the atmosphere. During the periapsis passage
for each orbit, the spacecraft will lose orbital energy due to drag, thereby decreasing
the energy (and therefore the semimajor axis) of the orbit. Since the spacecraft moves
fastes near periapsis, a useful first approximation assumes that the periapsis altitude
does not change and that the spacecraft experiences an impulsive Δv at periapsis,
thereby reducing the velocity at periapsis, which reduces the orbital energy. Once
the apoapsis radius has been lowered to the radius of the desired circular orbit, a
short-duration rocket motor is fired to circularize the orbit in a nearly impulsive
maneuver.

The objective of this problem is for you carefully to develop an algorithm for
determining how many orbits it will take to complete the aerobraking portion of
of this maneuver. You must explicitly state all assumptions, define all variables,
and explain how the algorithm would be implemented in a standard programming
language. You might use a pseudo-code to accompany this explanation.

Finally, explain how the size of the circularizing rocket motor would be determined
and how the point of firing the circularizing rocket would be chosen.

cwoolsey
Text Box
Dynamics Problem #1



AOE Ph.D. Preliminary Examination 
Dynamics and Control 

 
A rigid rod of zero thickness, constant, uniformly distributed mass m and length l is 
connected by a frictionless spherical joint to a fixed point O. The rod is subject to constant 
gravitational acceleration g in the vertical (pointing downward) direction and to a velocity 
dependent potential which is expressed, using the angles indicated in the Figure, as 

 where C is constant.  
 
A. Find the equations of motion. 

 
B. Given initial conditions  find an expression for . (Hint: Use an “integral of the 
motion” provided by the Lagrangian.) 

 

 

θ

φ

k̂

î

ĵ

cwoolsey
Text Box
Dynamics Problem #2



 
AOE Ph.D. Preliminary Examination 

Dynamics and Control 
 
A. Derive the equations of motion for a system composed of a disk and a rod showed in the 

Figure. Use the following assumptions: 
- the disk is rigid, has radius r, uniformly distributed mass M, and moment of inertia I 

around the axis passing through its center of mass and perpendicular to the disk;  
- the disk rotates freely in the vertical plane around its center of mass, which is fixed as 

indicated in the Figure. 
- the rigid rod has length l, zero thickness, uniformly distributed mass m 
- the rod rotates freely in the vertical plane around the point of attachment to the disk.  
- there is no friction in the system and the gravitational field is constant, pointing 

downward. 
 

B. Linearize around the equilibrium position  (Hint: Use the second order 
form of the equations of motion.) 

 
 
 
 

2̂i  

1̂i  

θ

φ
l

r
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AOE Ph.D. Preliminary Examination 
Dynamics and Control 

 
A) Calculate the kinetic energy and the angular momentum about the origin of the uniform 

thin bar of mass per unit length, ρ. The bar is of length 2a and is symmetric about the 
attachment point. Consider the mass of the horizontal bar to be negligible and let the 
connection be frictionless. There are no external forces on the system. 
 

B) Now, let θ&  be caused by an external torque τ about the pivot point of the thin bar.  
Derive the equations of motion using Lagrange’s method. 
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Control Problems for Ph.D. Preliminary Examination

Control Problem #1. Consider the system equation

ẋ(t) = A(t) x(t) +B(t) u(t) + k(t), x(t0) = x0,

wherek(·) is a knownn-dimensional vector function defined on the finite interval[t0, tf ], with
continuous entries. Suppose that the performance index is

V =

∫ tf

t0

(

xTQ(t)x+ 2uTN(t)x+ uTR(t)u
)

dt+ xT (tf )M x(tf ),

where all the matrices have continuous entries, and

R(t) � 0, Q(t)−NT (t)R−1(t)N(t) � 0, M � 0.

(i) Using theHamilton-Jacobi-Bellman equation, show that the optimal control for this problem
can be written as

u∗(t) = −R−1(t)
(

(

BT (t)P (t) +N(t)
)

x+ BT (t)h(t)
)

,

whereP (·) is a matrix function (� 0) andh(·) is a vector function. Obtain the expressions
(differential equations) satisfied byP andh.

(ii) Obtain an expression for the minimum value ofV .
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Control Problem #2.

(a) Consider the linear time-varying system:

ẋ = A(t) x, y = C(t) x,

whereA(t) andC(t) are continuous functions oft. Prove or disprove the following state-
ment. (If the statement is false, then producing a counterexample will suffice.)

• In general, if the pair(A(t), C(t)) is observable over some time interval[t0, tf ], then
(−A(t), C(t)) is also observable over[t0, tf ].

(b) Consider the linear time-invariant system:ẋ = Ax, y = Cx, whereA andC are constant
matrices. Suppose that this system is detectable.

(i) Show that if the outputy(t) = 0 for all t along some state trajectoryx(t), then this
trajectory must satisfy:x(t) → 0 ast → ∞.

(ii) Show that there exists a positive definite matrixQ such that the functionV (x) = xTQx

satisfiesdV
dt

< yTy.
Hint: There exists a matrixE such thatH + EF + F TET is negative definite if and
only if there exists a real scalarα such thatH − αF TF is negative definite.
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Consider the nonlinear system: 
 

 

 
A. Find all equilibria. 

 
B. Provide analysis to fully characterize the stability of each equilibrium.  That is, determine if each 

equilibrium is unstable, stable, (globally) asymptotically stable, (globally) exponentially stable.  
(Hint: You may want to consider the flow of the vector field in a region bounded by the two 
curves  and .) 
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Figure 1 below shows a suspended pendulum whose pivot point is subject to a time-varying horizontal 
acceleration a(t), a continuous, bounded function of time. The pendulum is equipped with a servo-motor 
that applies a torque T about the pivot.  The motor bearing exerts a damping moment that is linear in the 
pendulum angular rate. 
  

 
 

Figure 1. A suspended pendulum with a horizontally perturbed pivot point. 
 
The parameters of the system are uncertain, but they satisfy the following bounds (in SI units): 
 

 
 

1. Derive an ordinary differential equation that describes the pendulum’s motion.  (Don’t treat the 
pivot position as a configuration variable; treat the horizontal acceleration a(t) as a disturbance.) 

2. Design a state feedback control law which ensures that the state components satisfy the following 
ultimate bounds: 
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