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1. THERMODYNAMICS OF GASES

We generally deal with fluids which fall into one of the five following categories:
1) constant density, incompressible fluids, 2) liquids whose density is spatially de-
pendent, e.g. sea water, 3) barotropic gases, where the density, ρ = ρ(p) only, 4)
polytropic gases, where ρ is a function of two thermodynamic state variables, such
as ρ = ρ(p, s) or ρ = ρ(p, T )and 5) gases whose density depends upon two ther-
modynamic state variables and quantities related to the history of the flow, e.g.,
chemical or thermodynamic non-equilibrium. Here, we will be primarily concerned
with barotropic and polytropic gases.

In order to develop state relationships for barotropic and polytropic gases, we
will present a brief review of the thermodynamics of gases. Our main objective
is to develop an equation of state for a variety of flow conditions. Throughout
our discussions we will be assuming the gas to be in thermodynamic equilibrium,
and if reacting, in chemical equilibrium. In the following development, we will be
considering single species gases and mixtures of gases, perfect and real gases and
reacting flows in chemical equilibrium. In §1.1–1.8, we will deal primarily with
single species gases. In §1.9 we will deal with mixtures of gases in general and with
mixtures in chemical equilibrium in §1.10.

1.1 First and Second Laws

The state of a system in (local) thermodynamic equilibrium may be defined by
any two intensive variables, such as the temperature T , the pressure, p, the specific
volume v ≡ 1/ρ, internal energy per unit mass, e, entropy per unit mass s, etc.
Extensive variables, such as the volume V , internal energy E, entropy S will also
depend upon the mass M of the system.

The first law of thermodynamics may be stated that in going from state 1 to
state 2, the change in internal energy per unit mass must equal the sum of the heat
added per unit mass to the work done per unit mass on the system as

e2 − e1 =
∫ 2

1

dq +
∫ 2

1

dw . (1.1)

The heat added to the system,
∫
dq, and the work done on the system,

∫
dw depend

upon the specific path of integration. The first law, (1.1) applies to any path. It is
convenient to write this for an infinitesimal change as

de = dq + dw . (1.2)

The second law of thermodynamics introduces the entropy, which satisfies the
following inequality:

s2 − s1 ≥
∫ 2

1

dq

T
. (1.3)
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For a reversible process, the equality portion of (1.3) applies, so that

(dq)rev = Tds . (1.4)

It may also be stated that if the work done on the system is done through a reversible
process, then

(dw)rev = −pdv . (1.5)

Now let us consider going between the same states 1 and 2 as in (1.1), but this
time by reversible processes. Then, from (1.4) and (1.5)

e2 − e1 =
∫ 2

1

Tds−
∫ 2

1

pdv . (1.6)

Comparing (1.6) to (1.1), we must have∫ 2

1

dq +
∫ 2

1

dw =
∫ 2

1

Tds−
∫ 2

1

pdv ,

where dq and dw correspond to heat added and work done through an arbitrary
process, reversible or irreversible. This does not imply that dq = Tds or dw = −pdv,
but it does mean that dq + dw must equal Tds − pdv. This is a consequence of e
being a variable of state. Hence in general we may state that

de = Tds− pdv . (1.7)

This relationship is valid for both reversible and irreversible processes. It is some-
times called the fundamental equation or a combined first and second law. In these
notes, we will refer to it as the first law of thermodynamics.

Another form of the first law can be obtained by introducing the enthalpy,
h ≡ e+ pv, whereby we obtain

dh = Tds+ vdp . (1.8)

Introducing the Gibbs free energy per unit mass,

g ≡ h− Ts , (1.9)

and the Helmholz free energy per unit mass

f ≡ e− Ts , (1.10)

leads to
dg = −sdT + vdp (1.11)

and
df = −sdT − pdv . (1.12)
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1.2 Derivative Relationships
Equations (1.7), (1.8), (1.11) and (1.12) may be used to obtain Maxwell’s rela-

tions. For example, if we consider e = e(s, v), then de = (∂e/∂s)vds + (∂e/∂v)sdv
and by comparing to (1.7) we obtain(

∂e

∂s

)
v

= T ,

(
∂e

∂v

)
s

= −p . (1.13)

Similarly, by considering h = h(s, p) we obtain from (1.8)(
∂h

∂s

)
p

= T ,

(
∂h

∂p

)
s

= v . (1.14)

Using g = g(T, p) and (1.11) gives(
∂g

∂T

)
p

= −s ,
(
∂g

∂p

)
T

= v , (1.15)

and f = f(T, v) and (1.12) results in(
∂f

∂T

)
v

= −s ,
(
∂f

∂v

)
T

= −p . (1.16)

Another set of useful relations, called the reciprocity relations may be developed
starting from e = e(v, T ) and s = s(v, T ) and (1.7) whereby(

∂e

∂v

)
T

dv +
(
∂e

∂T

)
v

dT = T

[(
∂s

∂v

)
T

dv +
(
∂s

∂T

)
v

dT

]
− pdv .

Since dv and dT must be independent of each other,(
∂e

∂v

)
T

= T

(
∂s

∂v

)
T

− p ,(
∂e

∂T

)
v

= T

(
∂s

∂T

)
v

.

(1.17)

Now, we can eliminate the entropy by cross-differentiating the above expressions.
Differentiating the first of (1.17) with respect to T and the second with respect to
v yields

∂2e

∂v∂T
= T

∂2s

∂v∂T
+

(
∂s

∂v

)
T

−
(
∂p

∂T

)
v

,

∂2e

∂T∂v
= T

∂2s

∂T∂v
.
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Assuming continuity of second derivatives, we can interchange the order of differ-
entiation, and subtracting, yields

(
∂s

∂v

)
T

=
(
∂p

∂T

)
v

.

Now substituting this result into the first of (1.17) gives

(
∂e

∂v

)
T

= −p+ T

(
∂p

∂T

)
v

. (1.18)

This is called the reciprocity relationship and it will be utilized in our discussion on
the equation of state.

Another form of the reciprocity relationship involving the enthalpy may be
developed from h = h(p, T ) and s = s(p, T ) and (1.7) which results in

(
∂h

∂p

)
T

= T

(
∂s

∂p

)
T

+ v ,(
∂h

∂T

)
p

= T

(
∂s

∂T

)
p

.

(1.19)

Again, eliminating s by cross differentiation gives the reciprocity relation in terms
of the enthalpy as: (

∂h

∂p

)
T

= v − T

(
∂v

∂T

)
p

. (1.20)

1.3 Thermal Equation of State

Under a wide range of conditions, most gases behave in a manner described as
a perfect or ideal gas. From the physics of gases, analyses based upon the kinetic
theory of gases and statistical mechanics, (c.f., Vincenti and Kruger (1965), §II.3
and §IV.9), may be used to develop an equation of state in the form

pV = NkT , (1.21)

where N is the number of molecules and Boltzman’s constant k is equal to 1.38054×
10−23 J/◦K/molecule. The assumptions made include the concept of a weakly
interacting gas where intermolecular forces are neglected. We can write the result
in terms of the number of moles of the gas, N by the relationship N = N N̂ where
Avogadro’s number N̂ = 6.02252 × 1023 molecules/mole. We obtain

pV = N R̂T , (1.22)
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where the universal gas constant R̂ = N̂k = 8314.3 J/(kg−mol ◦K). This result is
consistent with the early experiments of Boyle, Charles and Gay-Lussac.

We can write the state equation in terms of the mass M by introducing the
molecular mass (mass per mole) M̂ = M/N and the species gas constant R = R̂/M̂
so that

pV = MRT . (1.23)

Finally, dividing by M we obtain the familiar perfect gas law

pv = RT , (1.24)

or
p = ρRT . (1.25)

This result is called the thermal equation of state and gases obeying this law are
called thermally perfect. (The term perfect gas is sometimes used to mean a gas
which is both thermally perfect and has constant specific heats. So to avoid ambi-
guity we will use the term thermally perfect when we mean a gas where p = ρRT .)

The condition where a gas may not be thermally perfect include very high
pressures near the gas triple point. Here, a Van der Waal’s equation of state is used,
c.f., Liepmann and Roshko (1957), pp. 9, where

p = ρRT

(
1

1 − βρ
− αρ

RT

)
, (1.26)

and β = RTc/8pc, α = 27βRTc/8, with Tc and pc being the critical temperature
and critical pressure, respectively. Values of pc and tc for some common gaseous
species are presented in Table 1.1. It is seen that the real gas effect is important
at very high pressures and low temperatures. For example, diatomic nitrogen gas,
N2 has critical properties of pc = 33.5 atm and Tc = 126 K. At a moderate
temperature of 315 K, the Van der Waal’s equation of state will deviate from the
thermally perfect equation of state by 1% when the pressure is higher than 67 atm.
At a lower temperature of 210 K, a 1% variation occurs at pressures higher than
4.9 atm.

Table 1.1 Critical Pressures and Temperatures

O2 N2 NO H2 He A CO2

pc (atm) 49.7 33.5 65.0 12.8 2.26 48.0 73.0
Tc (◦K) 154.3 126.0 179.1 33.2 5.2 151.1 304.2

In Fig. 1.1 we present a plot of z = p/ρRT versus log10 p for nitrogen N2 at
temperatures of 200, 300 and 400 degrees Kelvin. The dotted curve represents the
T = 200K case and the dot-dashed curve is the T = 400K case. Thus we see that
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Figure 1.1. Thermal imperfection for N2 at T = 200K, T = 300K, T = 400K, Z = p/ρRT .

major thermal equation of state imperfections occur at a combination of very high
pressures and low temperatures for these gases.

On the other extreme, at very high temperatures and low pressures, the gas may
dissociate and ionize and will no longer behave as a thermally perfect gas. However,
even if reactions take place, the individual species will behave as a thermally perfect
gas, but the mixture will not. For example, considering pure N2 at temperatures
above 4500K, significant amounts of dissociated N will begin to be present. The
perfect gas law will still hold for each species, pN2 = ρN2RN2T and pN = ρNRNT .
For the mixture of N and N2, we have p = pN + pN2 = ρR̃T where ρ is the mass
density of the mixture and R̃ is the mixture gas “constant”. But, as will be shown
later in this chapter, R̃ will depend upon the species mass fractions, which in turn
depend upon the pressure and temperature, and hence will not be constant. Thus
the mixture will not behave as a thermally perfect gas.

As a consequence of the assumption of a thermally perfect gas, it can be shown
that the internal energy and the enthalpy will be functions of a single state variable,
the temperature. We can show this by starting with the general specification of the
internal energy as e = e(v, T ). Then from the thermal equation of state (1.25), we
can take the derivative (∂p/∂T )v = R/v. Then using the reciprocity relationship,
(1.18), we find (

∂e

∂v

)
T

= −p+ T
R

v
= 0 . (1.27)

Therefore, for a thermally perfect gas e = e(T ).
Similarly, considering h = h(p, T ), the thermal equation of state (1.25) will
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give (∂v/∂T )p = R/p and reciprocity (1.20) gives(
∂h

∂p

)
T

= v − T
R

p
= 0 , (1.28)

so that, for a thermally perfect gas h = h(T ).

1.4 Specific Heats
The specific heat is the amount of heat added per unit mass per unit temper-

ature. For a gas, the process must be specified, either constant volume or constant
pressure. From the First Law, (1.7), if the work done in a constant volume process
is zero, then

cv ≡
(
dq

dT

)
v

=
(
∂e

∂T

)
v

, (1.29)

and similarly for a constant pressure process, using (1.8), we obtain

cp ≡
(
dq

dT

)
p

=
(
∂h

∂T

)
p

, (1.30)

For a thermally perfect gas, since e = e(T ) and h = h(T ), then cv = de/dT =
cv(T ) and cp = dh/dT = cp(T ). Also for a thermally perfect gas h = e + RT so
that differentiating with respect to T gives

cp(T ) = cv(T ) +R , (1.31)

noting that R is constant.

1.5 Internal Energy and Enthalpy
For a thermally perfect gas, de = cv(T )dT and dh = cp(T )dT . If cv and cp are

known functions of T , then e and h may be determined by quadrature as

e =
∫ T

Tr

cv dT + er ,

h =
∫ T

Tr

cp dT + hr ,

(1.32)

where the subscript r denotes an arbitrary reference state and er = e(Tr) and
hr = h(Tr). Often Tr is taken to be absolute zero, and since we are dealing with a
thermally perfect gas where h = e+RT , then at T = 0, hr will equal er. The value of
this quantity cannot be obtained experimentally and can be obtained theoretically
only for very simple molecules. However, in using e and h, only changes ∆e and
∆h will appear, so that the absolute value will not be needed. This issue becomes
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important in dealing with mixtures of gases and will be discussed in §1.9. It is
common practice to take er and hr equal to h0

f , the heat of formation of the species
at absolute zero. We will utilize the convention that the heat of formation of all
atoms is zero. Note that some texts use the heat of formation of molecules to be
zero. We will write

e =
∫ T

0

cv dT + h0
f ,

h =
∫ T

0

cp dT + h0
f ,

(1.33)

Other choices for heat of formation include the standard heat of formation, referring
to species at the standard temperature of 298.16 K and standard pressure of 1 atm.
For a discussion of these issues see Anderson (1990) , pp. 550–551.

When cp and cv are constant we have a calorically perfect gas and upon ne-
glecting h0

f , we obtain
e = cvT , h = cpT , (1.34)

The evaluation of cp and cv in general can be obtained from the physics of
gases using quantum statistical mechanics, c.f., Vincenti and Kruger (1965), §IV.
The results for a weakly interacting gas are summarized here. The internal energy
is composed of two parts, e = etr +eint, where etr is the contribution to the internal
energy due to molecular translation, which is found to be

etr =
3
2
RT , (1.35)

and eint is the contributions due to the internal structure of the molecules. The
quantity eint consists of contributions due to molecular rotation, molecular vibration
and electron excitation. Strictly speaking, the effects of molecular rotation and
vibration are coupled, it is common to approximate these effects separately. For
a monatomic gas there would be no rotation or vibration effects. If we assume
that the contributions to eint act independently, then eint = erot + evib + eel. For a
diatomic molecule, the rotational energy mode may be considered to be fully excited
at very low temperatures so that

erot = RT . (1.36)

The vibrational energy of a diatomic molecule may be approximately modeled as a
quantum harmonic oscillator whereby

evib =
RΘv

exp(Θv/T ) − 1
, (1.37)



Concepts of Gasdynamics 9

Table 1.2 Vibration and Electronic Excitation Parameters

vibration electronic excitation
Species θv (◦K) g0 g1 Θ1 (◦K) Θ2 (◦K)

O2 2270 3 2 11,390 O(19,000)
N2 3390 1 O(100,000)
NO 2740 2 2 174 O(65,000)
O 5 4 270 O(23,000)
N 4 O( 19,000)

with Θv a characteristic temperature for molecular vibration. Some typical values
for θv from Vincenti and Kruger (1965) are given in Table 1.2, below.

The internal energy contribution due to electron excitation depends upon the
quantum energy levels of the electrons, for which the electronic partition function
takes the form

Qel = g0 + g1e
−Θ1/T + g2e

−Θ2/T + . . . , (1.38)

where g0, g1, g2 . . . are the degeneracy factors for the lowest electronic energy levels
and Θ1,Θ2, . . . are the corresponding characteristic temperatures for electronic ex-
citation. For a more complete discussion of these terms, see Vincenti and Kruger,
(1965), pp. 130–132. A tabulation of a few of these constants for some of the
constituents of air appear in Table 1.2. The order of magnitude terms in the table
indicate the level of the first characteristic temperature term usually neglected. The
corresponding internal energy is given by

eel = R

[
g1Θ1e

−Θ1/T + g2Θ2e
−Θ2/T + . . .

g0 + g1e−Θ1/T + g2e−Θ2/T + . . .

]
. (1.39)

Often this contribution turns out to be negligible. For example, for N2 and O2,
electron excitation effects will not become significant until a temperature of at least
10, 000 K. For other gases, such as O and NO these effects can be important at
low temperatures, 200−300 K, but not at high temperatures. Thus we can roughly
see that these effects will not be important for air, since at low temperatures it is
composed of N2 and O2 and at higher temperatures it will be composed of N , O
and NO.

Thus, for a monatomic gas, neglecting electronic excitation gives

e =
3
2
RT , (1.40)

so that cv = (3/2)R. Thus this gas will be both thermally and calorically perfect
and cp = cv +R = (5/2)R and γ = cp/cv = 5/3.
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For a diatomic gas, neglecting electronic excitation, gives

e =
5
2
RT +

RΘv

exp(Θv/T ) − 1
, (1.41)

and

cv =
5
2
R+R

[
Θv/2T

sinh(Θv/2T )

]2

. (1.42)

This gas will be thermally perfect. If T << Θv, then we can neglect evib and the
gas will be calorically perfect with cv = (5/2)R, cp = (7/2)R and γ = 7/5. The
internal energy of gas mixtures will be discussed in §1.9.

Figure 1.2. Specific heat distribution for pure monatomic oxygen.

Some example distributions of cv/R versus T are shown in Figs. 1.2 – 1.4. Fig
1.2 is for monatomic oxygen. The specific heat is dominated at low temperatures
by the electronic excitation. At temperatures above 1000 K, cv returns to the
translational value 3/2. In Fig. 1.3 is the distribution of cv/R for pure diatomic
oxygen O2. (Note that we are evaluating cv only for O2 and are not evaluating
it for a dissociating mixture of O and O2. This will be discussed in §1.10.) The
plot shows a dominance of vibrational effects at the low range of temperatures
and the electronic excitation effects at the high range. In Fig. 1.4, we show the
same cv distribution for O2, with the abscissa expanded to show low temperature
effects. The variation of cv with relatively low temperatures is seen due to the low
characteristic vibration temperature for O2.
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Figure 1.3. Specific heat distribution for pure diatomic oxygen O2.

Figure 1.4. Specific heat distribution for pure diatomic oxygen O2 at low temperatures.

1.6 Entropy and Free Energies

We may obtain a formula for the entropy for a thermally perfect gas starting
from the first law (1.8), and substituting dh = cpdT along with the equation of
state (1.24), to obtain

ds = cp
dT

T
−R

dp

p
.
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Integrating from the reference state, subscript r,

s =
∫ T

Tr

cp
T
dT −R log

p

pr
+ sr . (1.43)

Under conditions of both a thermally and calorically perfect gas, we can obtain

s− sr

cv
= log

[(
T

Tr

)γ (
p

pr

)1−γ
]
. (1.44)

Eliminating T in terms of p and ρ from the equation of state (1.25), upon rearranging
terms,

p

pr
=

(
ρ

ρr

)γ

exp
(
s− sr

cv

)
. (1.45)

This important result may be viewed as a polytropic equation of state in the form
p = p(ρ, s).

For a flow where the entropy is unchanged, s = sr, we have the familiar isen-
tropic relationship

p

pr
=

(
ρ

ρr

)γ

. (1.46)

We see that the gas will be barotropic under these conditions.
We can also obtain an integrated form of the Gibb’s free energy for a thermally

perfect gas using the definition g = h − Ts along with the expression for h, (1.32)
and the expression for s, (1.43),

g = ω(T ) +RT log p , (1.47)

where

ω(T ) =
∫ T

Tr

cp dT + hr − T

[∫ T

Tr

cp
T
dT +R log(pr) + sr

]
. (1.48)

This result will be useful in developing the Law of Mass Action for a reacting gas
in §1.9.

1.7 Sound Speeds
The speed of sound is defined as

a2 ≡
(
∂p

∂ρ

)
s

. (1.49)

For a thermally and calorically perfect gas, we may take this derivative directly
from the state relationship of the form p = p(ρ, s) given in (1.45) to obtain

a2 = γ
p

ρ
= γRT . (1.50)
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Other forms of the sound speed relationship, which are useful when we do
not have perfect gases may be developed from alternate specifications of the state
equation. If we know, for example, p = p(ρ, e), then we may derive the sound speed
involving the known derivatives (∂p/∂ρ)e and (∂p/∂e)ρ by expanding (∂p/∂ρ)s =
(∂p/∂ρ)e + (∂p/∂e)ρ(∂e/∂ρ)s. From (1.13), (∂e/∂v)s = −p and using v = 1/ρ we
obtain

a2 =
(
∂p

∂ρ

)
e

+
p

ρ2

(
∂p

∂e

)
ρ

. (1.51)

This form is sometimes utilized in the numerical solutions of the governing equations
for real gases in conservation-law form.

Another form of the sound-speed relationship may be developed for equations
of state of the form p = p(v, T ), such as Van der Waal’s gases, (1.26). Then if
we consider T = T (v, s) we see that (∂p/∂v)s = (∂p/∂v)T + (∂p/∂T )v(∂T/∂v)s.
We can evaluate the temperature derivative by using e = e(v, T ) so that de =
(∂e/∂v)T dv+ (∂e/∂T )vdT and with the first law (1.7) and consideration of T (v, s)
we find (∂e/∂T )v(∂T/∂v)s = −(∂e/∂v)T − p. Then replacing (∂e/∂v)T with the
reciprocity relationship (1.18) and using the definition of cv, (1.29), we finally obtain

a2 = −v2

(
∂p

∂v

)
s

= −v2

[(
∂p

∂v

)
T

− T

cv

(
∂p

∂T

)2

v

]
, (1.52)

or in terms of density derivatives

a2 =
(
∂p

∂ρ

)
T

+
T

ρ2cv

(
∂p

∂T

)2

ρ

. (1.53)

Expressions (1.52) and (1.53) may be simplified further by eliminating one of
the two partial derivatives. From the first law (1.7) with e = e(v, T ), we have
(∂e/∂T )v = T (∂s/∂T )v. Then considering s = s(T, p) and p = p(T, v) we have
(∂s/∂T )v = (∂s/∂T )p + (∂s/∂p)T (∂p/∂T )v so that (∂e/∂T )v = T [(∂s/∂T )p +
(∂s/∂p)T (∂p/∂T )v]. Substituting the definition of cv in (1.29), cp in (1.30) along
with the second of (1.19) into the above expression gives cv = cp+T (∂s/∂p)T (∂p/∂T )v.
Next we use the first of (1.19) and (1.20) to get (∂s/∂p)T = −(∂v/∂T )p. Then we
implicitly differentiate v = v(T, p) and p = p(v, T ) to obtain (∂v/∂p)T (∂p/∂v)T = 1
and (∂v/∂T )p+(∂v/∂p)T (∂p/∂T )v = 0 from which (∂v/∂T )p = −(∂p/∂T )v/(∂p/∂v)T .
(The differentiation of implicit functions is clearly described in Hildebrand (1976),
§7.2). Putting this together we finally obtain

a2 = −v2 cp
cv

(
∂p

∂v

)
T

=
cp
cv

(
∂p

∂ρ

)
T

. (1.54)

This formula is valid for thermally and calorically imperfect gases as well as perfect
gases. For the case of a gas which is thermally perfect but calorically imperfect,
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(1.54) reduces to a2 = [cp(T )/cv(T )]RT . As an example, consider pure diatomic
oxygen O2, which due to molecular vibrational effects and electronic excitation, will
be calorically imperfect at high temperatures. A plot of a/a0 is presented in Fig 1.5,
where a2

0 = 1.4RT . The sound speed is initially reduced due to vibrational effects
and then at very high temperatures begins to increase due to electronic excitation.
Note that in this example we have ignored the effects of chemical dissociation, which
would be significant at high temperatures. These effects will be considered later in
this chapter.

Figure 1.5. Sound speed ratio a/a0 for calorically imperfect diatomic oxygen O2.
(Ignores dissociation effects).

One more form of the sound speed will be developed involving derivatives
of ρ = ρ(h, s). We begin with p = p(h, s) and h = h(ρ, s). Then (∂p/∂ρ)s =
(∂p/∂h)s(∂h/∂ρ)s. From the first law (1.8), (∂p/∂h)s = ρ. We can obtain the
derivative (∂h/∂ρ)s from ρ = ρ(h, s) by implicit differentiation as (∂h/∂ρ)s =
1/(∂ρ/∂h)s so that

a2 =
ρ

(∂ρ/∂h)s
. (1.55)

1.8 Equilibrium Conditions

Considerations of equilibrium may be developed from the first and second laws
of thermodynamics as described by Liepmann and Roshko (1957), §1.13. From the
second law of thermodynamics, for any process ds ≥ dq/T . Thus is we arrive at
a state where any further additions of heat, δq will cause the entropy to decrease,
δs ≤ δq/T then that state is said to be in stable equilibrium, (since no further
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changes will occur). From the combined first and second law, Tds− (de+pdv) = 0.
But if we arrive at a state where any virtual changes δe and δv cause the entropy
to decrease, then

Tδs− (δe+ pδv) ≤ 0 , (1.56)

and the system will be in stable equilibrium. Or, a system at constant internal
energy and constant specific volume will be in stable equilibrium if all changes
cause the entropy to decrease, δs ≤ 0. Thus a system at constant e and v will be
in stable equilibrium if the entropy is a maximum.

Similarly, from (1.8), the condition of stable equilibrium will be

Tδs− δh+ vδp ≤ 0 , (1.57)

or for a constant p and h process, equilibrium will be again reached when the entropy
is a maximum. We can determine some other equilibrium condition involving the
free energies from (1.11) and (1.12). We see that for equilibrium

δf + sδT + pδv ≥ 0 , (1.58)
δg + sδT − vδp ≥ 0 . (1.59)

Thus for a constant temperature and constant volume process, stable equilibrium
occurs when the Helmholz free energy is a minimum and for a constant temperature
and constant pressure process, stable equilibrium occurs when the Gibbs free energy
is a minimum. This condition on the Gibbs free energy will be used in §1.9 to
develop the law of mass action for equilibrium chemistry.

1.9 Gas Mixtures
We will now consider mixtures of gases, which may or may not be reacting.

Most of the formulas developed in the preceding sections, remain valid, but only
apply to the individual species within the mixture and not to the mixture as a
whole. We will now add subscripts to identify the species quantities, e.g., ei, hi, pi,
etc. Quantities written from now on without subscripts will apply to properties of
the mixture.

Extensive and intensive properties
For a mixture of gases, the extensive properties are additive. For example the total
mass of the mixture must equal the sum of the masses of the component species

M =
N∑

i=1

Mi . (1.60)

Similarly, the internal energy of the mixture E =
∑
Ei, the enthalpy of the mixture,

H =
∑
Hi, and the entropy of the mixture, S =

∑
Si.
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For an individual gas species, the internal energy is related to the internal
energy per unit mass by Ei = Miei. Summing over the i-species and dividing by
the mass of the mixture gives the internal energy per unit mass of the mixture as

e =
E

M
=

N∑
i=1

Mi

M
ei . (1.61)

We can introduce the mass fraction of species i as

ci ≡
Mi

M
. (1.62)

For a gas, since each species will expand to fill the entire volume, Vi = V , we can
introduce the species density ρi = Mi/V so that ci = ρi/ρ. The intensive properties
of the mixture may then be written as

e =
N∑

i=1

ciei , h =
N∑

i=1

cihi , s =
N∑

i=1

cisi . (1.63)

The density of the mixture may be written as

ρ =
M

V
=

1
V

N∑
i=1

Mi =
N∑

i=1

ρi . (1.64)

From this relationship it is obvious that the sum of the mass fractions is unity,∑
ci = 1.

Equation of state
Mixtures of gases which are in chemical and thermodynamic equilibrium have

the important property that the temperature of each species is the same, or Ti =
T . Furthermore, from the kinetic theory of gases for mixtures which are weakly
interacting, the well-known Dalton’s law of partial pressures says that the pressure
of the gas mixture is the sum of the partial pressures of the species, p =

∑
pi. In

this section we will be dealing with mixtures of thermally perfect gases, so that
pi = ρiRiT . Then the pressure of the mixture becomes

p =
N∑

i=1

ρiRiT = ρR̃T , (1.65)

where the gas constant of the mixture is defined as

R̃ =
N∑

i=1

ciRi =
R̂

M̂
, (1.66)
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and the molecular mass of the mixture is defined as

1
M̂

=
N∑

i=1

ci

M̂i

. (1.67)

Thus the mixture is thermally perfect if R̃ or equivalently M̂ is constant. This will
be the case only if the mass fractions ci are constant. Hence, a mixture of thermally
perfect gases will be thermally perfect only if the gases are not reacting.

We can determine the partial pressure of each species from the mixture pressure
p by again noting that pi = ρiRiT and dividing by (1.65) so that

pi

p
=
ρi

ρ

Ri

R̃
= ci

M̂

M̂i

.

We can simplify the above by introducing the the number of moles of species i.
which equals the mass of i divided by the mass per mole of i (the molecular mass
of i), so that Ni = Mi/M̂i. Then with the total number of moles of the mixture as
N =

∑
Ni and introducing the mole fraction

Yi ≡
Ni

N , (1.68)

we can obtain the relationship
pi = Yip . (1.69)

From the above definitions, we can see that the mass fraction and mole fraction are
related by

ci = Yi
M̂i

M̂
. (1.70)

First and Second Laws

In the mixture, the first and second laws apply for each species as given by (1.7)
and (1.8). In terms of the species enthalpy hi, we have dhi = Tdsi + vidpi. If we
multiply this relationship by the mass fraction ci and sum from i = 1 to N , we
obtain

N∑
i=1

cidhi = T

N∑
i=1

cidsi + v

N∑
i=1

dpi .

From (1.63)

dh =
N∑

i=1

cidhi +
N∑

i=1

hidci ,
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with similar relationships for de and ds. We then obtain the combined first and
second law for a mixture of gases as

dh = Tds+ vdp+
N∑

i=1

gidci , (1.71)

or in terms of the internal energy

de = Tds− pdv +
N∑

i=1

gidci . (1.72)

The Gibb’s free energy, gi in the above equations is sometimes called the chemical
potential (per unit mass) and is given the symbol µi.

From (1.71) and (1.72), we see that for a gas mixture that h = h(s, p, ci) and
e = e(s, v, ci). Note that the notation h = h(s, p, ci) is used as a shorthand for
h = h(s, p, c1, c2, . . . , cN ), etc. We can develop Maxwell’s relations for the mixture
in terms of enthalpy derivatives as(

∂h

∂s

)
p,ci

= T ,

(
∂h

∂p

)
s,ci

= v ,

(
∂h

∂ci

)
s,p,cj

= gi , (1.73)

and in terms of energy derivatives as(
∂e

∂s

)
v,ci

= T ,

(
∂e

∂v

)
s,ci

= −p ,
(
∂e

∂ci

)
s,v,cj

= gi . (1.74)

Note that the subscript ci in the above expressions means that all mass fractions for
i = 1, . . . , N are held fixed and the subscript cj indicates that all the mass fractions
for j 	= i are held fixed.

Reciprocity relations may be developed for gas mixtures from (1.71) and (1.72)
using procedures similar to those used for a single species in (1.18) and (1.20), with
all the mass fractions ci held fixed. We obtain(

∂e

∂v

)
T,ci

= −p+ T

(
∂p

∂T

)
v,ci

, (1.75)

(
∂h

∂p

)
T,ci

= v − T

(
∂v

∂T

)
p,ci

. (1.76)

Thermodynamic Properties
The energy, enthalpy and entropy of a mixture are obtained from (1.63). We may
develop an expression for the enthalpy of a mixture using hi ≡ ei + pivi so that
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following (1.63), we have
∑
cihi =

∑
ciei +

∑
cipivi. Then with the definitions

ci = ρi/ρ, vi = 1/ρi and v = 1/ρ we may obtain that in general

h = e+ pv . (1.77)

For a mixture of thermally perfect gases, the species energy and enthalpy may be
written as in (1.33) so that

e =
N∑

i=1

ci

∫ T

0

cvi dT +
N∑

i=1

cih
0
fi
, (1.78)

h =
N∑

i=1

ci

∫ T

0

cpi dT +
N∑

i=1

cih
0
fi
, (1.79)

The first summation term in each of these expressions is sometimes called the sen-
sible internal energy and the sensible enthalpy, respectively. The second summation
term is sometimes called the chemical enthalpy. A discussion of the chemical en-
thalpy for mixtures is found in Anderson (1990) pp. 550-551.

We can define the frozen specific heats of the mixture as

c̃v ≡
(
∂e

∂T

)
v,ci

=
N∑

i=1

ci

(
∂ei

∂T

)
v,ci

=
N∑

i=1

cicvi , (1.80)

c̃p ≡
(
∂h

∂T

)
p,ci

=
N∑

i=1

ci

(
∂hi

∂T

)
p,ci

=
N∑

i=1

cicpi , (1.81)

For mixtures of thermally perfect gases, cvi = cvi(T ), cpi = cpi(T ) and Ri =
cpi − cvi , we have

c̃p − c̃v =
N∑

i=1

ci(cpi − cvi) =
N∑

i=1

ciRi = R̃ , (1.82)

We again note that mixtures of thermally perfect gases will be not be thermally
perfect since e, h, c̃p and c̃v will not be only functions of T since they will also
depend upon ci which, as will be shown in the next section will depend upon ρ and
T for chemical equilibrium.

Frozen Sound Speed
We can define the frozen sound speed as

a2
f ≡

(
∂p

∂ρ

)
s,ci

. (1.83)
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This sound speed may be evaluated for any mixture, reacting or non-reacting, with
equilibrium or non-equilibrium chemistry. Frozen sound speed relationships, similar
to the single species results (1.51)–(1.55) may be developed from using the first and
second law and related expressions for mixtures in (1.71)–(1.76). Note that we
can easily switch between partial derivatives of ρ and partial derivatives of v using
v = 1/ρ.

For example if we have an equation of state of the form p = p(ρ, T, ci) and con-
sider T = T (ρ, s, ci) then (∂p/∂ρ)s,ci = (∂p/∂ρ)T,ci + (∂p/∂T )ρ,ci(∂T/∂ρ)s,ci . We
can evaluate ∂p/∂ρ and ∂p/∂T from the equation of state. To find (∂T/∂ρ)s,ci

we
can consider e = e(ρ, T, ci), so that (∂e/∂ρ)s,ci

= (∂e/∂ρ)T,ci
+(∂e/∂T )ρ,ci

(∂T/∂ρ)s,ci
.

Then from (1.72), ∂e/∂ρ)s,ci
= p/ρ2. Also From (1.80) (∂e/∂T )ρ,ci

= c̃v and
(∂e/∂ρ)T,ci may be evaluated from reciprocity (1.75). Putting this together we
obtain

a2
f =

(
∂p

∂ρ

)
T,ci

− T

ρ2c̃v

(
∂p

∂T

)2

ρ,ci

. (1.84)

For a mixture of thermally perfect gases, the equation of state is p = ρR̃T
where R̃ =

∑
ciRi. Then (∂p/∂ρ)T,ci = R̃T and (∂p/∂T )ρ,ci = ρR̃ and using

(1.82) we obtain for a mixture of thermally perfect gases:

a2
f =

c̃p
c̃v
R̃T . (1.85)

Again note that c̃p, c̃v and R̃ are not constant, but depend upon the mass fractions.

1.10 Equilibrium Chemistry
Consider as an example an equilibrium reaction of water going to molecular

hydrogen and oxygen:
2H2O ⇀↽ 2H2 +O2 . (1.86)

Suppose we begin with a mixture containing N10 molecules H2O, N20 molecules
H2 and N30 molecules O2. At a later instant, after changing the pressure and tem-
perature and allowing sufficient time to come to equilibrium, we have N1 molecules
H2O, N2 molecules H2 and N3 molecules O2. Conservation of hydrogen atoms tells
us that in the mixture there will be two hydrogen atoms for every H2O molecule
and two hydrogen atoms in every H2 molecule, so that 2N1 + 2N2 = 2N10 + 2N20

or in terms of the change of the number of molecules, 2∆N1 +2∆N2 = 0. Similarly,
conservation of oxygen atoms gives ∆N1 + 2∆N3 = 0. We can rearrange these two
atomic conservation equations as

∆N1

−2
=

∆N2

2
=

∆N3

1
. (1.87)

Note that for the reactants on the left side of (1.86), we have divided ∆N1 by the
negative of the stoichiometric coefficient of H2O and for the products on the right
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side of (1.86), we have divided ∆N2 and ∆N3 by their respective stoichiometric
coefficients. This relationship can be written for a general equilibrium reaction of
the form

α1X1 + α2X2 + . . .+ αjXj ⇀↽ βj+1Xj+1 + . . .+ βnXn . (1.88)

with the reactants on the left and the products on the right. Atomic conservation
will give

dN1

ν1
=
dN2

ν2
= · · · =

dNn

νn
, (1.89)

where νi = −αi for the reactants and νi = βi for the products. Note that the
scheme of using the negative of the stoichiometric coefficients for the reactants is
only a convention. The ultimate results will not depend upon which way the reaction
in (1.88) is written.

We can write the atomic conservation equation in terms of the number of moles
of each species Ni by recalling that Ni = Ni/N̂ , where N̂ is Avogadro’s number,
the constant number of of molecules or atoms per mole. We see that

dN1

ν1
=
dN2

ν2
= · · · =

dNn

νn
. (1.90)

We can also evaluate this relationship in terms of the mass fraction of each species
ci = Mi/M with the mass of each species Mi related to the number of moles of each
species by the constant atomic mass of the species M̂i as Mi = M̂iNi. The atomic
conservation relationship becomes

dc1

M̂1ν1
=

dc2

M̂2ν2
= · · · =

dcn

M̂nνn

= dξ , (1.91)

where we have introduced the quantity ξ as the degree of advancement of the reac-
tion. We see that the mass fraction of any species depends only upon the value of
ξ.

Law of Mass Action
The law of mass action may be evaluated from the condition that in an equilibrium
reaction at a fixed temperature and pressure, the Gibb’s free energy must be a
minimum, as in (1.59). For a mixture, the Gibb’s free energy has been found to
be g =

∑
cigi with gi = gi(pi, T ) given in (1.47). From the atomic conservation

equation for the equilibrium reaction, (1.91), we can see that ci may be written as a
function of a single variable ξ. The condition of equilibrium may then be expressed
as (

∂g

∂ξ

)
p,T

= 0 =
n∑

i=1

gi
dci
dξ

+
n∑

i=1

ci

(
∂gi

∂ξ

)
p,T

. (1.92)

The last summation term may be shown to be zero from the evaluation of gi for
a thermally perfect gas in (1.47) which may be written as gi = ωi(T ) + RiT log pi.
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Differentiating gives (∂gi/∂ξ)p,T = (RiT/pi)(∂pi/∂ξ)p,T . Multiplying by ci and
summing over all species i gives

∑
ci(∂gi/∂ξ)p,T =

∑
(ρi/ρ)(RiT/pi)(∂pi/∂ξ)p,T =

(1/ρ)
∑

(∂pi/∂ξ)p,T , where the equation of state pi = ρiRiT has been used. Now
interchanging summation and differentiation and applying Dalton’s law p =

∑
pi

gives
∑

(∂pi/∂ξ)p,T = (∂/∂ξ)(
∑
pi)p,T = (∂p/∂ξ)p,T which must be zero. Therefore∑

ci(∂gi/∂ξ)p,T = 0 and the equilibrium condition (1.92) becomes
∑
gi(dci/dξ) =

0.
From (1.91), dci/dξ = M̂iνi and the condition of equilibrium may be stated as:

n∑
i=1

M̂iνigi = 0 . (1.93)

Substituting the relation for gi = ωi(T ) +RiT log pi given in (1.47) and performing
some algebraic manipulation we obtain the law of mass action as:

n∏
i=1

pνi
i = exp

[
−

n∑
i=1

νi

RiT
ωi(T )

]
= Kp(T ) , (1.94)

where ωi(T ) is defined in (1.48). The exponential term above defines the equilibrium
constant Kp(T ) for a mixture of thermally perfect gases in terms of the quantity
ωi(T ) defined in (1.48). For some species, it is difficult to obtain an expression
for ωi because of uncertainties in the absolute value of the entropy. Under these
circumstances, an experimentally developed curve fit for Kp is used. For example,
Vincenti and Kruger, (1965) discuss on page 168, some curve fit equilibrium con-
stants. They describe the results of Wray, in terms of the equilibrium constant for
concentration

Kc(T ) =
n∏

i=1

[Xi]νi = CcT
ηce−Θ/T , (1.95)

where Cc, ηc and Θ are constants for a given reaction, with values for some ele-
mentary air reactions given in Table 1.3. The units of the constants are such that
the units for Kc are kg −mole/m3. The concentration [Xi] is the number of moles
of species i per unit volume, Ni/V . Then by definition ρi = Mi/V = M̂iNi/V =
M̂i[Xi] and pi = ρiRiT = M̂i[Xi](R̂/M̂i)T = [Xi]R̂T so that

Kp(T ) = (R̂T )
∑

νi

Kc(T ) . (1.96)

Also listed in the table are the characteristic temperatures for dissociation,
ΘD, for the first 3 reactions and the characteristic temperatures for ionization,
ΘI , for the last reaction. These temperatures are given in terms of electron volts
(ev), where 1ev corresponds to a characteristic temperature of 11, 600 K. The
dissociation energy per unit mass is equal to RiΘDi

and the ionization energy per
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Table 1.3 Equilibrium Constants

Kc = CcT
ηce−Θ/T ΘD or ΘI

Reaction Cc ηc Θ (◦K) (ev)

O2 ⇀↽ O +O 1.2×106 -0.5 59,500 5.12
N2 ⇀↽ N +N 18×103 0 113,000 9.76
NO ⇀↽ N +O 4.0×103 0 75,500 6.49
NO ⇀↽ NO+ + e 1.44×10−7 +1.5 107,000 9.25

unit mass is equal to RiΘIi
. These energies may be used to determine the heats of

formation of N , O, NO and NO+, as described in Vincenti and Kruger (1965), pp.
170.

The law of mass action may be used in conjunction with atomic conservation
to determine the mass fractions of species, given the value of two thermodynamic
variables, such as p and T or ρ and T . We can indicate this procedure by replacing
pi in (1.94) with ρiRiT = ciRiρT so that

(c∗1R1)
ν1 (c∗2R2)

ν2 · · · (c∗nRn)νn (ρT )

∑
νi

= Kp(T ) , (1.97)

where c∗i has been used to indicate the value of the mass fraction in chemical equi-
librium. Next, from atomic conservation (1.93) we find that

∆c∗i
M̂iνi

=
∆c∗1
M̂1ν1

, i = 2, . . . , n , (1.98)

where ∆c∗i is the change in c∗i from a known initial distribution ci0 . Multiplying by
the universal gas constant R̂ and recalling that Ri = R̂/M̂i we find that

c∗iRi =
νi

ν1
[c∗1 − (c1)0]R1 + (ci)0Ri , i = 2, . . . , n . (1.99)

Upon substituting (1.99) into (1.97) we obtain a single nonlinear equation involving
c∗1 and the known values of ρ, T and the initial distribution of mass fractions. It may
be more efficient to solve (1.97) and (1.98) as a system of N non-linear algebraic
equations in N unknowns. In practice, there are some numerical issues involved
in determining mass fractions from the law of mass action, and often it will be
solved as an optimization problem, directly minimizing the Gibbs free energy of the
mixture. A discussion of these issues may be found in Liu and Vinokur (1989).

If we wish to determine the mass fractions at a given pressure and temperature
instead of density and pressure, we can use the mixture state equation (1.60) as

ρT = p/R̃ = p/
n∑

i=1

c∗iRi , (1.100)
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which may be substituted into (1.97).

Properties of Mixtures in Chemical Equilibrium
The energy, enthalpy and entropy for any mixture are determined from (1.62) as
e = e(ρ, T, ci), h = h(ρ, T, ci) and s = s(ρ, T, ci). For a mixture in chemical
equilibrium, the mass fraction ci = c∗i , the equilibrium values given in (1.97)–(1.99)
as a function of ρ and T . Then again using the superscript ∗ to indicate equilibrium
mixture values, we have e∗ = e(ρ, T, ci = c∗i ) = e[ρ, T, c∗i (ρ, T )] = e∗(ρ, T ), with
similar relationships for h∗ and s∗. Thus the values of the state variables in chemical
equilibrium depend upon two thermodynamic variables, just as in the case of a single
species gas. This result has an impact on the definitions of cv, cp and the sound
speed.

We may note that the combined first and second laws for a reacting mixture
of gases, given in (1.67) or (1.68) simplifies for the case of a mixture in chemical
equilibrium. For this case we have shown in (1.87) that

∑
gidci = 0, so that the

combined first and second law becomes

dh = Tds+ vdp , (1.101)
or

de = Tds− pdv . (1.102)

The above equations apply for a single species, a non-reacting mixture or a reacting
mixture in chemical equilibrium.

We can define an equilibrium specific heat at constant volume, c∗v as

c∗v =
(
∂e∗

∂T

)
ρ

=
(
∂e

∂T

)
ρ,ci

+
N∑

i=1

(
∂e

∂ci

)
ρ,T

(
∂c∗i
∂T

)
ρ

. (1.103)

We have already defined a frozen cv as c̃v = (∂e/∂T )ρ,ci
in (1.75) and we see from

(1.62) that (∂e/∂ci)ρ,T = ei so that

c∗v = c̃v +
N∑

i=1

ei

(
∂c∗i
∂T

)
ρ

. (1.104)

A similar expression may be developed for c∗p as

c∗p = c̃p +
N∑

i=1

hi

(
∂c∗i
∂T

)
p

. (1.105)

We have determined relationships for ρ∗i /ρ in terms of ρ and T in (1.97)–
(1.99). We can determine ∂c∗i /∂T by logarithmically differentiating (1.97) to ob-
tain

∑
(1/c∗i )∂c

∗
i /∂T = −(1/T )

∑
νi + d(logKp)/dT . Then from (1.98) Ridc

∗
i =
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(νi/ν1)R1dc
∗
1 so that

(
∂c∗i
∂T

)
ρ

=
νi

Ri

[
− 1
T

N∑
i=1

νi +
d logKP

dT

]
/

N∑
i=1

ν2
i

c∗iRi
. (1.106)

From the definition of Kp in (1.94) and the definition of wi(T ) in (1.48) we obtain

d logKP

dT
=

N∑
i=1

νihi

RiT 2
. (1.107)

Then, using hi = ei + RiT , we may write for equilibrium mixtures of thermally
perfect gases: (

∂c∗i
∂T

)
ρ

=
νi

Ri

N∑
i=1

νiei

RiT 2
/

N∑
i=1

ν2
i

c∗iRi
, (1.108)

We may develop the derivative of c∗i with respect to ρ in a similar fashion as

(
∂c∗i
∂ρ

)
T

= − νi

ρRi

N∑
i=1

νi/
N∑

i=1

ν2
i

c∗iRi
, (1.109)

For the c∗p relationship, we need the derivative of c∗i with respect to T at
constant p instead of constant ρ as in (1.108). We may proceed by considering
c∗i (T, p) using (1.97)–(1.100). We obtain

(
∂c∗i
∂T

)
p

=
νi

Ri

N∑
i=1

νihi

RiT 2
/


 N∑

i=1

ν2
i

c∗iRi
−

(
N∑

i=1

νi

)2

/

N∑
i=1

c∗iRi


 . (1.110)

Note that the above equations for the derivatives of c∗i rely on mass fractions
satisfying conservation equations of the form (1.98) and (1.99) and hence are valid
for a single equilibrium reaction of the form (1.88). For more complicated equilib-
rium chemistry, alternate relationships must be developed.

Substituting (1.108) and (1.110) into (1.104) and (1.105) we obtain the follow-
ing expressions for equilibrium specific heats:

c∗v = c̃v +
1
T 2

(
N∑

i=1

νiei

Ri

)2

/
N∑

i=1

ν2
i

c∗iRi
, (1.111)

c∗p = c̃p +
1
T 2

(
N∑

i=1

νihi

Ri

)2

/


 N∑

i=1

ν2
i

c∗iRi
−

(
N∑

i=1

νi

)2

/
N∑

i=1

c∗iRi


 , (1.112)
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The equilibrium sound speed may be defined as

a2
e ≡

(
∂p

∂ρ

)
s,ci=c∗

i

=
(
∂p∗

∂ρ

)
s

, (1.113)

where p∗ = p[ρ, T, c∗i (ρ, T )] = p∗(ρ, T ). Now, following procedures used for a single
species gas, we consider T = T (ρ, s) to obtain

a2
e =

(
∂p∗

∂ρ

)
T

+
(
∂p∗

∂T

)
ρ

(
∂T

∂ρ

)
s

. (1.114)

We can develop a relationship for (∂T/∂ρ)s by considering e∗ = e∗(v, T ) and
T = T (v, s). Then (∂e∗/∂v)s = (∂e∗/∂v)T + (∂e∗/∂T )v(∂T/∂v)s. From Maxwell’s
relationships, (1.74) (∂e∗/∂v)s = −p and from (1.111) c∗v = (∂e∗/∂T )v. From reci-
procity, (1.75), (∂e∗/∂v)T = −p∗ − T (∂p∗/∂T )v. Putting this all together along
with ρ = 1/v, gives

c∗v

(
∂T

∂ρ

)
s

=
T

ρ2

(
∂p∗

∂T

)
ρ

. (1.115)

Next we may write the derivatives of p∗ in terms of the derivatives of p as

(
∂p∗

∂ρ

)
T

=
(
∂p

∂ρ

)
T,ci

+
N∑

i=1

(
∂p

∂ci

)
ρ,T

(
∂c∗i
∂ρ

)
T

, (1.116)

(
∂p∗

∂T

)
ρ

=
(
∂p

∂T

)
ρ,ci

+
N∑

i=1

(
∂p

∂ci

)
ρ,T

(
∂c∗i
∂T

)
ρ

. (1.117)

For a mixture of thermally perfect gases, p = ρR̃T , so that (∂p/∂ρ)T,ci = R̃T ,
(∂p/∂T )ρ,ci

= ρR̃ and (∂p/∂ci)ρ,T = ρRiT . Substituting (1.115)–(1.117) into
(1.114) yields

a2
e = R̃T + ρT

N∑
i=1

Ri

(
∂c∗i
∂ρ

)
T

+
T

c∗v

[
R̃+ T

N∑
i=1

Ri

(
∂c∗i
∂T

)
ρ

]2

, (1.118)

where the partial derivatives of c∗i are given in (1.108) and (1.109).

Symmetric Diatomic Gas

The formulas given in the previous section simplify considerably for an equilibrium
mixture of a dissociating, symmetric, diatomic gas. Consider a generic species A2

which dissociates into A by
A2 ⇀↽ 2A . (1.119)
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We will consider species 1 to be the diatomic molecule A2 and species 2 to be the
atom A. According to our convention, the stoichiometric coefficients are ν1 = −1
and ν2 = 2. Obviously the molecular weights of the species must be related by
M̂2 = M̂1/2. Let us further assume that initially only A2 is present so that (c1)0 = 1
and (c2)0 = 0. Then atomic conservation, (1.91) gives the following relationship
between the equilibrium mass fractions:

c∗2 = 1 − c∗1 . (1.120)

From the definition of Kp, (1.94)

p−1
1 p2

2 = Kp(T ) . (1.121)

Assuming that each species is thermally perfect, p1 = c∗1R1ρT and p2 = c∗2R2ρT .
We may also note that R2 = R̂/M̂2 = 2R1. Then, substituting into (1.121),

4(1 − c∗1)
2

c∗1
ρR1T = Kp(T ) . (1.122)

If we are given values of ρ and T , we may use (1.122) to determine c∗1. If we know
p and T , then we must use the mixture state equation p = ρR̃T , where

R̃ = (2 − c∗1)R1 . (1.123)

Substituting p/R̃ for ρT in (1.122) gives

(1 − c∗1)
2

c∗1(2 − c∗1)
=

1
4p
Kp(T ) . (1.124)

Thus we may solve a quadratic equation for c∗1(p, T ). One root will be non-physical
with c∗1 > 1.

The mixture properties are now readily found by

e = c∗1e1(T ) + (1 − c∗1)e2(T ) ,
h = c∗1h1(T ) + (1 − c∗1)h2(T ) ,
s = c∗1s1(p, T ) + (1 − c∗1)s2(p, T ) ,

(1.125)

where quantities with subscript 1 correspond to diatomic A2 and generally include
translational, rotational, vibrational and electronic excitation effects along with the
heats of formation. Quantities with subscript 2 correspond to monatomic A and
include translational and electronic excitation effects.

Frozen mixture values of the specific heats may be computed as

c̃v = c∗1cv1(T ) + (1 − c∗1)cv2(T ) , (1.126)
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and
c̃p = c̃v + R̃ , (1.127)

and the frozen sound speed

a2
f =

c̃p
c̃v
R̃T . (1.128)

Equilibrium values of the specific heats, c∗v, c∗p and the equilibrium sound speed
may be computed using (1.111), (1.112) and (1.118). These relationships require
the derivatives of c∗1 with respect to ρ and T found in (1.108)–(1.110). We find that

c∗v = c̃v +
c∗1(1 − c∗1)
(1 + c∗1)

[e2(T ) − e1(T )]2

R1T 2
, (1.129)

c∗p = c̃p +
c∗1(1 − c∗1)(2 − c∗1)

2
[h2(T ) − h1(T )]2

R1T 2
, (1.130)

and

a2
e =

(
R̃− c∗1(1 − c∗1)

(1 + c∗1)
R1 +

1
c∗v

[
R̃+

c∗1(1 − c∗1)
(1 + c∗1)

(e2 − e1)
T

]2
)
T . (1.131)

Figure 1.6. Equilibrium mass fraction distribution of dissociating oxygen O2.

As an example, consider diatomic oxygen O2 dissociating at a pressure of 1atm.
The mass fraction of O2, c∗1 is plotted versus T in Fig. 1.6. We see that dissociation
begins at approximately 2400K and is completed by approximately 5000K. The
thermal imperfection of the gas mixture is indicated in Fig. 1.7, where we plot
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Figure 1.7. Thermal imperfection of a dissociating oxygen mixture, Z = p/ρR1T .

Z = p/ρR1T . Note that using the mixture state equation gives Z = 2 − c∗1. The
plot shows that Z = 1 before dissociation and Z = 2 after dissociation. This is
consistent with the fact that p = ρR1T before dissociation and p = ρR2T = 2ρR1T
after dissociation.

The specific heat ratio, c∗v/R1 is plotted in Fig. 1.8 and the sound speed ratio,
a/a0 is plotted in Fig. 1.9, where a2

0 = 1.4R1T . In these plots both the equilibrium
and frozen mixture values are presented, with the solid line corresponding to equi-
librium and the dotted line corresponding to frozen. Only small differences in cv
values between the frozen and equilibrium cases. Small, but significant differences
may be noted between the frozen and equilibrium sound speeds. In general, larger
differences are seen in more complicated mixtures, such as air.

Equilibrium Air

As an example of an equilibrium gas mixture composed of a system of reactions, we
consider a simplified model for air. For temperatures up to approximately 8000K
air may be considered to be composed of O2, N2, O, N , NO, NO+ and electrons
e−. The principal ionization reaction at these temperatures will involve NO. There
are seven species and hence, seven unknown mass fractions. For the purpose of
applying the law of mass action, we may assume the following reactions:

reaction1 : O2 ⇀↽ O +O ,

reaction2 : N2 ⇀↽ N +N ,

reaction3 : NO ⇀↽ N +O ,

reaction4 : NO ⇀↽ NO+ + e− .
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Figure 1.8. Equilibrium and frozen specific heat ratio for dissociating O2.

Figure 1.9. Equilibrium and frozen sound speed ratio for dissociating O2, a2
0 = 1.4R1T .

Note, that the above system of reactions does not cover all the possible reactions for
these species. However, for the purpose of equilibrium chemical composition, the
above system is sufficient. It is shown in Vincenti and Kruger (1965), pp. 168–169,
that adding additional reactions does not alter the resulting composition.

The law of mass action applied to each of these reactions gives

(cO2RO2)
−1(cORO)2 = Kp1(T )/ρT , (1.132)
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(cN2RN2)
−1(cNRN )2 = Kp2(T )/ρT , (1.133)

(cNORNO)−1(cNRN )(cORO) = Kp3(T )/ρT , (1.134)
(cNORNO)−1(cNO+RNO+)(ce−Re−) = Kp4(T )/ρT . (1.135)

The remaining relationships to determine the mass fractions come from atomic and
charge conservation. We cannot use the previously developed relations, (1.89)–
(1.91), since these apply only to a single reaction (1.88). Instead, we can apply
conservation directly to our mixture of 7 species. For the mixture, conservation of
N atoms gives

2NN2 +NN +NNO +NNO+ = 2 (NN2)0 , (1.136)

and conservation of O atoms gives

2NO2 +NO +NNO +NNO+ = 2 (NO2)0 , (1.137)

where it has been assumed that the mixture initially contains only N2 and O2. Since
the mixture was initially charge neutral, conservation of charge gives

NNO+ = Ne− . (1.138)

Rewriting (1.136)–(1.138) in terms of mass fractions gives

2cN2RN2 + cNRN + cNORNO + cNO+RNO+ = 2 (cN2)0RN2 , (1.139)
2cO2RO2 + cORO + cNORNO + cNO+RNO+ = 2 (cO2)0RO2 , (1.140)

and
cNO+RNO+ = ce−Re− . (1.141)

Equations (1.132)–(1.135) and (1.139)–(1.141) yield a system of seven nonlinear
algebraic equations in seven unknowns provided that ρ and T are specified. If p
and T are given, then the equation of state for a mixture of thermally perfect gases
may be used to give the density in terms of the pressure. From (1.100) applied to
this system, we obtain

ρT = p/ (cN2RN2 + cNRN + cO2RO2 + cORO + cNORNO + cNO+RNO+ + ce−Re−) .
(1.142)

In general the resulting algebraic system may be solved interms of ρ and T or p and
T . It turns out that this approach is generally not computationally efficient and
methods which apply minimization techniques directly to the Gibbs free energy are
often used, e.g., White et al. (1958). A computer program based on this approach is
by Gordon and McBride (1971). A review of the various approaches to equilibrium
chemical composition are discussed in Liu and Vinokur (1989).

For dealing with thermodynamic properties of a known system, such as air
in chemical equilibrium, often a curve-fitting approach is utilized. The procedure
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consists of computing equilibrium compositions of air over a very broad range of
pressures, temperatures and densities. Then thermodynamic properties, such as
internal energy, enthalpy, entropy, and sound speed are computed for every pair of
values of pressure and temperature or density and temperature. Then, the ther-
modynamic properties are curve fit as functions of various pairs of thermodynamic
state values, such as pressure and temperature. The curve fit coefficients are then
stored in a computer program for the retrieval of any of the thermodynamic proper-
ties. This results in a very efficient method for obtaining thermodynamic data for a
known system in chemical equilibrium. However, usually only the thermodynamic
properties are curve fit and it is not possible to get the specific chemical composi-
tion. As will be seen in the next chapter, for equilibrium gas dynamic calculations,
only the thermodynamic properties of the mixture are required.

An example of this curve fitting approach has been performed by Srinivasan et
al. (1987), for equilibrium air. They presented curve fits of p(e, ρ), a(e, ρ), T (e, ρ),
s(e, ρ), T (p, ρ), h(p, ρ), ρ(p, s), e(p, s) and a(p, s). The range of validity of the curve
fits are for temperatures up to 25, 000K and densities from 10−7 to 103 amagats.
(1amagat = 1.292kg/m3, standard density for air).

The equilibrium composition of air used in the curve fits was found from the
NASA program RGAS, which utilizes approaches such as that of Bailey (1967). Up
to 30 species were considered for the high temperature calculations, including O2,
O, O−, O−

2 , O+, O+
2 , O++, N2, N , N+, N++, N+

2 , CO2, CO, CO+, C, C+, C++,
NO2, NO, N2O, NO+, A, A+, A++, Ne, Ne+ and e−.

The chemical composition of air varies considerably of a range of temperatures
and densities. At room temperature, air consists of about 78% diatomic nitrogen,
21% diatomic oxygen, approximately 1% argon and traces of carbon dioxide. Note
that these percentages are for the composition by volume. This means that the mole
fractions, (1.68) of N2, O2 and A are, 0.78, 0.21 and 0.01, respectively. According
to Srinivasan et al. (1987), for 10−2 < ρ/ρ0 < 10, where ρ0 is 1 amagat, the
equilibrium air composition may be classified in the following regimes:

1. T < 2500K. The chemically composition is approximately the same as that
for room temperature.

2. 2500K < T < 4000K. The oxygen dissociation regime; no significant nitrogen
dissociation; slight NO formation.

3. 4000K < T < 8000K. The nitrogen dissociation regime; Oxygen fully dissoci-
ated.

4. T > 8000K. Ionization of the atomic constituents.
An example of the chemical composition of air versus temperature at a density

of 10−2 amagats is given in Fig. 1.12. This figure is from Vincenti and Kruger
(1965), pp. 174 and is based on the calculations of Hilsenrath, Klein and Wooley.
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Figure 1.10. Equilibrium air composition at a density of 10−2 amagats.
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2. GOVERNING INVISCID EQUATIONS FOR EQUILIBRIUM FLOW

2.1 Continuum, Equilibrium Flow

One assumption that will be considered throughout these notes is the repre-
sentation of the fluid as a continuum. We will speak of infinitesimal fluid elements
or fluid particles, which are meant to contain statistically meaningful numbers of
molecules. We can define macroscopic fluid properties by taking averages over the
millions of molecules in our fluid element over a time, which is small compared to
any characteristic flow time.

In this chapter, we will be developing the governing equations under the con-
ditions of local thermodynamic equilibrium. We also assume that the fluid is not
reacting or is in chemical equilibrium. This situation may be referred to as equi-
librium flow. As the fluid particles move through a nonuniform flow field, it is
assumed that there is sufficient time for an adequate number of molecular collisions
to occur, so that the particles appear to be moving from one equilibrium state to
the next. One consequence of this assumption is that the fluid may be considered
inviscid. Clearly, these local equilibrium assumtions will be violated in regions of
the fluid where very rapid changes occur over an extremely small distance, such as
across shock waves and in boundary and shear layers. Even without such strong
flow gradients, non-equilibrium vibrational energy and finite-rate chemistry effects
are sometimes important. These will be discussed in a forthcoming chapter.

In dealing with equilibrium flows, we have seen in Chapter 1 that the thermo-
dynamic state for an equilibrium mixture depends upon two state variables, §1.10.
Thus we can develop the governing equations for the mixture itself, and not con-
sider individual species conservation relations. It is important to recall that an
equilibrium mixture of thermally perfect gases will not be thermally perfect.

The governing conservation laws may be directly developed in terms of a control
volume which moves with a fixed group or aggregate of fluid particles. The governing
conservation laws may be stated from the basic principles of conservation of mass,
Newton’s Second Law and the First Law of Thermodynamics as:

i. Continuity: The time rate of change of the mass of a fixed group of fluid
particles is zero.

ii. Momentum Conservation: The time rate of change of momentum of a fixed
group of fluid particles is equal to the sum of the forces acting on the fluid
particles.

iii. Energy Conservation: The time rate of change of total energy (internal and
kinetic) of a fixed group of fluid particles is equal to the rate of heat added to
the fluid particles plus the rate of work done on the fluid particles.

The above statements utilize the particle or Lagrangian description of motion. How-
ever, it is often more convenient to deal with a control volume which is fixed in
space, called the field or Eulerian description of motion. The conservation laws in-
volve time derivatives of quantities associated with a group of fluid particles moving
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with the fluid. In the Eulerian description we consider a control volume which is
fixed in space, with the fluid particles streaming through the volume. For a single
fluid particle we can relate time derivatives in a Lagrangian frame to derivatives in
an Eulerian frame through what is called the substantial derivative. For a group of
fluid particles the relationship appears through the Reynolds Transport Theorem.

The rigorous, classical treatment of the relationship between the particle and
field descriptions may be found in Truesdell (1964) and Serrin (1959). (It is inter-
esting to note that the particle description is often ascribed to Lagrange. Historical
evidence, as discussed by Truesdell, 1964, attributes this description to Euler.)

2.2 The Substantial Derivative

The conservation laws may be directly expressed in terms of time derivatives
of mass, momentum and total energy following a fixed group of fluid particles. This
derivative is often called the substantial or material derivative and is denoted as
D/Dt. An expression may be derived for the substantial derivative of a property of
a fluid, say f(x, y, z, t). At a time t1 a fluid particle is at a position x1, y1, z1 with
a property f1 = f(x1, y1, z1, t1) and at a time t2 the same fluid particle has moved
to a position x2, y2, z2 with a property f2. Expanding f2 in a Taylor’s series:

f2 = f1+
(
∂f

∂x

)
1

(x2−x1)+
(
∂f

∂y

)
1

(y2−y1)+
(
∂f

∂z

)
1

(z2−z1)+
(
∂f

∂t

)
1

(t2−t1)+· · ·
(2.1)

The substantial derivative may then be formally written as:

(
Df

Dt

)
1

= lim
t2→t1

[
f2 − f1

t2 − t1

]
= u1

(
∂f

∂x

)
1

+v1

(
∂f

∂y

)
1

+w1

(
∂f

∂z

)
1

+
(
∂f

∂t

)
1

, (2.2)

where u, v and w are the velocity components in the x, y and z directions. In
general:

Df

Dt
=

∂f

∂t
+ V · ∇f . (2.3)

We see that the substantial derivative consists of a local time derivative and a
convective derivative associated with the motion of the fluid. Thus, even in a steady
flow, where the local time derivative would be zero, the substantial derivative would,
in general, not be zero.

2.3 Reynolds Transport Theorem

Here we will attempt to relate the basic conservation equations, mass, momen-
tum and energy, to the fluid in a control volume fixed in space. The conservation
laws involve the time rate change of extensive properties of the fixed group of fluid
particles. These properties are mass, momentum and total energy, which we will
denote using the generic symbol N . We can say that N =

∫
η dM where η is the



r
1

r
2

l1

l2

u
1

u 2

b1

b 2

Concepts of Gasdynamics 37

corresponding intensive property, (extensive property per unit mass) and M is the
mass. We can then take the integral over the mass in terms of an integral over the
volume τ by introducing the mass density ρ, such that N =

∫∫∫
ρη dτ . We see that

for mass conservation, N corresponds to the total mass, so that η = 1. Similarly, for
momentum conservation, η = V , the velocity vector, or momentum per unit mass,
and for energy conservation, η = e + V ·V /2, with e being the internal energy per
unit mass and V ·V /2 the kinetic energy per unit mass.

A similar expression must be developed for the derivative

DN

Dt
=

D

Dt

∫∫∫
V(t)

ρη dτ . (2.4)

However, since the derivative follows a fixed group of fluid particles, the domain of
integration, V is a function of time. We may recall Leibnitz’ rule for differentiating a
definite integral involving a parameter. If I(t) =

∫ b(t)

a(t)
f(x, t) dx, then the derivative

dI

dt
=

∫ b(t)

a(t)

∂f

∂t
dt + f [b(t), t]

db

dt
− f [a(t), t]

da

dt
. (2.5)

The derivative in (2.4) may be evaluated using a multi-dimensional form of
Leibnitz’ rule. A heuristic derivation can be simply made by considering a two-
dimensional integral over a rectangular domain, sketched in Fig. 1., whose right
and left sides, x = r and x = l, and upper and bottom surfaces, y = u and y = b, all
move with the fluid and hence, vary with time. Note that we are only considering
the translation of the fluid volume and not any angular or shearing deformations.
Such deformations are due to shearing stresses acting on the control surface and
are caused by viscous forces. Their contribution to the derivative in (2.4) will be
negligible (in the limit as ∆t → 0).

Figure 2.1. Control volume moving with the fluid.
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We can define the two-dimensional counterpart of a volume integral as

I(t) =
∫ r(t)

l(t)

∫ u(t)

b(t)

f(x, y, t) dxdy . (2.6)

At a time t1 the integral is

I1 = I(t1) =
∫ r1

l1

∫ u1

b1

f(x, y, t1) dxdy , (2.7)

where r1 = r(t1), etc. A similar formula results for I2 evaluated at a nearby
time t2 where the fluid boundaries have moved to r2, l2, u2 and b2. (The time t2
is taken to be infinitesimally close to time t1, so that the fluid element may be
assumed to remain rectangular.) By manipulating the limits of the x-integration as∫ r2

l2
=

∫ r1

l1
+

∫ r2

r1
−

∫ l2
l1

and with a similar procedure for the y-integration, we obtain

I2 − I1 =
∫ r1

l1

∫ u1

b1

[f(x, y, t2) − f(x, y, t1)] dydx +
∫ r2

r1

∫ u2

b2

f(x, y, t2) dydx

−
∫ l2

l1

∫ u2

b2

f(x, y, t2) dydx +
∫ r1

l1

∫ u2

u1

f(x, y, t2) dydx−
∫ r1

l1

∫ b2

b1

f(x, y, t2) dydx .(2.8)

Now from the mean-value theorem,
∫ r2

r1
f(x, y, t) dx = (r2 − r1)f(r̃, y, t) where r1 ≤

r̃ ≤ r2 with similar results for the integrals between l1 and l2, b1 and b2 and u1 and
u2. Substituting these results(
DI

Dt

)
1

= lim
t2→t1

[
I2 − I1
t2 − t1

]
=

( ∫ r

l

∫ u

b

∂f

∂t
dydx +

∫ u

b

[
∂r

∂t
f(r, y, t) − ∂l

∂t
f(l, y, t)

]
dy

+
∫ r

l

[
∂u

∂t
f(x, u, t) − ∂b

∂t
f(x, b, t)

]
dx

)
1

, (2.9)

where typical velocity terms are defined as (∂r/∂t)1 = (r2 − r1)/(t2 − t1)and
(∂b/∂t)1 = (b2 − b1)/(t2 − t1) in the limit as t2 → t1. These velocities are the
velocities normal to the boundaries. The last two integrals in the above expression
correspond to the surface integral

∫∫
f V · n̂ dσ. The first term corresponds to the

volume integral
∫∫∫

(∂f/∂t) dτ , where the domain of integration is now the fixed do-
main V corresponding to volume initially occupied by the group of fluid particles.
Since the domain is fixed, we may now take the derivative outside the integral. Thus

DN

Dt
=

d

dt

∫∫∫
V
ρη dτ +

∫∫
S
ρηV · n̂ dσ , (2.10)

where the domain V represents a control volume fixed in space, surrounded by a
control surface S. This is the well known Reynolds Transport Theorem which states
that for a control volume fixed in space, the time derivative DN/Dt following a
fixed group of fluid particles which initially occupy the control volume equals the
time rate of change of N inside the control volume plus the net flux of N through
the control surface surrounding the control volume.
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2.4 Continuity

As stated in §1., the continuity equation is an expression of the conservation of
mass of a fixed group of fluid particles, or DM/Dt = 0. Implicit here is the assump-
tion that no mass is being created inside the fluid itself, (e.g. no mass sources).
Note that we are dealing here with mass conservation of the entire mixture. If there
are chemical reactions, then the mass of the individual species may be created or
destroyed. However the total mass of the mixture will not change due to chemical
reactions. This will be the case for reactions in or out of chemical equilibrium. For
chemical equilibrium, only the global continuity equation is required, whereas for
finite-rate chemistry, the individual species continuity equations are required.

Utilizing (2.10) with N taken to be the total mass and η = 1, we may express
this law as:

d

dt

∫∫∫
V
ρ dτ +

∫∫
S
ρV · n̂ dσ = 0 . (2.11)

This integral form of the continuity equation which applies to any control volume
fixed in space, V, finite or infinitesimal. This equation can be put into differential
form utilizing the divergence theorem (also known as Gauss’s theorem). The theo-
rem states that for a vector A which has continuous partial derivatives in a domain
V which is bounded by a simple, piecewise smooth surface S, then∫∫∫

V
∇ · A dτ =

∫∫
S

A · n̂ dσ . (2.12)

Taking A in (2.12) as ρV , equation (2.11) then becomes the volume integral

∫∫∫
V

[
∂ρ

∂t
+ ∇ · (ρV )

]
dτ = 0 .

In general, the only ways that an integral expression can equal zero, is if the in-
tegrand is zero or if positive contributions in one part of the range of integration
exactly cancel negative contributions in another part of the range. In this case,
since expression (2.12) must be valid for any control volume V, the only way for the
integral to be zero is if the integrand is zero. Hence

∂ρ

∂t
+ ∇ · (ρV ) = 0 , (2.13)

which is the usual differential form of the continuity equation. It is important to
note that the differential equation (2.13) is valid under the conditions implied by
the divergence theorem. In particular the equation will be valid only in a domain
where ρ andV have continuous partial derivatives. Thus the differential form of the
continuity equation will not be valid across discontinuities. The same will be true
for the differential forms of the other conservation laws. This issue has relevance in
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the numerical solution of the fluid dynamic equations with discontinuities, such as
shock waves.

Another form of the differential continuity equation may be obtained by ex-
panding in (2.13), ∇ · (ρV ) = ρ(∇ · V ) + V · ∇ρ and utilizing the substantial
derivative (2.2), whereby

1
ρ

Dρ

Dt
+ (∇ · V ) = 0 . (2.14)

We see that for a constant density fluid, Dρ/Dt = 0 and we obtain the incompress-
ible form of the continuity equation as

∇ · V = 0 . (2.15)

Note that this equation is valid for unsteady as well as steady incompressible flow.

2.5 Momentum
The momentum equation for fluid flow represents an expression of Newton’s

Second Law applied to a fixed group of fluid particles. It may be stated that the time
rate of change of momentum of the fluid particles equals the sum of the forces acting
on the fluid particles. Utilizing (1.10) with N representing the total momentum of
the fluid particles and η = V we obtain

d

dt

∫∫∫
V
ρV dτ +

∫∫
S
ρV (V · n̂) dσ = F , (2.16)

where F is the total force acting on the fluid particles. The total force may be
considered to be composed of volume and surface forces. The volume forces act
on each fluid particle within the control volume, and are sometimes called body
forces. Two typical body forces are gravity forces and electromagnetic forces. We
will represent the total volume force as

∫∫∫
ρg dτ , where g is the body force per unit

mass.
The surface forces can be considered to be composed of normal forces and

tangential forces. For an inviscid fluid, where we neglect the effects of viscosity, the
tangential forces will be zero and the normal forces are due only to the hydrostatic
pressure and may be written as −

∫∫
pn̂ dσ.

The integral form of the momentum equation for an inviscid fluid becomes

d

dt

∫∫∫
V
ρV dτ +

∫∫
S
ρV (V · n̂) dσ = −

∫∫
S
pn̂ dσ +

∫∫∫
V
ρg dτ . (2.17)

In order to obtain the differential equation corresponding to the above inte-
gral momentum equation it is necessary to utilize a tensor form of the divergence
theorem. Using standard Cartesian tensor notation, for a second-order tensor Tij

then ∫∫∫
V
∂jTij dτ =

∫∫
S
njTij dσ . (2.18)
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The same caveat about continuous partial derivatives implied in (2.12) also holds
here. For the momentum equation, we may take Tij = ρViVj so that

∫∫∫
V

[
∂

∂t
(ρVj) + ∂i(ρViVj) + ∂jp− ρgj

]
dτ = 0 .

And again, as in (2.13), since the above must hold for any control volume V, then
the integrand must be zero, or

∂

∂t
(ρVj) + ∂i(ρViVj) + ∂jp = ρgj . (2.19)

When expanded for Cartesian coordinates, (2.19) may be recognized as the differ-
ential momentum equations in conservation law or conservative form. They may be
written as

∂

∂t
(ρu) +

∂

∂x
(ρu2 + p) +

∂

∂y
(ρuv) +

∂

∂z
(ρuw) = ρgx ,

∂

∂t
(ρv) +

∂

∂x
(ρuv) +

∂

∂y
(ρv2 + p) +

∂

∂z
(ρvw) = ρgy ,

∂

∂t
(ρw) +

∂

∂x
(ρuw) +

∂

∂y
(ρvw) +

∂

∂z
(ρw2 + p) = ρgz .

(2.20)

The above equations could have been derived using the usual vector form of Gauss’
theorem (2.12) by first taking vector components of (2.18).

A convenient vector form of the differential momentum equations may be ob-
tained by expanding the derivatives in (2.20) and utilizing continuity (2.13) such
that

DV

Dt
= −1

ρ
∇p + g . (2.21)

This momentum equation is in non-conservation form and is often referred to as
Euler’s equation.

2.6 Energy
The energy equation follows from a statement of the First Law of Thermo-

dynamics applied to a fluid system. For a fixed group of fluid particle, this may
be expressed as the time rate of change of total energy of the fluid is equal to the
rate of heat added to fluid plus the rate of work done on the fluid. The rate of
change of total energy may be expressed in an Eulerian frame using (2.10) with
η = e0 = e + V ·V /2, the total energy per unit mass. The rate of work done may
be considered to be

∫
V · dF where F is the force acting on the fluid, which for an

inviscid fluid, contains only pressure and body forces. Consistent with a model of an
inviscid fluid we must also consider a non-heat conducting fluid since, according to
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equilibrium kinetic theory the coefficient of thermal conductivity is proportional to
the coefficient of viscosity. Thus we obtain the integral form of the energy equation
for an inviscid, non-conducting fluid

d

dt

∫∫∫
V
ρe0 dτ +

∫∫
S
ρe0V · n̂ dσ =

∫∫∫
V
ρq̇ dτ −

∫∫
S
pV · n̂ dσ +

∫∫∫
V
ρV ·g dτ ,

(2.22)
where q̇ is the rate of heat added per unit mass. This term corresponds to heat added
through internal heat sources in the fluid, such as heat released during chemical
reactions. It is zero for an adiabatic fluid.

We can obtain the corresponding differential energy equation for an inviscid,
non-heat conducting fluid in conservation form by applying the divergence theorem
(2.12), and following the identical arguments made in dealing with the continuity
equation (2.13) to obtain

∂

∂t
(ρe0) + ∇ · (ρV h0) = ρq̇ + ρ(V · g) , (2.23)

where the stagnation enthalpy, h0 = e0+p/ρ. An alternative, non-conservative form
of the differential energy equation may be obtained by expanding the derivatives in
(2.23), utilizing continuity (2.13) and the substantial derivative (2.3) to obtain

De0

Dt
= q̇ − 1

ρ
∇ · (pV ) + V · g . (2.24)

2.7 Conservation and Non-conservation Forms

The conservation equations of fluid mechanics have been derived for an in-
viscid, non-heat conducting fluid. The equations have been derived in integral and
differential form. The integral conservation equations, (2.11), (2.17) and (2.22) may
be regarded as most general, since they apply to any control volume fixed in space.
The size of the control volume may be finite or infinitesimal, and the geometry is
arbitrary. The integral equations are often used in computational fluid mechanics
as the starting point for the development of finite-volume or finite-element methods.
However, this form of the governing equations is usually not amenable for analytic
solutions. For these, we usually consider the governing partial differential equations.

Noting the previous development of the governing differential equations, it
should be evident that the application of the divergence theorem required that
flow properties contain continuous partial derivatives in the domain of interest.
This precludes the general application of the governing differential equations in
domains containing flow discontinuities. Discontinuities such as shock waves and
contact surfaces are prevalent in high-speed gas dynamics. Of course, the differential
equations may be used between discontinuities, just not across them.
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This presents a difficulty for the numerical solution of the governing partial dif-
ferential equations by finite-difference methods. One possibility is to use the method
between discontinuities, with the discontinuity computed separately according to
the appropriate jump conditions,(which are evaluated from the governing integral
equations). The procedures are often referred to as shock-fitting techniques and are
reviewed by Moretti (1986).

An alternate approach, is to apply the discretized form of the governing dif-
ferential equations everywhere and to compute discontinuities as very steep, but
continuous gradients through the concept of weak solutions. The theory of weak
solutions is due to Lax (1963). In computing discontinuities in this manner, also
referred to as shock capturing, it is imperative to use the conservation law form of
the governing differential equations, (2.13), (2.19) and (2.23). It can be shown, e.g.
Tannehill, Anderson and Pletcher (1997), that the discretized form of the conser-
vative differential equations is consistent with the discretized form of the governing
integral equations, and hence should be valid, in the sense of weak solutions, across
discontinuities. For shock-fitting applications, or analytical developments, the con-
servative or non-conservative forms of the governing differential equations, (2.14),
(2.21) and (2.24) are formally equivalent. The differential equations in conserva-
tive or conservation-law form are often written in matrix form, which for Cartesian
coordinates and negligible body forces may be written as

∂Q

∂t
+

∂F

∂x
+

∂G

∂y
+

∂H

∂z
= 0 , (2.25)

where

Q =




ρ
ρu
ρv
ρw
ρe0


 , F =




ρu
ρu2 + p
ρuv
ρuw

(ρe0 + p)u


 , G =




ρv
ρuv

ρv2 + p
ρvw

(ρe0 + p)v


 , H =




ρw
ρuw
ρvw

ρw2 + p
(ρe0 + p)w


 .

(2.26)

2.8 Equation of state
The fluid dynamic equations for an inviscid, non-conducting gas in local ther-

modynamic and chemical equilibrium consist of a set of 5 equations in 6 unknowns,
and an equation of state is needed to close the system. For example, we can con-
sider the simplest example of solving (2.25). Typically these equations are solved
by integrating or marching in time with spatial derivatives approximated using
finite differences, finite-volume approximations or with finite elements. A simple
Euler-explicit time integration would result in the semi-discrete form:

Qn+1
i,j,k − Qn

i,j,k

∆t
+

(
∂F

∂x

)n

i,j,k

+
(
∂G

∂y

)n

i,j,k

+
(
∂H

∂z

)n

i,j,k

= 0 . (2.27)
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This system would be solved from an initial value of Qn
i,j,k specified at every mesh

point (i, j, k). Then values of Fn
i,j,k, Gn

i,j,k, Hn
i,j,k must be evaluated along with

approximations for their derivatives and finally Qn+1
i,j,k is found at each (i, j, k) from

(2.27).
However, in order to find the vector of fluxes F, G or H from the vector of

conserved variables Q, an additional quantity must be specified. We can illustrate
this by considering the components of Q to be denoted q1, q2, . . . , q5 so that from
(2.25) q1 = ρ, q2 = ρu, q3 = ρv, q4 = ρw and q5 = ρe0. Then if denote, for
example, the elements of F as f1, f2, . . . , f5, we can easily see that f1 = ρu = q2,
f2 = ρu2+p = q2

2/q1+p, f3 = ρuv = q2q3/q1, f4 = ρuw = q2q4/q1, f5 = (ρe0+p)u =
(q5 + p)q2/q1. Similar expressions may be written for G and H. In order to close
the system, we must be able to relate p to q1, q2, . . . , q5.

It should be clear that from the elements of Q we can easily determine the three
velocity components u = q2/q1, v = q3/q1, w = q4/q1, the density ρ = q1 and the
internal energy per unit mass e = e0− (u2 +v2 +w2)/2 = q5/q1− (q2

2 +q2
3 +q2

4)/2q2
1 .

Hence, to close the system, we need to specify the value of p from values of ρ and e.
This is easily accomplished for a gas which is both thermally perfect and calorically
perfect. From (1.25) p = ρRT and from (1.34) e = cvT , so that using cp − cv = R
and γ = cp/cv we may write p = (γ − 1)ρe. Then finally p is written in terms of Q
as p = (γ − 1)[q5 − (q2

2 + q2
3 + q2

4)/2q1].
But the situation is much more complicated for a gas which is not perfect.

For a case where we have a single species which is thermally perfect but calorically
imperfect we would have p = ρRT . But the energy relationship would be non-linear
in T, such as from (1.33) as e(T ) =

∫ T

0
cv(T )dT + h0

f . We know the value of e from
e = q5/q1 − (q2

2 + q2
3 + q2

4)/2q2
1 and we have to iteratively solve for T from the

equation for e and then use that value of T to find p. And this must be done at
each mesh point and each time step.

It is even more complicated for a mixture of gases in chemical equilibrium. If
we assume that the individual species are thermally perfect, then from (1.65) we
have p = ρR̃T with R̃ =

∑
ciRi. But since the gas is in chemical equilibrium

ci = c∗i (ρ, T ). We also have the internal energy of the mixture from (1.63) as
e =

∑
ciei(T ). As we have shown above, from Q, we know the state variables, ρ

and e. In order to find p we would have to iteratively solve for T . Starting from
a guessed value of T = T l and the known value of ρ, we could solve the law of
mass action and atomic and charge conservation to yield the chemical composition
cl
i = c∗i (ρ, T

l) based on the assumed temperature. Then we can compute the internal
energy of the mixture based on these values as el =

∑
cl
iei(T l). Then by comparing

el to e = q5/q1− (q2
2 +q2

3 +q2
4)/2q2

1 we can change the value of T l based on the error
e− el. We can continue iterating until el is close to e. When the system converges,
then we have p = ρR̃lT l. Note that each iteration involves solving for the complete
chemical composition and that this must be done at each mesh point and each time
step.
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However the situation is considerably simplified if curve fits to the thermody-
namic data are available, such as the TGAS routines for air of Srinivasan et al.
(1987) discussed in §1.10. Then the curve fit p = p(ρ, e) serves as the equation of
state to close the system and does not require any iterations or calculation of the
chemical composition. This is an enormous simplification.

2.9 Results from the energy equation
The energy equation for an inviscid non-heat conducting fluid has been devel-

oped in integral form, (2.22), in differential, conservation law form, (2.13), and in
non-conservation form, (2.24). Other forms of (2.24) are often useful. To obtain an
equation in terms of the internal energy per unit mass, e = e0 − V ·V /2, we can
utilize (2.14) and (2.21) to obtain

De

Dt
= q̇ − p

ρ
∇ · V . (2.28)

Stagnation enthalpy, stagnation temperature
We can get a useful form of the energy equation by introducing the enthalpy per
unit mass, h = e + p/ρ, so that (2.28) becomes

Dh

Dt
= q̇ +

1
ρ

Dp

Dt
, (2.29)

and in terms of the stagnation enthalpy per unit mass, h0 = h+ V ·V /2, we obtain

Dh0

Dt
= q̇ +

1
ρ

∂p

∂t
+ V · g . (2.30)

The above form of the energy equation, (2.30), is useful since it can be used to
infer the conditions under which Dh0/Dt = 0. Namely, for the steady flow of an
adiabatic, inviscid, non-heat conducting fluid with negligible body forces, h0 will be
constant along particle paths, (or equivalently along streamlines, since the flow is
steady). Furthermore, if the flow has uniform stagnation enthalpy upstream, then
under the above conditions, the stagnation enthalpy will be constant.

Concepts involving the stagnation temperature, T0, (also called the total tem-
perature), are useful only for gases which are thermally and calorically perfect. Then
h = cpT and we can define h0 = cpT0 = cpT + V ·V /2. From the above definition,
we find that for a perfect gas,

T0

T
= 1 +

γ − 1
2

M2 , (2.31)

where the Mach number M = |V |/a and the perfect-gas sound speed is given by
(1.50). This relationship defines T0 at a point in the flow where the temperature
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is T and the Mach number is M . The stagnation temperature will be constant
everywhere in the flow field whenever h0 is constant (and the gas may be considered
thermally and calorically perfect). Another form of stagnation enthalpy that is used
for perfect gases is h0 = a2/(γ − 1) + V ·V /2.

Entropy, isentropic relations and stagnation pressure
Additional forms of the energy equation can be obtained by introducing the en-
tropy per unit mass, s. If we assume that the gas, if reacting, is in chemical
equilibrium, then we have seen that the first and second laws of thermodynamics,
(1.101), must apply locally as Tds = dh− dp/ρ. Any expression involving the total
differential, such as the one above, is very general, since for s = s(x, y, z, t), then
ds = (∂s/∂x)dx+(∂s/∂y)dy+(∂s/∂z)dz +(∂s/∂t)dt with the paths dx, dy, dz and
dt, arbitrary. So that ds may be replaced by any of the partial derivatives. Then it
is easy to show that

T
Ds

Dt
=

Dh

Dt
− 1

ρ

Dp

Dt
, (2.32)

and substituting (2.29),

T
Ds

Dt
= q̇ . (2.33)

Thus we see that for any inviscid, non-heat conducting, adiabatic flow, the entropy
will be constant along particle paths. Note that no assumptions regarding flow
steadiness, body forces or equation of state were needed. One should recall that
this relationship is not valid across discontinuities, where the entropy can jump.

Some useful relationships may be developed for isentropic flows when dealing
with thermally and calorically perfect gases. Then applying (1.46) between state 1
and state 2, and using (1.25), we obtain the following isentropic relationships:

p2

p1
=

(
ρ2

ρ1

)γ

=
(
T2

T1

)γ/γ−1

. (2.34)

If the flow has constant T0 along with constant entropy, then using (2.31),

p2

p1
=

(
1 + γ−1

2 M2
2

1 + γ−1
2 M2

1

)−γ/γ−1

. (2.35)

Another useful quantity is the stagnation pressure p0, also termed the total
pressure. This quantity may be considered to be the pressure that a fluid would
reach if it were brought to rest isentropically. For a perfect gas which has constant
stagnation enthalpy, (2.35) applies for an isentropic process. Then dropping the
subscript 2 and considering state 1 to correspond to the stagnation state we have

p

p0
=

(
1 +

γ − 1
2

M2

)−γ/γ−1

. (2.36)
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This equation may be considered to define p0 for a perfect gas. But p0 will be
constant in the flow only if the flow is isentropic and has constant h0.

The variation in p0 for the non-isentropic flow of a perfect gas may be inferred
from (1.44). Let us apply this equation to two parts of the flow denoted by subscripts
1 and 2, so that

s2 − s1

cv
= log

[(
T2

T1

)γ (
p2

p1

)1−γ
]

. (2.37)

Using the definitions of stagnation temperature (2.31) and stagnation pressure
(2.36) we find that

s2 − s1

cv
= log

[(
T02

T01

)γ (
p02

p01

)1−γ
]

, (2.38)

and if T0 is constant in the flow, then
p02

p01

= e−(s2−s1)/R . (2.39)

Thus if the entropy increases from 1 to 2, there will be a corresponding loss in
stagnation pressure.

Generalized Crocco relationship
Another useful relationship regarding the entropy may be derived from (2.38). Using
the preceding arguments about the total differential, it can be shown that (2.38)
implies T∇s = ∇h − ∇p/ρ. Expressing ∇h = ∇h0 − ∇(V ·V /2) and using the
vector identity ∇(V ·V /2) = (V ·∇)V +V × (∇×V ) and the momentum equation
(2.21) to obtain

T∇s = ∇h0 +
∂V

∂t
− V × (∇× V ) − g . (2.40)

This is the generalized Crocco relationship, sometimes referred to as the Crocco-
Vaszonyi equation. An important result is that for a flow where h0 is constant,
(steady, inviscid, non-heat conducting, adiabatic, negligible body forces and uniform
upstream h0), then

T∇s = −V × ω , (2.41)

where the vorticity ω ≡ ∇×V . Thus, for the above conditions an isentropic flow will
be irrotational and vice versa. (This excludes the pathological case of a Beltrami
flow, where the vorticity is parallel to the velocity.)

We can also infer from (2.41) that for a steady, inviscid, non-heat conducting
fluid with negligible body forces, that vorticity may be seen to arise due to changes
in entropy and changes in stagnation enthalpy. Under these circumstances, we see
that vorticity can be considered to evolve in the flow due to generation at shock
waves or due to non-uniformities in entropy and stagnation enthalpy of the oncoming
stream. This phenomena will be discussed in subsequent sections.
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2.10 Coordinate Systems

The development of the governing equations in general coordinate systems is
a formidable task, particularly when all the viscous and heat conduction terms are
included. A general discussion of the problems associated with coordinate systems
appears in Aris (1962) and the detailed resulting equations, with some restrictions,
appears in the article by Vinokur (1974).

The transformation of the inviscid equations of gasdynamics is somewhat sim-
pler. In the following we consider orthogonal curvilinear coordinates applied to
non-conservation law equations and more general, non-orthogonal systems applied
to the conservation-law form of the inviscid equations.

Orthogonal curvilinear coordinates

In dealing with theoretical results from the governing equations it is often useful
to have the governing equations in other coordinate systems. The non-conservation
form equations, (2.14), (2.21) and (2.24), are written in terms of vector operations,
so that the task of developing the equations in other coordinate systems is simplified
if we consider orthogonal curvilinear coordinates.

Consider a new coordinate system (ξ, η, ζ) which is a known function of the
Cartesian coordinates (x, y, z) and that the inverse of the transformation exists such
that

x = x(ξ, η, ζ) ,
y = y(ξ, η, ζ) ,
z = z(ξ, η, ζ) .

(2.42)

For orthogonal curvilinear coordinates the unit vectors may be written as

îξ =
1
hξ

(
∂x

∂ξ
î +

∂y

∂ξ
ĵ +

∂z

∂ξ
k̂

)
,

îη =
1
hη

(
∂x

∂η
î +

∂y

∂η
ĵ +

∂z

∂η
k̂

)
,

îζ =
1
hζ

(
∂x

∂ζ
î +

∂y

∂ζ
ĵ +

∂z

∂ζ
k̂

)
,

(2.43)

where the metric terms are

h2
ξ =

(
∂x

∂ξ

)2

+
(
∂y

∂ξ

)2

+
(
∂z

∂ξ

)2

,

h2
η =

(
∂x

∂η

)2

+
(
∂y

∂η

)2

+
(
∂z

∂η

)2

,

h2
ζ =

(
∂x

∂ζ

)2

+
(
∂y

∂ζ

)2

+
(
∂z

∂ζ

)2

.

(2.44)
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Consider the velocity vector which may be written in either coordinate system
as

V = uî + vĵ + wk̂ = ũîξ + ṽîη + w̃îζ . (2.45)

The velocity components ũ, ṽ, w̃ may be written in terms of u, v, w through the
orthogonality relations ũ = uî · îξ + vĵ · îξ + wk̂ · îξ, etc.

For orthogonal curvilinear coordinate the vector operations grad, div and curl
may be written in terms of the metrics as:

∇f =
1
hξ

∂f

∂ξ
îξ +

1
hη

∂f

∂η
îη +

1
hζ

∂f

∂xζ
îζ , (2.46)

∇ · V =
1

hξhηhζ

[
∂

∂ξ
(hηhζ ũ) +

∂

∂η
(hζhξ ṽ) +

∂

∂ζ
(hξhηw̃)

]
, (2.47)

and

∇× V =
1

hξhηhζ

∣∣∣∣∣∣
hξ îξ hη îη hζ îζ

∂/∂ξ ∂/∂η ∂/∂ζ
hξũ hη ṽ hζw̃

∣∣∣∣∣∣ . (2.48)

The above expressions may be used to transform most of the vector expressions
in (2.14), (2.21) and (2.24) with the exception of the convective derivative of the
velocity vector (V · ∇)V , (which appears in the substantial derivative terms. The
derivatives must be taken of the components of V and their directions îξ, îη, îζ .
These operations are best accomplished using the vector identity

(V · ∇)V = ∇ · (V ·V /2) − V × (∇× V ) . (2.49)

The component of the convective velocity derivative in the ξ-direction becomes

[(V · ∇)V ] · îξ =
ũ

hξ

∂ũ

∂ξ
+

ṽ

hη

∂ũ

∂η
+

w̃

hζ

∂ũ

∂ζ

+
ṽ

hξhη

(
ũ
∂hξ

∂η
− ṽ

∂hη

∂ξ

)
+

w̃

hξhζ

(
ũ
∂hξ

∂ζ
− w̃

∂hζ

∂ξ

)
.

(2.50)

The first three terms represent V · ũ and the last two terms are associated with the
coordinate directions not being constant. The other two components of (V · ∇)V
may be obtained from (2.50) by cyclic permutation of the indices, (ξ → η, η →
ζ, ζ → ξ).

Fortunately, most coordinate systems of interest have relatively simple metric
terms which results in considerable simplification of the general expressions. For
example, for circular cylindrical coordinates, taking ξ = r, η = θ and ζ = z with
the relations x = r cos θ, y = r sin θ and z = z, the metrics are simply hr = 1,
hθ = r and hz = 1. The relations for spherical coordinates are only slightly more
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complicated. Taking ξ = r, η = φ and ζ = θ with the relations x = r sinφ cos θ,
y = r sinφ sin θ and z = r cosφ, the metrics become hr = 1, hφ = r and hθ = r sinφ.

Generalized conservation form

In solving the governing equations with numerical methods we often need the gov-
erning inviscid equations in conservation law form in a grid-aligned coordinate sys-
tem which is not necessarily orthogonal. Let us assume that we have a new curvi-
linear coordinate system ξ, η, ζ given by

ξ = ξ(x, y, z, t) ,
η = η(x, y, z, t) ,
ζ = ζ(x, y, z, t) ,
τ = t

. (2.51)

where the coordinates may also be a function of time.
We can express the governing Cartesian equations, (2.25) in terms of the new

coordinates ξ, η, ζ, τ by applying the chain rule, whereby

∂Q

∂t
=

∂Q

∂ξ
ξt +

∂Q

∂η
ηt +

∂Q

∂ζ
ζt +

∂Q

∂τ
,

∂F

∂x
=

∂F

∂ξ
ξx +

∂F

∂η
ηx +

∂F

∂ζ
ζx ,

∂G

∂y
=

∂G

∂ξ
ξy +

∂G

∂η
ηy +

∂G

∂ζ
ζy ,

∂H

∂z
=

∂H

∂ξ
ξz +

∂H

∂η
ηz +

∂H

∂ζ
ζz ,

(2.52)

where the subscripts are used here to indicate partial differentiation, e.g., ξt ≡
∂ξ/∂t. In order to develop the equations in conservation-law form, we substitute
(2.52) into (2.25) and divide by the Jacobian of the transformation, J defined by

J =
∣∣∣∣ ∂(ξ, η, ζ)
∂(x, y, z)

∣∣∣∣ . (2.53)

Note that we must now assume that the transformation is non-singular, so that J
will not be zero or infinite. Upon manipulating the resulting equation we obtain

∂

∂τ

(
Q

J

)
+

∂

∂ξ

(
ξt

J
Q +

ξx

J
F +

ξy

J
G +

ξz

J
H

)
+

∂

∂η

(ηt

J
Q +

ηx

J
F +

ηy

J
G +

ηz

J
H

)

+
∂

∂ζ

(
ζt

J
Q +

ζx

J
F +

ζy

J
G +

ζz

J
H

)
= QT1 + FT2 + GT3 + HT4 ,(2.54)
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where

T1 ≡ ∂

∂ξ

(
ξt

J

)
+

∂

∂η

(ηt

J

)
+

∂

∂ζ

(
ζt

J

)
+

∂

∂τ

(
1
J

)
,

T2 ≡ ∂

∂ξ

(
ξx

J

)
+

∂

∂η

(ηx

J

)
+

∂

∂ζ

(
ζx

J

)
,

T3 ≡ ∂

∂ξ

(
ξy

J

)
+

∂

∂η

(ηy

J

)
+

∂

∂ζ

(
ζy

J

)
,

T4 ≡ ∂

∂ξ

(
ξz

J

)
+

∂

∂η

(ηz

J

)
+

∂

∂ζ

(
ζz

J

)
.

(2.55)

We can simplify the above equations by introducing the inverse-transformation

x = x(ξ, η, ζ, τ) ,
y = y(ξ, η, ζ, τ) ,
z = z(ξ, η, ζ, τ) ,
t = τ

. (2.56)

Taking the differential of this transformation yields




dx
dy
dz
dt


 =




xξ xη xζ xτ

yξ yη yζ yτ

zξ zη xζ zτ

0 0 0 1







dξ
dη
dζ
dτ


 . (2.57)

Similarly, taking the differential of the original transformation (2.51) gives




dξ
dη
dζ
dτ


 =




ξx ξy ξz ξt

ηx ηy ηz ηt

ζx ζy ζz ζt

0 0 0 1







dx
dy
dz
dt


 . (2.58)

Thus we see that




ξx ξy ξz ξt

ηx ηy ηz ηt

ζx ζy ζz ζt

0 0 0 1


 =




xξ xη xζ xτ

yξ yη yζ yτ

zξ zη xζ zτ

0 0 0 1




−1

. (2.59)

Solving for the inverse of the transformation matrix results in

1
J


 ξx ξy ξz

ηx ηy ηz

ζx ζy ζz


 =


 yηzζ−zηyζ zηxξ−xηzξ xηyζ−yηxζ

xξyζ−yξzζ xξzζ−zξxζ yξxζ−xξyζ

yξzη−zξyη zξxη−xξzη xξyη−yξxη


 , (2.60)



52 B. Grossman Lecture Notes No. 3

and

1
J


 ξt

ηt

ζt


 = −


xτ (yηzζ−zηyζ) + yτ (zηxξ−xηzξ) + zτ (xηyζ−yηxζ)

xτ (xξyζ−yξzζ) + yτ (xξzζ−zξxζ) + zτ (yξxζ−xξyζ)
xτ (yξzη−zξyη) + yτ (zξxη−xξzη) + zτ (xξyη−yξxη)


 . (2.61)

From (2.60) and (2.61), it can be verified that if the transformation (2.51) possesses
continuous partial derivatives, the terms T1–T4 in (2.54) will be zero. For example,
T2 defined in (2.55), may be written as

T2 =
∂

∂ξ
(yηzζ−zηyζ) +

∂

∂η
(xξyζ−yξzζ) +

∂

∂ζ
(yξzη−zξyη) ,

which will be zero if yηξ = yξη, zζξ = zξζ , etc.
Then, from (2.54), the governing inviscid equations in conservation-law form

may be written as
∂Q̂

∂τ
+

∂F̂

∂ξ
+

∂Ĝ

∂η
+

∂Ĥ

∂ζ
= 0 , (2.62)

where
Q̂ ≡ Q

J
,

F̂ ≡ ξt

J
Q +

ξx

J
F +

ξy

J
G +

ξz

J
H ,

Ĝ ≡ ηt

J
Q +

ηx

J
F +

ηy

J
G +

ηz

J
H ,

Ĥ ≡ ζt

J
Q +

ζx

J
F +

ζy

J
G +

ζz

J
H .

(2.63)

For the case where the transformation does not depend upon time, the equa-
tions often are written as (2.62) with

F̂ =
hξ

J




ρû
ρuû+ξ̂xp
ρvû+ξ̂yp

ρwû+ξ̂zp
(ρe0+p)û


 , Ĝ =

hη

J




ρv̂
ρuv̂+η̂xp
ρvv̂+η̂yp
ρwv̂+η̂zp
(ρe0+p)v̂


 , Ĥ =

hζ

J




ρŵ
ρuŵ+ζ̂xp
ρvŵ+ζ̂yp

ρwŵ+ζ̂zp
(ρe0+p)ŵ


 ,

(2.64)
where the metric terms are defined by

hξ ≡ (ξ2
x+ξ2

y+ξ2
z)1/2 , hη ≡ (η2

x+η2
y+η2

z)1/2 , hζ ≡ (ζ2
x+ζ2

y +ζ2
z )1/2 , (2.65)

the normalized transformation derivatives given as
 ξ̂x

ξ̂y

ξ̂z


 =

1
hξ


 ξx

ξy

ξz


 ,


 η̂x

η̂y

η̂z


 =

1
hη


 ηx

ηy

ηz


 ,


 ζ̂x

ζ̂y

ζ̂z


 =

1
hζ


 ζx

ζy

ζz


 ,

(2.66)
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and the contravariant velocity components

û = ξ̂xu + ξ̂yv + ξ̂zw ,

v̂ = η̂xu + η̂yv + η̂zw ,

ŵ = ζ̂xu + ζ̂yv + ζ̂zw .

(2.67)
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3. DISCONTINUITIES

3.1 General Jump Conditions

It is known that the equation of motion for inviscid fluids may contain surfaces
of discontinuity in some of the flow variables. For adiabatic flows, the discontinuities
correspond to shock waves and contact surfaces. For non-adiabatic fluids, which
will not be discussed here, detonation discontinuities, as described in Courant and
Friedrichs (1948), may exist.

As discussed in the previous section, conditions across surfaces of discontinuity
are governed by the integral conservation equations. Let us assume that a surface ϑ
exists across which some of the flow variables may be discontinuous. We assume that
ϑ moves through the flow with a velocity W n̂ϑ, where n̂ϑ is a unit vector normal
to the ϑ surface. (If the flow were steady, ϑ would be stationary and W = 0.)
Consider an infinitesimal control volume of dimension ∆s by ∆n, which is fixed in
space, with the surface ϑ bisecting it at a time t. In the sketch below, we show the
orientation of the control volume and discontinuity at a time t, and after a very
small interval of time ∆t. The control volume is so small that we may assume that
conditions to the left of ϑ are nearly constant and are denoted by a subscript 1 and
the nearly constant conditions to the right of ϑ are denoted by subscript 2.

Figure 3.1. Control volume near a discontinuity.

We will apply the governing integral conservation equations across this control
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volume. The net flux of a generic intensive quantity η may be evaluated as∫∫
S
ρηV · n̂ dσ =

∫
∆s

ρ1η1(−V1 · n̂ϑ) ds +
∫

∆s

ρ2η2(+V2 · n̂ϑ) ds

+
∫

∆n/2

ρ1η1(+V1 · n̂t) ds +
∫

∆n/2

ρ1η1(−V1 · n̂t) ds

+
∫

∆n/2

ρ2η2(+V2 · n̂t) ds +
∫

∆n/2

ρ2η2(−V2 · n̂t) ds

where the terms integrated over ∆n/2 are seen to cancel each other. In the very
small control volume, the integrands above may be assumed to be constant. Intro-
ducing the notation that [[f ]] for the jump in f, where [[f ]] ≡ f2 − f1 we obtain∫∫

S
ρηV · n̂ dσ = (ρ2η2V2 · n̂ϑ − ρ1η1V1 · n̂ϑ) ∆s = [[ρηV · n̂ϑ]]∆s .

The time derivative terms may be evaluated as

d

dt

∫∫∫
V
ρη dτ = lim

∆t→0

[(∫∫∫
ρη dτ

)
t+∆t

−
(∫∫∫

ρη dτ

)
t

]
/∆t ,

where it is seen that(∫∫∫
ρη dτ

)
t

= [ρ1η1∆s∆n/2 + ρ2η2∆s∆n/2]t ,

and(∫∫∫
ρη dτ

)
t+∆t

= [ρ1η1∆s(∆n/2 + W∆t) + ρ2η2∆s(∆n/2 −W∆t)]t+∆t .

Utilizing a Taylor’s series expansion, we have (ρη)t+∆t = (ρη)t + ∂(ρη)/∂t∆t+ · · ·.
Then we find

d

dt

∫∫∫
V
ρη dτ = −[[ρη]]W∆s +

1
2

[
∂

∂t
(ρ1η1) +

∂

∂t
(ρ2η2)

]
∆s∆n ,

The terms containing time derivatives above are higher order than the first term
and will vanish in the limit as ∆n → 0. Other terms appearing in the governing
integral equations are surface integrals such as

∫∫
pn̂ dσ = [[pn̂ϑ]]∆s and volume

terms such as
∫∫∫

ρg dτ = (ρ1g1 + ρ2g2)∆s∆n/2. These volume terms are of higher
order than the rest and will be negligible in the limit as ∆n → 0.

Using the above formulas, the conditions valid across a surface of discontinuity
may be developed from the integral conservation equations, (2.1), (2.7) and (2.12).
We obtain

[[ρ(V · n̂ −W )]] = 0 , (3.1)
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[[ρV (V · n̂ −W ) + pn̂]] = 0 , (3.2)

[[ρe0(V · n̂ −W ) + p(V · n̂)]] = 0 , (3.3)

where now n̂ here refers to the unit normal to the discontinuity; the subscript ϑ
will no longer be used. Equations (3.1)-(3.3) are valid for any type of discontinuity.

Contact surfaces
These are surfaces where the flow is aligned with the discontinuity. They are some-
times called tangential discontinuities. There will be no flow through these surfaces
so that [[V · n̂ − W ]] = 0. Under this condition, it is seen that (3.1)-(3.3) will be
satisfied if

W = V1 · n̂ = V2 · n̂ , (3.4)

[[p]] = 0 . (3.5)

As long as (3.4) and (3.5) are satisfied, all other quantities may jump arbitrarily
across a contact surface. We see that for a steady flow, W = 0, so that the contact
surface will be aligned with a stream surface. In steady or unsteady flow, the
pressure is continuous across a contact surface.

Shock waves
We may develop the jump conditions across a shock wave from (3.1)-(3.3). Let us
consider the velocity vector V to be made up of components normal to the shock
wave, Vn, and in the plane tangential to the shock wave, Vt, so that V = Vnn̂+Vt.
Now we use the symbol Ṽn for the normal component of velocity relative to the
shock, Ṽn = Vn −W . Then, from continuity, the condition (3.1) becomes

[[ρṼn]] = 0 . (3.6)

The momentum jump condition becomes

[[ρV Ṽn + pn̂]] = 0 . (3.7)

Taking components of the above yields [[ρVnṼn + p]] = 0 and [[ρVtṼn]] = 0. We can
simplify these expressions by using the identity [[fg]] =<f> [[g]]+ <g> [[f ]] and
where the average f, is defined as <f>≡ (f1 + f2)/2. Then utilizing (3.6) and (3.7)
we obtain the jump conditions for the momentum equation as

[[ρṼ 2
n + p]] = 0 , (3.8)

and
[[Vt]] = 0 . (3.9)

The jump condition for the energy equation follows from (3.3) as [[ρe0Ṽn +pVn]] = 0
or in terms of stagnation enthalpy, where ρh0 = ρe0 +p, so that [[ρh0Ṽn +pW ]] = 0.
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A convenient form of this condition is in terms of the enthalpy itself, where here
h = h0 − (V 2

n + Vt·Vt)/2, so that

[[h + Ṽ 2
n /2]] = 0 . (3.10)

The jump conditions for a moving shock wave are (3.6), (3.8)–(3.10).
For a steady shock wave, W = 0 so that Ṽn = Vn, and the jump conditions for

a steady shock wave become

[[ρVn]] = 0 ,

[[ρV 2
n + p]] = 0 ,

[[Vt]] = 0 ,

[[h + V 2
n /2]] = 0 .

(3.11)

The last two jump conditions above may be combined to yield [[h0 = 0]], which is
the well-known result that the stagnation enthalpy is continuous across a steady
shock wave. Note that from (3.10), this will not be the case for an unsteady shock
wave.

3.2 Normal Shocks
For the case of a normal shock, Vt = 0 and we may take Vn = u so that the

jump conditions become:
[[ρ(u−W )]] = 0 ,

[[ρu(u−W ) + p]] = 0 ,

[[h + (u−W )2/2]] = 0 .

(3.12)

For steady shock waves, W = 0, and the jump conditions may be written as

ρ1u1 = ρ2u2 ,

ρ1u
2
1 + p1 = ρ2u

2
2 + p2 ,

h1 + u2
1/2 = h2 + u2

2/2 ,

(3.13)

where the subscript 1 refers to conditions upstream of the shock and the subscript
2 refers to conditions downstream of the shock. If p1, ρ1, u1 and h1 are specified,
then (3.13) gives 3 algebraic relations for the four unknowns p2, ρ2, u2 and h2.
The system is closed with an equation of state, which we consider to be written
functionally as h = h(p, ρ) so that

h2 = h(p2, ρ2) . (3.14)

The specific form of (3.14) influences the way (3.13) is solved. We now consider
perfect gases, calorically imperfect gases (but thermally perfect) and real gases.
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Perfect gases
For a gas which is both thermally perfect and calorically perfect, the state relation-
ship

h = cpT =
γ

γ − 1
p

ρ
, (3.15)

may be used. The solution of the algebraic system (3.13) then results in the well-
known Rankine-Hugoniot relations:

p2

p1
= 1 +

2γ
γ + 1

(M2
1 − 1) , (3.16)

and
ρ2

ρ1
=

u1

u2
=

(γ + 1)M2
1

2 + (γ − 1)M2
1

, (3.17)

where the upstream Mach number M1 = u1/a1. For a derivation of these equations
consult a standard gasdynamics text such as Anderson (1990), pp. 64–69.

The remaining quantities may be directly found. The temperature ratio, from
the equation of state, p = ρRT , may be written as T2/T1 = (p2/p1)(ρ1/ρ2) where
the pressure and density ratios are given in terms of M1 above. Similarly, the sound
speed for a perfect gas is a2 = γRT so that (a2/a1)2 = T2/T1 and we obtain

T2

T1
=

(
a2

a1

)2

=
[
1 +

2γ
γ + 1

(M2
1 − 1)

] [
2 + (γ − 1)M2

1

(γ + 1)M2
1

]
. (3.18)

The Mach number behind the shock is found from M2/M1 = (u2/u1)(a1/a2), so
that

M2

M1
=

[
2 + (γ − 1)M2

1

(γ + 1)M2
1

]1/2 [
1 +

2γ
γ + 1

(M2
1 − 1)

]−1/2

. (3.19)

The entropy change across the shock may be obtained from (2.36), so that after
substitution we find

s2 − s1

cv
= log

([
1 +

2γ
γ + 1

(M2
1 − 1)

] [
2 + (γ − 1)M2

1

(γ + 1)M2
1

]γ)
. (3.20)

We can see from the steady jump conditions (3.13) that h0 = h + u2/2 must be
constant and since we have a perfect gas, T0 will also be constant. The loss in
stagnation pressure across the shock may then be determined from (2.38) as

p02

p01

=
[
1 +

2γ
γ + 1

(M2
1 − 1)

]−1/γ−1 [
2 + (γ − 1)M2

1

(γ + 1)M2
1

]−γ/γ−1

. (3.21)

Weak normal shocks in perfect gases
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It is useful to consider the limiting case of a weak shock. The shock will
have zero strength, (p2 − p1)/p1 → 0, as M1 → 1. We introduce a shock-strength
parameter ε such that

ε ≡ M2
1 − 1 , (3.22)

where from (3.16), the strength of the shock is linear in ε

p2 − p1

p1
=

2γ
γ + 1

ε , (3.23)

for all values of ε; (3.23) is exact. Next we will examine the other quantities in
terms of ε for small values of ε. The density ratio will not be linear in ε. We can
look at the leading terms of the expansion for small epsilon by using the binomial
series, which may be written as

(1 + x)n = 1 + nx +
n(n− 1)

2!
x2 +

n(n− 1)(n− 2)
3!

x3 + . . . , (3.24)

which will converge for x2 < 1. The leading term for the density jump (3.17)
becomes

ρ2

ρ1
= 1 +

2
γ + 1

ε + O(ε2) . (3.25)

The other jump quantities may be determined in a similar fashion as

u2

u1
= 1 − 2

γ + 1
ε + O(ε2) , (3.26)

T2

T1
= 1 +

2(γ − 1)
γ + 1

ε + O(ε2) , (3.27)

a2

a1
= 1 +

γ − 1
γ + 1

ε + O(ε2) . (3.28)

and
M2

M1
= 1 − ε + O(ε2) . (3.29)

The last relationship is interesting in that it shows that if M1 > 1 then M2 < 1 and
vice versa. This result is true for a shock of any strength.

The entropy is found by substituting ε into (3.20) whereby

s2 − s1

cv
= log

[
1 +

2
3
γ(γ − 1)
(γ + 1)2

ε3 + O(ε4)
]
. (3.30)

Note that to derive the above expression the expansions must retain all terms up
to O(ε4). For small values of x, log(1 + x) = x− x2/2 + x3/3 + . . ., so that (3.30)
becomes

s2 − s1

cv
=

2
3
γ(γ − 1)
(γ + 1)2

ε3 + O(ε4) . (3.31)
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This relationship shows that for a weak shock, of strength ∆p/p ∼ ε the entropy
jump will be essentially negligible, ∆s/cv ∼ ε3. The entropy relationship (3.31) also
shows that the change in entropy will be positive only if ε > 0 or M1 > 1. Thus,
steady shocks will always have M1 > 1 and M2 < 1. These shocks will always be
compressions and expansion shocks will violate the second law of thermodynamics.
It should be noted that the results apply only to steady shocks in a perfect gas.
Some unusual gases, which are not thermally perfect, can have expansion shocks
without violating the second law. We will not consider these gases in this set of
notes.

The total pressure loss through the shock is found from (3.21) whereby

p02

p01

= 1 − 2
3

γ

(γ + 1)2
ε3 + O(ε4) . (3.32)

Thus weak shocks will have a negligible total pressure loss.
Very strong normal shocks in perfect gases

We can also consider the other extreme case, that for very strong shocks where
M1 → ∞. For this case we introduce a small quantity δ such that

δ ≡ 1
M2

1

. (3.33)

We see that δ → 0 as M1 → ∞. Substituting into (3.16), the pressure jump across
the shock becomes

p2

p1
=

1
δ

2γ
γ + 1

(
1 − γ − 1

2γ
δ

)
. (3.34)

Substituting the definition of δ into (3.17) and expanding for small δ gives the
following relationship for the density jump:

ρ2

ρ1
=

γ + 1
γ − 1

(
1 − 2

γ − 1
δ + O(δ2)

)
. (3.35)

The temperature jump, from (3.18), which after expansion yields:

T2

T1
=

1
δ

2γ(γ − 1)
(γ + 1)2

[
1 − γ2 − 6γ + 1)

2γ(γ − 1)
δ + O(δ2)

]
. (3.36)

Thus we see that as M1 → ∞, the pressure jump p2/p1 → ∞ and the temperature
jump T2/T1 → ∞. The density jump, however, reaches a maximum value and
remains fixed, ρ2/ρ1 → (γ + 1)/(γ − 1). We should remember here that the strong
shock expansions are only valid for perfect gases. As M1 becomes large, T2/T1

will become large and usually chemical reactions will occur so that the gas may no
longer be considered perfect.
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Real gases

For a steady normal shock in a real gas the jump conditions (3.12) are valid. The
functional form of the equation of state is given by (3.13). For equilibrium flow,
this form of the equation of state is developed by first solving for the equilibrium
composition for specified values of p and ρ from the Law of Mass Action. The
state equation may also be given as a curve-fit for h as a function of p and ρ for
a specified gas. At any rate, we assume that no simple functional form for (3.13)
exists. Without utilizing the perfect gas equation of state, (3.15), we cannot solve
(3.12) in closed form and the Rankine-Hugoniot relations, (3.16) and (3.17) will
not be valid. Instead we must utilize an iterative numerical procedure, such as the
following:

Step 1. Starting with u1, p1 and ρ1, calculate h1 = h(p1, ρ1) from a curve fit or
equilibrium composition.

Step 2. Guess a value of ν = ρ1/ρ2. Then ρ2 = ρ1/ν.
Step 3. From (3.12), u2 = u1ν, p2 = p1 +ρ1u

2
1(1−ν) and h2 = h1 +(u2

1/2)(1−ν2).
Step 4. From the equation of state (3.13) we can also determine the enthalpy which

we will denote here as h̃ such that h̃2 = h(p2, ρ2).
Step 5. Does h̃2 = h2? If not, use a root-finding procedure such as a bracketing

method or a secant method to modify the value of ν and continue from
Step 3.

As an example of real gas effects on a strong normal shock, consider a re-entry
vehicle traveling at 36,000 ft/sec at an altitude of 170,000 ft. Calculations have
been performed for a perfect gas at γ = 1.4 and for air as a real gas using the TGAS
tables and the iteration procedure described above. The results are shown in Table
3.1 below. The most significant differences are seen in the density and temperature
jumps. At 170,000 ft the ambient temperature is approximately T1 = 283K. A
perfect gas normal shock would predict a temperature of T2 ≈ 58, 000K wheras the
real gas calculation gives T2 = 11, 800K. The perfect gas temperature is clearly
unrealistic. In the real gas calculation a large portion of the energy from slowing
down the flow goes toward dissociating and ionizing air and exciting the molecules
to higher internal energy states. None of these effects are accounted for in the
perfect gas calculation.

Calorically imperfect gases

For a gas which is thermally perfect but calorically imperfect, we will have an
equation of state of the form h = h(T ), where T = p/ρR. This may be in the form
for a vibrationally excited diatomic gas where e is given by (1.41) and h = e + RT
or by a curve fit for cp(T ) with h given by (1.33). Nonetheless, again the Rankine-
Hugoniot relations will not be valid and an iterative procedure must be used. A
nearly identical procedure as that used for general real gases may be implemented,
with the main difference being that only two upstream values are needed.
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Table 3.1. Normal Shock at Nose of Re-entry Vehicle, M ≈ 32.5

Reentry Vehicle Perfect Gas Equilibrium
V=36,000 ft/sec γ=1.4 Air
Alt.=170,000 ft

p2/p1 1233 1387
ρ2/ρ1 5.972 15.19
h2/h1 206.4 212.8
T2/T1 206.4 41.6

Step 1. Starting with u1, and T1, calculate h1 = h(T1).
Step 2. Guess a value of ν = ρ1/ρ2.
Step 3. From the first and third of (3.12), u2 = u1ν, and h2 = h1 +(u2

1/2)(1−ν2).
Step 4. From the first and third of (3.12), and the thermal equation of state p =

ρRT , we obtain p2/p1 = 1+(1−ν)u2
1/RT1 and T2/T1 = (p2/p1)(ρ1/ρ2) =

[1 + (1 − ν)u2
1/RT1]ν. Then h̃2 = h(T2).

Step 5. Does h̃2 = h2? If not, use a root-finding procedure to modify the value of
ν and continue from Step 3.

In general, we have shown that for a perfect gas, the ratio of quantities across a
normal shock, such as p2/p1, ρ2/ρ1 and T2/T1 are a function of a single variable,
the upstream Mach number M1. For a calorically imperfect gas, the shock jumps
will be a function of two quantities, the upstream velocity u1 and the upstream
temperature T1. For real gases, the shock jumps depend on three quantities, the
upstream velocity u1 and two upstream thermodynamic variables, such as p1 and
ρ1. We see that Mach number only plays an important role for real gases.

3.3 Oblique Shocks
An oblique shock wave is any shock wave where the component of velocity

tangential to the shock, Vt, is non-zero. As we have seen, this quantity is always
conserved. The jump conditions across an oblique shock are given by (3.6), (3.8)
– (3.10) for the general case and for the steady case, by (3.11). Restricting our
discussion to steady, oblique shocks, we may write the jump conditions as

ρ1Vn1 = ρ2Vn2 , (3.37)
ρ1V

2
n1

+ p1 = ρ2V
2
n2

+ p2 , (3.38)

h1 + V 2
n1

/2 = h2 + V 2
n2

/2 , (3.39)
Vt1 = Vt2 , (3.40)

where again the subscript 1 refers to conditions upstream of the shock and the
subscript 2 refers to conditions downstream of the shock. The first three of these
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relations, (3.37) – (3.39) are identical to the normal shock relations (3.13), with the
exception the u is replaced by Vn. Thus we can solve (3.37) – (3.39) along with an
appropriate state equation, (3.14) using the identical procedures as used for normal
shocks, provided that the upstream conditions are known. But now the upstream
conditions involve Vn1 which in general is not known.

Consider an oblique shock in two dimensions sketched below in Fig. 3.2.

Figure 3.2. Oblique shock wave.

Relative to the upstream flow the shock wave will have an inclination angle β. Also
relative to the upstream flow, the downstream flow will have an inclination angle of
θ. The normal and tangential velocities upstream of the shock are

Vn1 = V1 sinβ ,

Vt1 = V1 cosβ ,
(3.41)

and the velocity components downstream of the shock are

Vn2 = V2 sin(β − θ) ,
Vt2 = V2 cos(β − θ) ,

(3.42)

In general we must specify one of these quantities. We usually specify θ which
would be the flow angle for an oblique shock wave attached to a wedge of inclination
θ. In order to find the shock angle β from a given value of θ and upstream velocity
V1 we must use the jump condition expressing continuity of tangential velocity,
(3.40), which we may write as V1 cosβ = V2 cos(β− θ). Replacing V1 and V2 by Vn1

and Vn2 by (3.41) and (3.42) we obtain

tan(β − θ)
tanβ

=
Vn2

Vn1

. (3.43)

Now, in principal we know Vn2/Vn1 by the solution of (3.38) – (3.40) along with the
state equation, (3.14). The procedure will be described separately for perfect and
real gases in the next subsections.
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Perfect gases
For oblique shocks in perfect gases, the Rankine-Hugoniot and related normal shock
relations, (3.16) – (3.21) apply if the normal Mach number Mn1 = M1 sinβ is
substituted for M1. Also Vn2/Vn1 must be substituted for u2/u1 in (3.17) and
Mn2/Mn1 for M2/M1 in (3.19). Once Mn2 is determined, then M2 = Mn2/ sin(β −
θ).

We can develop an expression for β in terms of θ and M1 by substituting
Vn2/Vn1 = ρ1/ρ2 evaluated with (3.17) into (3.43) to obtain

tan(β − θ)
tanβ

=
2 + (γ − 1)M2

1 sin2 β

(γ + 1)M2
1 sin2 β

. (3.44)

This relationship may be slightly simplified using trigonometric identities as

tan θ = 2 cotβ
[

M2
1 sin2 β − 1

M2
1 (γ + cos 2β) + 2

]
. (3.45)

A root-finding method must be used to determine β from θ and M1. As is well
known, two physical solutions may be obtained for this problem corresponding to
weak oblique shocks and strong oblique shocks. Generally, only the weak oblique
shock is stable and will occur in nature. Actually (3.45) may be written as a
cubic equation in tanβ. Using standard trigonometric identities and some algebraic
manipulation, (3.45) may be written as
(

1 +
γ − 1

2
M2

1 tan θ

)
tan3 β+(1−M2

1 ) tan2 β+
(

1 +
γ + 1

2
M2

1

)
tan θ tanβ+1 = 0 .

(3.46)
The smallest root will correspond to β < µ where µ is the Mach angle,

sinµ ≡ 1/M1 . (3.47)

This root is not physically meaningful. The next two roots, if between µ and π/2
will be respectively the weak and strong shock solutions.

It is also well known that a solution to (3.45) may not exist. There is a maxi-
mum angle, θmax, for which there will be an attached shock at a given Mach number
and value of γ. The value of θmax may be determined as the solution of dθ/dβ = 0.
From (3.45), setting the derivative to zero yields a quadratic equation for the value
of β at θ = θmax. The solution for this value of β is

(
sin2 β

)
θmax

=
(γ + 1)M2

1 − 4 + [(γ + 1)2M4
1 + 8(γ2 − 1)M2

1 − 16(γ + 1)]1/2

4γM2
1

.

(3.48)
The value of θmax is found by substituting this result into (3.45).
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In the limit for M1 → ∞ we can see that sin2 β → γ + 1/2γ which for γ = 1.4
corresponds to β = 67.79◦. Also in the M1 → ∞ limit, (3.45) gives tan θ →
sin 2β/γ + cos 2β which for γ = 1.4 corresponds to θmax = 45.58◦.

Real gases
For general real gases we cannot get a closed form expression for the β, θ, M1

relationship as was possible for the perfect gas. The continuity of tangential mo-
mentum gives (3.43), and the jump in normal velocity may be written in terms of
the density jump from (3.37) as Vn2/Vn1 = ρ1/ρ2 = ν. Unfortunately we do not
have a closed form expression for the density jump in terms of M1 sinβ as in the
perfect gas case. However, within an iterative procedure to determine the inverse of
the density jump ν, we can solve (3.43) for β. Utilizing trigonometric identities in
(3.43) gives a quadratic equation for tanβ in terms of Vn2/Vn1 = ν, whose solution
is

tanβ =
(1 − ν) ± [(1 − ν)2 − 4ν tan2 θ]1/2

2ν tan θ
. (3.49)

The minus sign corresponds to weak oblique shocks.
Thus an iteration procedure may be used which is only slightly more compli-

cated than the normal shock case.
Step 1. Starting with V1, p1, ρ1, and θ calculate h1 = h(p1, ρ1) from a curve fit or

equilibrium composition.
Step 2. Guess a value of ν = ρ1/ρ2. Then ρ2 = ρ1/ν.
Step 3. From (3.49) solve for β corresponding to this value of ν. Then Vn1 =

V1 sinβ.
Step 4. From (3.37) – (3.39), Vn2 = Vn1ν, p2 = p1 + ρ1V

2
n1

(1 − ν) and h2 =
h1 + (V 2

n1
/2)(1 − ν2).

Step 5. From the equation of state (3.13) we can also determine the enthalpy which
we will denote here as h̃ such that h̃2 = h(p2, ρ2).

Step 6. Does h̃2 = h2? If not, use a root-finding procedure such as a bracketing
method or a secant method to modify the value of ν and continue from
Step 3.

After convergence, with the given values of V1, p1, ρ1, θ and the converged value of
ν, we can compute β, Vn1 , Vn2 , p2 and h2. Then V2 = Vn2/ sin(β − θ)
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4. ONE-DIMENSIONAL FLOW

4.1 General equations

Consider an inviscid, non-conducting flow through a duct or a streamtube. We
will also assume that the flow is adiabatic and that the body forces are negligible.
The unifying feature is that there is no flow through the walls. Then, under certain
restrictions which we will carefully examine, the flow may be considered to depend
upon one spatial coordinate. We will not initially restrict ourselves to steady flows.
Let us first assume that the centerline of our duct or streamtube is straight and is
aligned with the x-axis. Consider a control volume spanning the area of the tube
as illustrated in Fig. 4.1, going from x = x1 to x = x2 = x1 + ∆x. The ends of
the tube are selected to be perpendicular to the axis and have cross-sectional areas
equal to A1 and A2 respectively.

Figure 4.1. Control volume in a streamtube or duct.

The governing integral conservation equations will be continuity, (2.11), mo-
mentum, (2.17) and energy (2.22). Let us adopt our generic descriptor N =∫∫∫

ρη dτ . The above conservation laws contain terms of the form ∂N/∂t and terms
of the form

∫∫
ρηV · n̂ dσ. The first term may be applied to the above control

volume as
∂

∂t

∫∫∫
V

ρη dτ =
∂

∂t

∫ x2

x1

(∫∫
ρη dA

)
dx .

We can define a cross-sectional area average as

<ρη>≡ 1
A

∫∫
ρη dA , (4.1)
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so that

∂

∂t

∫∫∫
V

ρη dτ =
∂

∂t

∫ x2

x1

<ρη> Adx =
∂

∂t
(<ρη> A)1∆x + O(∆x2) , (4.2)

where we have approximated the integral between x1 and x2 by a simple left-
endpoint rule. The surface integral term may be written as

∫∫
S

ρηV · n̂ dσ =
∫∫

A1

ρη(−u) dA +
∫∫

A2

ρη(+u) dA +
∫∫

Sx

ρηV · n̂ dσ ,

where V · n̂ vanishes on the surface Sx between A1 and A2. Using our definition of
cross-sectional averages, (4.1), gives

∫∫
S

ρηV · n̂ dσ = (<ρηu> A)2 − (<ρηu> A)1 .

Now, expanding (<ρηu> A) at x2 in a Taylor series about x1 and neglecting terms
of O(∆x2) gives

∫∫
S

ρηV · n̂ dσ =
∂

∂x
(<ρηu> A)1∆x + O(∆x2) . (4.3)

Using (4.2), (4.3) with η = 1, the continuity equation (2.11) may be applied to
the specific control volume as

∂

∂t
(<ρ> A)1 ∆x +

∂

∂x
(<ρu> A)1 ∆x + O(∆x2) = 0 .

Dividing by ∆x and then taking the limit as ∆x → 0 and dropping the subscript 1
gives the general form of the streamtube continuity equation:

∂

∂t
(<ρ> A) +

∂

∂x
(<ρu> A) = 0 . (4.4)

Note that the above equation may be considered to be exact for the infitesmal
control volume that we have considered. We have not neglected any terms. All that
has been assumed is that the axis of the control volume is straight and that the
length is infinitesmal.

Next, using (4.2) and (4.3) with η = u, we can rewrite the left-hand side of the
momentum equation (2.17) in the x-direction applied to the specific control volume
as

∂

∂t
(<ρu> A)1 ∆x +

∂

∂x

(
<ρu2> A

)
1
∆x + O(∆x2) .
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Neglecting body forces, the only term on the right-hand side for an inviscid flow is
the surface integral for the pressure which may be written as

−
∫∫

S
pn̂ · î dσ = −

∫∫
A1

p(−1) dA −
∫∫

A2

p(+1) dA −
∫∫

Sx

pn̂ · î dσ .

The first two terms may be written in terms of cross-sectional area averages and in
the last term, the component of surface area −n̂ · îdσ on Sx may be seen to be the
frontal area dA. Thus

−
∫∫

S
pn̂ · î dσ = + (<p> A)1 − (<p> A)2 +

∫ x2

x1

pw
dA

dx
dx ,

where pw is the average value of p taken around the surface Sx at a fixed location
of x. The average terms at x2 may be written in terms of the averages at x1 using
a Taylor series expansion and the integral may be approximated by left-endpoint
rule so that

−
∫∫

S
pn̂ · î dσ = − ∂

∂x
(<p> A)1∆x +

(
pw

dA

dx

)
1

∆x + O(∆x2) .

Equating the left and right hand sides of the x-momentum equation, dividing by
∆x and taking the limit ∆x → 0 gives

∂

∂t
(<ρu> A) +

∂

∂x

(
<ρu2> A

)
= − ∂

∂x
(<p> A) + pw

dA

dx
. (4.5)

Again this equation may be considered exact for an inviscid, adiabatic flow with
negligible body forces in the specific control volume.

Finally, we can apply the same procedures for the energy equation (2.22). The
process is the same as for the continuity and momentum equations and will not be
repeated. The result is

∂

∂t
(<ρe0> A) +

∂

∂x
(<ρe0u> A) = − ∂

∂x
(<pu> A) . (4.6)

Equations (4.4), (4.5) and (4.6) represent our 3 governing equations for an invis-
cid, non-conducting, adiabatic fluid with negligible body forces. Although only time
and x-derivatives appear, there is no restriction on the variation of flow quanties in
any other direction. The only assumptions are that the cross-sectional area averages
are taken across a streamtube or duct in a direction perpendicular to the axis of
the duct.
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We will now put these equations into a form which is a bit more familiar. We
will now define some flow quantities with a tilde to correspond to specific combina-
tions of averages. Namely,

ρ̃ ≡<ρ> ,

p̃ ≡<p> ,

ũ ≡ <ρu>

<ρ>
,

ẽ0 ≡ <ρe0>

<ρ>
,

h̃0 ≡ <ρe0u> + <pu>

<ρu>
.

(4.7)

With the above definitions, nearly all averaged terms of the governing equations
are accounted for except <ρu2> and the wall pressure term pw. These terms may
be approximately related to the averages defined above if we assume that the flow
quantities themselves, ρ, u and p vary slowly across the duct. In particular we
assume that

<ρu2>≈ <ρu>2

<ρ>
= ρ̃ũ2 , (4.8)

and
pw ≈<p>= p̃ . (4.9)

We can roughly estimate the accuracy of these expressions by assuming that ρ, u and
p vary linearly across the duct from ρ0, u0 and p0 to ρw, uw and pw, respectively.
If the normalized variations ερ = (ρ0 − ρw)/ρ0), εu = (u0 − uw)/u0) and εp =
(p0 − pw)/p0) are all small, then (4.8) will be satisfied to O(ε2) and (4.9) will be
satisfied to O(ε), where ε corresponds to one of the normalized variations ερ, εu or
εp.

We can then write our “one-dimensional”governing equations as

∂

∂t
(ρ̃A) +

∂

∂x
(ρ̃ũA) = 0 , (4.10)

∂

∂t
(ρ̃ũA) +

∂

∂x

[
(ρ̃ũ2 + p̃)A

]
− p̃

dA

dx
= 0 , (4.11)

∂

∂t
(ρ̃ẽ0A) +

∂

∂x

(
ρ̃h̃0ũA

)
= 0 , (4.12)

An alternate form of the equations, the non-conservation form, may be obtained
by expanding the combined terms so that

∂ρ̃

∂t
+

∂

∂x
(ρ̃ũ) +

ρ̃ũ

A

dA

dx
= 0 , (4.13)
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∂ũ

∂t
+ ũ

∂ũ

∂x
+

1
ρ̃

∂p̃

∂x
= 0 , (4.14)

∂h̃0

∂t
+ ũ

∂h̃0

∂x
− 1

ρ̃

∂p̃

∂t
= 0 . (4.15)

One more assumtion that will be used with these equations concerns the defini-
tion of h̃0. In general, h0 = h+V ·V /2. For the one-dimensional flow equations, we
assume h̃0 = h + ũ2/2 so that in two space dimensions we are assuming ṽ2 << ũ2.
This approximation is consistent with our previous flow assumptions of small varia-
tions across the channel. Finally, we note that from now on in this chapter, we will
be dropping the tilde. We should keep in mind however that when we write, for
example, u we really mean the specific cross-sectional area average <ρu> / <ρ>.
We also note that often these equations are called quasi-one-dimensional which is
meant to signify allowing area variations. The original use of these equations for
a steady flow is attributed to Shapiro and is described in his classic text Shapiro
(1953). Other derivations are found in Liepmann and Roshko (1957) and Anderson
(1990).

4.2 Steady, Constant-Area Flows
The general governing equations for an inviscid, adiabatic flow with negligible

body forces and written in terms of specific cross-sectional area averages are given
in the previous section. For the specific application to steady, constant area flows
the one-dimensional equations can be written as

d

dx
(ρu) = 0 , (4.16)

d

dx

(
ρu2 + p

)
= 0 , (4.17)

d

dx
(ρh0u) = 0 . (4.18)

Note that we have dropped the tilda designations. Nonetheless, all the terms are
still defined as if they all had tilda designations and correspond to the specific
cross-sectional area averages. The above equations may be readily integrated to
give ρu = constant, ρu2 + p = constant and h0 = constant. Thus if we have a flow
with conditions known at x = x1, we can write the conditions at x = x2 from

ρ2u2 = ρ1u1 ,

ρ2u
2
2 + p2 = ρ1u

2
1 + p1 ,

h2 + u2
2/2 = h1 + u2

1/2 ,

(4.19)

The system is closed with an equation of state of the form

h2 = h(p2, ρ2) . (4.20)
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We see that the above 4 algebraic equations for the four unknowns p2, ρ2, h2 and
u2 in terms of the known quatities p1, ρ1, h1 and u1 are identically the same as
the normal shock jump conditions, (3.13), (3.14). Thus, the solution for the steady,
inviscid, adiabatic flow in a constant area duct is that the flow at station 2 is either
unchanged from the flow at station 1 or that the flow has gone through a normal
shock somewhere between station 1 and station 2. No other solution is possible for
this flow. A downstream condition will usually determine whether the flow passes
through a shock or not. Of course, if the flow at station 1 is subsonic, then a shocked
flow is impossible. Also this solution will apply for a real gas as well as a perfect
gas.

4.3 Steady, Variable-Area Flows
For steady flows with variable cross-sectional area, the one-dimensional flow

equations become

d

dx
(ρuA) = 0 , (4.21)

d

dx

[
(ρu2 + p)A

]
− p

dA

dx
= 0 , (4.22)

d

dx
(ρh0uA) = 0 . (4.23)

The first equation integrates to constant mass-flow rate, ṁ as

ṁ = ρuA = constant , (4.24)

and the last equation can then be integrated to give constant stagnation enthalpy,
h0 as

h0 = h +
u2

2
= constant . (4.25)

The momentum equation (4.22) is usually not used for solutions for these flows.
Instead, the condition that entropy is constant between shocks for these flows is
utilized. We have seen that for an adiabatic flow in general, that entropy will be
constant along particle paths (except across shock waves). This can be verified for
steady, one-dimensional flows where from (4.25) h0 =constant so that dh + udu =
0 and from the non-conservative momentum equation which can be obtained by
expanding the derivatives in (4.22) and utilizing continuity (4.21) to give dp+ρudu =
0. Then the combined first and second law of thermodynamics for a gas in chemical
equilibrium or a non-reacting gas gives Tds = dh− dp/ρ = 0. Thus the system will
be closed with

s = constant , (4.26)

and an equation of state
ρ = ρ(h, s) . (4.27)
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Before we discuss how to actually solve problems with these equations, some
important relationships can be developed from which we can predict the qualitative
behavior of steady, inviscid, adiabatic, isentropic one-dimensional flows with area
change. We proceed by taking the derivative of the natural logarithm of the mass
flow rate which gives dρ/ρ+du/u+dA/A = 0. We have already noted that constant
h0 leads to dh + udu = 0 and constant entropy leads to Tds = dh − dp/ρ = 0. If
we add the definition of the speed of sound from (1.55) as a2 = ρ/(∂ρ/∂h)s which
for this case is a2 = ρdh/dρ we can obtain the following expression:

(1 − M2)
du

u
+

dA

A
= 0 . (4.28)

This equation indicates that for a subsonic flow M < 1 and a diverging area dA > 0
the velocity u must decrease. For a supersonic flow with a diverging area the velocity
u increases. For converging areas the changes in u are opposite. The other flow
quantities may be described from the following relationships:

du

u
= − 1

M2

dρ

ρ
= − dh

a2M2
= − dp

ρa2M2
. (4.29)

Thus we see that whenever u increases, ρ, h and p will decrease and vice versa.
Furthermore for the case of a perfect gas h = CpT and a2 = γRT so that

du

u
= − 1

(γ − 1)M2

dT

T
=

1
1 + (γ − 1)M2/2

dM

M
. (4.30)

So that for perfect gases, whenever u increases, M will also increase and T will
decrease. The qualitative behavior of these flows are summarized in Table 4.1,
below.

Table 4.1 Qualitative Behavior of One-Dimensional Flows

diverging dA > 0 converging dA < 0
M < 1 M > 1 M < 1 M > 1

u decreases increases increases decreases
ρ increases decreases decreases increases
p increases decreases decreases increases
h increases decreases decreases increases
∗T increases decreases decreases increases
∗M decreases increases increases decreases
∗ perfect gas
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Equations (4.24)–(4.27) complete the system for an inviscid, adiabatic, one-
dimensional steady flow (with area change and with negligible body forces). The
equations are only valid for isentropic flows which will occur between discontinuities.
We will illustrate the solution procedure for the case where flow conditions are
known at station 1 and it is desired to determine the flow conditions at station 2.
The geometry is assumed to be given so that the areas A1 and A2 are also known.
The equations become

ρ2u2A2 = ρ1u1A1 ,

h2 +
u2

2

2
= h1 +

u2
1

2
,

s2 = s1 ,

ρ2 = ρ(h2, s2) .

(4.31)

We see that we have 4 equations in 4 unknowns. Let us first consider solving this
system for a perfect gas.

Perfect gases

For a perfect gas, the condition that entropy is constant leads to pρ−γ being con-
stant, (2.33). Also we can write h = CpT and p = ρRT so that h = (γ/γ − 1)p/ρ.
The equations for this flow then become

ρ2u2A2 = ρ1u1A1 ,

γ

γ − 1
p2

ρ2
+

u2
2

2
=

γ

γ − 1
p1

ρ1
+

u2
1

2
,

p2ρ
−γ
2 = p1ρ

−γ
1 ,

(4.32)

which gives three equations for the unknowns p2, ρ2 and u2. But the equations are
not usually solved in this fashion. The standard procedure is to note that for an
inviscid, steady, adiabatic, isentropic flow T0 and p0 are constant. From (2.30) and
(2.35)

T0

T
= 1 +

γ − 1
2

M2 ,

p

p0
=

(
1 +

γ − 1
2

M2

)−γ/γ−1

.

We can determine T0 and p0 by applying the above to the known station 1. Then
the unknown T2 and p2 may be found in terms of the Mach number M2. We can
determine M2 from the mass-flow relationship, (4.24). We can write the mass-flow
equation in terms of p, T and M using p = ρRT and M = u/

√
γRT so that

ṁ =
√

γ

RT
pMA . (4.33)
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Written in terms of T0 and p0 from (2.30) and (2.35) gives

ṁ =
√

γ

RT0
p0AM

(
1 +

γ − 1
2

M2

)1/2−γ/γ−1

. (4.34)

Equating ṁ1 to ṁ2 and noting that T0 and p0 are constant gives the following
equation which can be used to solve for M2 in terms of M1 and A1 and A2:

A2M2

(
1 +

γ − 1
2

M2
2

)1/2−γ/γ−1

= A1M1

(
1 +

γ − 1
2

M2
1

)1/2−γ/γ−1

. (4.35)

This equation is not usually solved directly in this fashion. Instead the constant
mass flow condition with constant p0 and T0 above (4.35) is written between a
general state (no subscript) and a state where the Mach number is one, designated
by a superscript ∗. We obtain

A

A∗ =
1
M

[
2

γ + 1

(
1 +

γ − 1
2

M2

)]−(1/2−γ/γ−1)

. (4.36)

To solve our problem, from M1 and A1 we can use (4.36) to calculate A∗. Then
from A2 and A∗ we use (4.36) to calculate M2. Once M2 is found, the T0 and p0

relationships may be used to calculate p2 and T2. However, if we plot A/A∗ versus
M as shown in Fig. 4.2, we see that for a given value of A/A∗ there will be two
roots for M , one subsonic and one supersonic. Thus to use the equation in this
fashion we will need to know whether the flow will be subsonic or supersonic. This
may depend upon the geometry between station 1 and station 2. We can only go
from subsonic to supersonic by passing through a throat where M will be one. In
general, to pass from supersonic to subsonic flow, we will pass thru a shock and
(4.36) with A∗ constant will not be valid. The calculation of converging-diverging
nozzle flows will be described in §4.4

We can note here the variation of A∗ across a normal shock by considering a
state upstream of the shock where M = 1 so that A = A∗

1 and p0 = p01 . Downstream
of the shock consider a state where M is also equal to one so that A = A∗

2 and
p0 = p02 . Since the mass flow (4.34) must be the same at states 1 and 2 and since
T0 does not change across a steady adiabatic shock wave, then

A∗
2p02 = A∗

1p01 , (4.37)

and p02/p01 across a shock is found from (3.21). Since p0 decreases across a shock,
(4.37) indicates that A∗ increases across a shock.

Real gases
To solve a steady one-dimensional flow problem where the velocity and thermody-
namic state are give at station 1 and the areas A1 and A2 are specified, the flow
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Figure 4.2. Area-Mach Number relationship for one-dimensional, steady, adiabatic,
isentropic flow of a perfect gas.

conditions at station 2 may be found by applying (4.24)–(4.27). However we cannot
use the perfect gas procedures of using constant T0 and p0 along with the A/A∗

relationship. Instead we must utilize an iterative procedure. One approach is as
follows:

Step 1. Starting with u1, and the thermodynamic state, say p1 and ρ1, calculate
h1 = h(p1, ρ1) and s1 = s(p1, ρ1) from a curve fit or equilibrium composi-
tion.

Step 2. Guess a value of u2.
Step 3. From (4.25) h2 = h1 + (u2

1/2) − (u2
2/2) and from (4.26) s2 = s1.

Step 4. From the equation of state (4.26) we can determine ρ2 = ρ(h2, s2) and also
p2 = p(h2, s2).

Step 5. All the flow quantities at 2 have been determined. Then does ρ2u2A2 =
ρ1u1A1? If not, use a root-finding procedure such as a bracketing method
or a secant method to modify the value of u2 and continue from Step 3.
Note that either the subsonic or supersonic root may be found depending
upon the initial guess. For subsonic root, guess a small value of u2 and for a
supersonic root guess a large value. Be careful not to exceed the theoretical
maximum velocity which corresponds to h2 = 0 so that (u2)max =

√
2h0.
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Figure 4.3. Converging-diverging nozzle.

4.4 Steady Nozzle Flows
Most nozzle flow problems consist in specifying the thermodynamic state of

the chamber, e.g., the stagnation conditions and one downstream condition, which
is typically the back pressure pb, for a nozzle exhausting into a constant pressure
environment. The nozzle geometry is also specified. As the back pressure is de-
creased, the mass flow rate through the nozzle will increase until a maximum value
is reached. This maximum value of mass flow will be reached when the flow in the
nozzle reaches Mach 1, which will always occur at the nozzle minimum area, called
the nozzle throat. The flow at this point is choked and the mass flow cannot increase
any further. We can note that from (4.28) it can be seen directly that at M = 1,
dA must equal zero and the area will be a minimum.

non-choked nozzle flows
The calculation of the flow in a nozzle which is not choked will rely on the fact that
this flow will always be subsonic and hence will be isentropic (no shocks) and the
pressure inside the exit plane pe must equal the back pressure pb. The flow will
also have constant h0. Conditions at the exit plane may be found from the known
chamber conditions, h0 and s0 and the back pressure, so that

he +
u2

e

2
= h0 ,

se = s0 ,

pe = pb .

(4.38)

The system is closed with an equation of state, which may be of the form

he = h(pe, se) . (4.39)

Once the conditions at the exit plane are determined, conditions at any other point
inside the nozzle, where the area is specified, may be found using procedures outlined
in the previous section.
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For perfect gases, we may use constant p0 and T0 to simplify the calculations.
From (2.35) we may write

pe

p0
=

(
1 +

(γ − 1)
2

M2
e

)−γ/γ−1

, (4.40)

and since p0 and pe = pb are known, (4.40) may be solved for Me. Then (2.31) may
be solved for Te,

T0

Te
= 1 +

(γ − 1)
2

M2
e . (4.41)

For real gases, the exit conditions can be readily found if a curve fit to h(p, s)
is available. From pe = pb and se = s0, he is found from state as h(pe, se) and and
then ue =

√
2(h0 − he).

isentropic, choked nozzle flows
Choked nozzle flow calculations make use of the fact that the Mach number will be
one at the throat. Then from given chamber (stagnation) conditions. the throat
area At and Mt = 1, the throat conditions can be found. Then knowing all the
conditions at t, the conditions at any other point in the nozzle, including the exit
plane may be found using the procedures outlined in the previous section. Note that
for every point in the nozzle, there will be two isentropic solutions, one subsonic
and one supersonic. The flow in the converging section will be subsonic, wheras the
flow in the diverging section may be subsonic or supersonic, depending upon the
conditions outside the exit plane.

For perfect gases, from Mt = 1 we know that A∗ = At. Then the Mach number
at the exit plane may be found by solving (4.36) for Me from the known value of
Ae/A

∗. Once Me is found pe/p0 and Te/T0 may be found from (4.40) and (4.41)
respectively. The subsonic or supersonic root must be chosen. This procedure may
be repeated for any other point inside the nozzle where the area is specified.

For real gases again an iterative process must be used. First it is necessary
to find the conditons at the throat from the chamber conditions and the fact that
Mt = 1. Then the exit plane conditions and those at any other position inside the
nozzle may be found using the procedures outlined in the previous section.
throat conditions:
Step 1. Starting with chamber conditons, say p0 and T0, calculate h0 = h(p0, T0)

and s0 = s(p0, T0) from a curve fit or equilibrium composition.
Step 2. Guess a value of ut.
Step 3. Then ht = h0 − (u2

t /2) and st = s0.
Step 4. From a curve fit we determine ρt = ρ(ht, st), pt = p(ht, st) and also at =

a(ht, st).
Step 5. All the flow quantities at the throat have been determined. Then does

ut = at? If not, use a root-finding procedure such as a bracketing method
or a secant method to modify the value of ut and continue from Step 3.
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exit conditions:
Step 6. Guess a value of ue.
Step 7. Then he = h0 − (u2

e/2) and se = s0.
Step 8. From a curve fit we determine ρe = ρ(he, se) and also pe = p(he, se).
Step 9. All the flow quantities at the exit plane have been determined. Then does

ρeueAe = ρtutAt? If not, use a root-finding procedure such as a bracketing
method or a secant method to modify the value of ue and continue from
Step 7. Note that either the subsonic or supersonic root may be found
depending upon the initial guess.

4.5 Unsteady, Constant-Area Flows
We consider here an inviscid, non-conducting flow in a constant area duct. We

assume that the one-dimensional averaging assumptions have been made and we
further assume that the flow is adiabatic and that body forces are negligible. In
this section we will consider the flow to be unsteady. Under these circumstances
the governing equations may be developed from (4.10)–(4.12) as:

∂

∂t
(ρ) +

∂

∂x
(ρu) = 0 , (4.42)

∂

∂t
(ρu) +

∂

∂x

(
ρu2 + p

)
= 0 , (4.43)

∂

∂t
(ρe0) +

∂

∂x
[(ρe0 + p)u] = 0 . (4.44)

The non-conservation form may be obtained by expanding the combined terms as:

∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u

∂x
= 0 , (4.45)

∂u

∂t
+ u

∂u

∂x
+

1
ρ

∂p

∂x
= 0 , (4.46)

∂e0

∂t
+ u

∂e0

∂x
+

p

ρ

∂u

∂x
+

u

ρ

∂p

∂x
= 0 . (4.47)

The energy equation may be written in terms of e instead of e0 by utilizing e0 =
e + u2/2. Expanding (4.47) and using (4.46) and (4.45) we obtain

∂e

∂t
+ u

∂e

∂x
+

p

ρ

∂u

∂x
= 0 . (4.48)

It turns out to be convenient to use an equation of this form with p as the
dependent variable instead of e. For a general gas which, if reacting was in chemical
equilibrium we can assume p = p(ρ, e). Then dp = pρdρ + pede. Thus

∂p

∂t
+ u

∂p

∂x
=

(
∂p

∂ρ

)
e

(
∂ρ

∂t
+ u

∂ρ

∂x

)
+

(
∂p

∂e

)
ρ

(
∂e

∂t
+ u

∂e

∂x

)
,
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Substituting (4.46) and (4.48) gives

∂p

∂t
+ u

∂p

∂x
= = −ρ

∂u

∂x

[(
∂p

∂ρ

)
e

+
p

ρ2

(
∂p

∂e

)
ρ

]

= −ρa2 ∂u

∂x
, (4.49)

where we have used the general expression (1.51) for the speed of sound.
The governing equations are now (4.45), (4.46) and (4.49) and may be written

in matrix form as
∂W

∂t
+ A

∂W

∂x
= 0 , (4.50)

where

W =

⎛
⎝ ρ

u
p

⎞
⎠ , A =

⎛
⎝ u ρ 0

0 u 1/ρ
0 ρa2 u

⎞
⎠ . (4.51)

Before attempting to solve this system of first-order partial differential equa-
tions, it is useful to consider how to solve a single, first-order partial differential
equation, for a generic variable f(x, t),

∂f

∂t
+ c

∂f

∂x
= 0 , (4.52)

where c is the constant wave speed. This equation is sometimes called the linear
advection equation. If we subject f to the initial condition

f(x, 0) = g(x) , (4.53)

the initial value problem will be called a Cauchy problem. One can proceed with
the solution by first noting that for f(x, t), an exact differential is

df

dt
=

∂f

∂t
+

∂f

∂x

dx

dt
. (4.54)

By comparing (4.54) to (4.53) we may note whenever dx/dt = c, (4.54) will give
df/dt = 0. We further note that any line in x, t space, defined by x − ct =
constant will have a slope dx/dt = c and that the complete solution to df/dt = 0 is
f = constant. Thus for our Cauchy problem f will be constant along lines where
x− ct = constant. Thus the value of f at (x1, t1) will be the same as the value of f
anywhere along the curve x − ct = x1 − ct1 and in particular along the initial data
line t = 0 at (x0, 0) such that x0 = x1 − ct1. Or f(x1, t1) = f(x0, 0) and from the
initial condition (4.53), f(x0, 0) = g(x0), so that f(x1, t1) = g(x0) = g(x1 − ct1).
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Thus the general solution of the Cauchy problem is that f(x, t) = g(x − ct) for
t ≥ 0.

Now we wish to apply procedures such as the above to the solution to our sys-
tem of three equations, (4.50). However complications arise because our equations
are non-linear and coupled. For the above system of first-order partial differential
equations whose specific non-linearity is termed quasi-linear, since it is linear in
the highest derivative, a solution is available by the method of characteristics. We
will not attempt to develop the method of characteristics for a general system of
first-order partial differential equations, but refer the reader to the developments
found for example in Chester (1971) or Garabedian (1986). We will instead develop
less rigorously the method of characteristics for our specific set of equations.

A key part of solving (4.50) by this approach involves the eigenvalues of the
matrix A, which may be found to be u, u + a and u − a. The are called the
characteristic velocities or characteristic wave speeds and their role in the solution
will become evident. We begin by seeking linear combinations of our three equations
(4.45), (4.46) and (4.49) which in some sense appear to have the form of our Cauchy
problem (4.52).

Adding (4.45) and (4.49) and reorganizing some terms yields

∂p

∂t
+ u

∂p

∂x
− a2

(
∂ρ

∂t
+ u

∂ρ

∂x

)
= 0 . (4.55)

This equation may be interpreted as

dp

dt
− a2 dρ

dt
= 0 , (4.56)

along curves in x, t space where dx/dt = u. Thus we see that the partial differential
equation reduces to an ordinary differential equation along characteristic lines. We
may then write

dp − a2dρ = 0 on
dx

dt
= u . (4.57)

There will be some circumstances, where we can integrate (4.57) in closed form and
we will discuss this shortly. First we can consider two other characteristic directions
by adding and subtracting (4.46) and (4.49) to yield:

∂p

∂t
+ (u ± a)

∂p

∂x
± ρa

[
∂u

∂t
+ (u ± a)

∂u

∂x

]
= 0 . (4.58)

So that we may interpret these equations as

dp ± ρadu = 0 on
dx

dt
= u ± a . (4.59)
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Thus we have reduced our system of three first-order partial differential equations
to three first order ordinary differential equations (4.57) and (4.59) along three
characteristic directions.

The first characteristic equation, may be rewritten to be dp/dρ = a2 on dx/dt =
u. We note that the general definition of the sound speed is a2 = (∂p/∂ρ)s and that
in a one-dimensional flow the trajectory of a particle path is dx/dt = u. In general
p = p(ρ, s) so that dp = (∂p/∂ρ)sdρ + (∂p/∂s)ρds. Then for ds = 0, dp = a2dρ.
Thus the characteristic equation is equivalent to the statement that the entropy
is a constant along particle paths. We have found this to be true for an inviscid,
non-conducting, adiabatic flow in the absence of shocks. The consequence of this
for our one-dimensional flow is that the flow must be isentropic if we are to use the
characteristic relationships.

The second and third characteristic relationships governed by (4.59) represent
waves traveling at u ± a which implies they are right running acoustic waves and
left running acoustic waves whose wave speeds are the sound speed relative to the
flow velocity. The characteristic equations may be written as dp/ρa ± du = 0 on
dx/dt = u ± a

du ± dp

ρa
= 0 on

dx

dt
= u ± a . (4.60)

may be integrated in closed form for the case of a perfect gas.

Perfect gases

For the isentropic flow of a perfect gas we can use a2 = dp/dρ = γp/ρ. Then
2da/a = dp/p − dρ/ρ and dρ = (dρ/dp)dp = dp/a2. Using these relationships we
can show that dp/ρa = 2da/(γ−1). Then the characteristic relationships (4.60) for
a perfect gas become

du ± 2da

γ − 1
= 0 on

dx

dt
= u ± a . (4.61)

This can be readily integrated to yield

u ± 2a

γ − 1
= constant on

dx

dt
= u ± a . (4.62)

The relationships u±2a/(γ−1) are the well known Riemann invariants. For a one-
dimensional isentropic flow, (4.62) represents the complete solution to the problem.
This can be best seen graphically from Fig. 4.4 below.

In Fig. 4.4 we illustrate two characteristic waves originating from the initial
data line t = 0. Along this line the values of u and a are known as a function of x.
The right-running wave, originating at (x1, 0) follows a path given by dx/dt = u+a
and the left-running wave, originating at (x2, 0) follows a path given by dx/dt =
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Figure 4.4. Riemann invariants for a one-dimensional, unsteady, adiabatic, isen-
tropic flow of a perfect gas.

u − a. The waves intersect at (x3, t3). The values of u1, a1, u2 and a2 are known
from the initial data. The solution at point 3 is given by the solution of

u3 +
2a3

γ − 1
=u1 +

2a1

γ − 1
, (4.63)

u3 −
2a3

γ − 1
=u2 −

2a2

γ − 1
. (4.64)

So that

u3 =
1
2

[
u1 + u2 +

2
γ − 1

(a1 − a2)
]

, (4.65)

a3 =
1
2

[
a1 + a2 +

γ − 1
2

(u1 − u2)
]

. (4.66)

In this manner the solution for u and a may be determined for any point (x, t)
which is at the intersection of two characteristics which originate at the initial data
line.

The solution for the other flow variables may be found from the isentropic,
perfect gas relations so that

p3

p1
=

(
a3

a1

)2γ/(γ−1)

, (4.67)

T3

T1
=

(
a3

a1

)2

. (4.68)

The only remaining question now that we know the solution at point 3 is,
where is point 3? If the characteristics were straight, then (dx/dt)1−3 = u1 + a1
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and (dx/dt)1−2 = u2 − a2. Integrating gives

x3 − x1

t3
=u1 + a1 , (4.69)

x3 − x2

t3
=u2 − a2 , (4.70)

which may be solved for x3 and t3 as

x3 =
x2(u1 + a1) − x1(u2 − a2)

(u1 + a1) − (u2 − a2)
, (4.71)

t3 =
x2 − x1

(u1 + a1) − (u2 − a2)
. (4.72)

However, in general the characteristics will not be straight. In order for this to
occur u1 + a1 would have to be equal to u3 + a3 and u2 − a2 would have to be
equal to u3 − a3. From (4.67) and (4.68) we see that this can only occur if we have
uniform conditions u1 = u2, a1 = a2 so that u3 = u1 = u2 and a3 = a1 = a2. For
the general case we can find better approximations for x3 and t3 by averaging the
slopes u + a at 1 and 3 and u − a at 2 and 3. We can do this since we can find the
values u3 and a3 from (4.67) and (4.68) without first determining x3 and t3. We
can use

x3 − x1

t3
=

1
2

[(u1 + a1) + (u3 + a3)] , (4.73)

x3 − x2

t3
=

1
2

[(u2 − a2) + (u3 − a3)] , (4.74)

which may be solved to give a better approximation for x3 and t3. This procedure
is equivalent to using a trapezoidal rule to integrate the characteristic slopes.

Next we consider a situation where the flow conditions are uniform on at least
part of the initial-data line t = 0. This situation is depicted in Fig. 4.5 below.
First, let us consider point 3 which is formed by the intersection of two opposite
family characteristic lines emanating from the uniform flow part of the initial-data
line. The two characteristic relationships, (4.64), evaluated along 1–3 and 1–2
respectively are

u3 +
2a3

γ − 1
=u1 +

2a1

γ − 1
= u0 +

2a0

γ − 1
,

u3 −
2a3

γ − 1
=u2 −

2a2

γ − 1
= u0 −

2a0

γ − 1
.

The solution is obviously u3 = u1 = u2 = u0 and a3 = a1 = a2 = a0. Flow
conditions have not changed and the characteristic lines will be straight since u3 +
a3 = u1 + a1 = u0 + a0 and u3 − a3 = u2 − a2 = u0 − a0. This situation with
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Figure 4.5. Wave diagram with uniform flow conditions on a portion of the intial
data line.

uniform flow and straight characteristics will occur for any point which is found by
the intersection of two characteristics lines emanating from the uniform flow part
of the initial data line. Thus from Fig. 4.5, all points to the right of the heavy line
A–B with slope dx/dt = u0 + a0 will have uniform flow. This is called a uniform
flow region and generally only the waves at the boundaries of the region are drawn.

Next consider point 5. The characteristic relationships are

u5 +
2a5

γ − 1
=u4 +

2a4

γ − 1
,

u5 −
2a5

γ − 1
=u1 −

2a1

γ − 1
= u0 −

2a0

γ − 1
.

We see that u5 �= u0 and a5 �= a0, so that the flow is not uniform. Now consider point
6 which is on the same right running characteristic as point 5. The characteristic
relationships for point 6 are

u6 +
2a6

γ − 1
=u4 +

2a4

γ − 1
,

u6 −
2a6

γ − 1
=u2 −

2a2

γ − 1
= u0 −

2a0

γ − 1
.
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We see that point 6 does not have uniform conditions but we do see that the solution
for point 6 must be identical to the solution to point 5 or u6 = u5 and a6 = a5.
We can see that this will be true for any points on the right-running characteristic
originating from point 4 which have a left-running characteristic originating from
the uniform data line. This will occur for all points above the heavy curved line A–C
which is a left-running characteristic coming from the boundary between uniform
conditions and non-uniform conditions on the initial data line. Now on each right-
running characteristic coming from the non-uniform data and above curve A–C
will have the same conditions and that part of the characteristic will be straight,
e.g., u6 + a6 = u5 + a5. We see that on another right running characteristic, 7–8,
conditions will be different since

u8 +
2a8

γ − 1
=u7 +

2a7

γ − 1
,

u8 −
2a8

γ − 1
=u1 −

2a1

γ − 1
= u0 −

2a0

γ − 1
.

Since u7 �= u4 and a7 �= a4, then u7 �= u6 = u5 and a7 �= a6 = a5. Thus we see
that this region will have one family of characteristics which are straight and have
constant conditions along it. It is called a one-wave flow region or a simple wave
region. Finally the region to the left of the left-running characteristic A–B coming
from the boundary between uniform conditions and non-uniform conditions on the
initial data line will be called a non-simple region because in general both families
of characteristics will be curves. This can be seen because all points in this region
are formed by the intersection of characteristics emanating from the non-uniform
initial-data line.

Unsteady expansions and compressions
Now we will consider a long constant area tube, which has an internal piston inside
the tube. At t = 0, the piston is located at x = 0. Then with an external mechanism,
the piston slowly begins moving to the right at a speed of up(t). The trajectory
of the piston is the heavy line in Fig. 4.6. We will be interested in the properties
of the gas to the left of the piston. Initially the fluid is at rest with a velocity u0

and a sound speed of a0. Throughout this section we will be assuming that the
fluid behaves as a perfect gas. As the piston begins moving to the right, the fluid
particles immediately adjacent to the piston must move with the same velocity as
the piston up(t). Since the flow is at rest for t = 0 and x ≤ 0, then we will have a
uniform region with u = u0 = 0 and a = a0 for everywhere to the left of the line
x = (u0 − a0)t = −a0t as shown in the sketch in Fig. 4.6.

Consider a point in the fluid just adjacent to the piston denoted by the point w
in the figure. From the no penetration condition, uw = up(t). Then a right-running
characteristic from the initial data line will reach the piston so that

uw +
2aw

γ − 1
= 0 +

2a0

γ − 1
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Figure 4.6. Unsteady piston creating expansion waves.

so that
aw = ap = a0 −

γ − 1
2

up . (4.75)

We see that aw = ap < a0. Next we consider a point b on the same left-running
characteristic as w. The Riemann invariants are:

ub +
2ab

γ − 1
=0 +

2a0

γ − 1
,

ub −
2ab

γ − 1
=uw − 2aw

γ − 1
= up − 2ap

γ − 1
.

We see that ub = uw = up and ab = aw = ap. Thus the characteristic line
between w and b is straight and has a slope of dx/dt = up − ap. Since up > 0 and
ap < a0, the wave w − b will travel to the left more slowly than the initial wave at
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dx/dt = −a0. We can generalize the picture by noting that for a piston whose speed
is monotonically increasing, all left-running characteristics will be straight and each
succeeding wave in time will travel more slowly to the right. This is an example of
a simple wave region, discussed previously and sometimes called one-wave flow.

Now let us assume that at time t = t1 that the piston attains a speed up1 and
that the speed of sound in the gas adjacent to the piston is ap1 = a0 − (γ−1)up1/2.
Furthermore we assume that up = up1 for t ≥ t1. Then as indicated on Fig. 4.6
we have a uniform region with u = up1 and a = ap1 to the right of the left-running
characteristic dx/dt = up1 − ap1 .

The left-running characteristics for this situation are called expansion waves,
since as they pass over a fluid particle, the induce an increased velocity to the
right (opposite to the direction of wave propagation) and they decrease the speed
of sound of the fluid. A decrease in speed of sound means a decreased temperature,
and for isentropic flow, a decreased pressure and density. We can describe an
unsteady expansion process by following a fluid particle initially at rest in the tube
some distance to the left of the piston. As the piston begins moving, the fluid
particle senses no change until the first sound wave dx/dt = −a0 passes over the
particle. This first wave infinitesimally induces a velocity in the particle to the
right and infinitesimally lowers the temperature and pressure. From that point
on a continuous series of waves passes over the particle, each one speeding up the
particle (to the right) and lowering the temperature and pressure until the constant
values of u = up1 and a = ap1 are reached.

Next, suppose we are somehow able to accelerate the piston to a constant speed
almost instantly. Then the x–t diagram would be as indicated in Fig. 4.7. The
expansion waves all appear to be emanating from the origin. This situation is called
a centered expansion or an expansion fan. Note that in the figure, we are calling
the constant piston speed up and the sound speed in the gas adjacent to the piston
as ap. Also note that the number of waves indicated is arbitrary. In reality there
are an infinite number of waves within the expansion fan.

Now lets look on the other side of the piston. First we consider a piston
slowly accelerating from rest and moving from towards the right at velocity up(t)
as indicated in Fig. 4.8. We see that we have a uniform region to the right of the
sound wave emanating from the origin at a speed of dx/dt = a0. Consider a point w
in the fluid adjacent to the surface of the piston. From the no penetration condition
uw = up(t). Taking a left running characteristic from the initial data line to point
w we have

uw − 2aw

γ − 1
= 0 − 2a0

γ − 1

so that

aw = ap = a0 +
γ − 1

2
up . (4.76)

We see that aw = ap > a0. Next we consider a point b on the same right-running
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Figure 4.7. Constant speed piston creating centered expansion.

characteristic as w. The Riemann invariants are:

ub −
2ab

γ − 1
=0 − 2a0

γ − 1
,

ub +
2ab

γ − 1
=uw +

2aw

γ − 1
= up +

2ap

γ − 1
.

We see that ub = uw = up and ab = aw = ap. Thus, the characteristic line between
w and b is straight and has a slope of dx/dt = up+ap. Since up > 0 and ap > a0, the
wave w− b will travel to the right more quickly than the initial wave at dx/dt = a0.
We can see more evidence of this phenomena by considering points w′ and b′. We
can go through the same procedure as was done for w and b to get uw′ = up(t′),
aw′ = a0 + (γ − 1)up(t′)/2 and ub′ = uw′ and ab′ = aw′ . Since t′ > t, up(t′) > up(t)
and ap(t′) > ap(t). Thus the wave w′ − b′ will be traveling faster than w − b. We
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Figure 4.8. Unsteady piston creating compression waves.

can generalize the picture by noting that for a piston whose speed is monotonically
increasing, all right-running characteristics will be straight and each succeeding
wave in time will travel more quickly to the right. These waves pass over fluid
particles inducing an increased motion to the right (in the same direction as wave
propagation) and increasing the temperature and pressure. Hence they are called
compression waves. Since succeeding waves travel faster and faster, eventually this
leads to a situation where the characteristics catch up to each other. We note that
it can be proven that characteristic lines of the same family cannot cross each other
so that our isentropic solutions will be no longer valid once the characteristics begin
to coalesce. What occurs is that the characteristic coalesce to form a non-isentropic
moving shock wave. The speed of the shock wave W will be faster than the that of
the initial compression wave dx/dt = a0.

If we were to accelerate the piston to a constant speed up instantaneously,
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Figure 4.9. Constant speed piston creating moving shock.

then the characteristics would coalesce instantaneously as shown in Fig. 4.9. This
situation would result in a shock moving at constant velocity W. Behind the shock
the fluid will all be traveling at constant velocity up. It will be easy to show that
W > up. So for a compression of this type, a fluid particle initially to the right
of the piston will remain at rest until a shock moving at speed W passes over it.
Then instantly the particle accelerates to velocity up and its sound speed increases
to ap and its pressure and temperature increase accordingly. However this process
is non-isentropic.

In the next subsection we will discuss how to handle moving shock waves formed
by the coalescence of compression waves. Before that, we may note some interesting
properties of unsteady characteristic waves. As we have seen, these waves travel at
a speeds of u ± a. Thus they are traveling at the local speed of sound ±a relative
to the local fluid particle velocity u. We see that compression waves will tend to
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coalesce since each succeeding wave is moving in a region of fluid with higher sound
speed. The opposite effect occurs for expansion waves which will spread out because
each succeeding wave lowers the sound speed which slows the following wave.

Shocks moving at a steady speed
Consider a shock formed from the instantaneous acceleration of a piston to velocity
up. The shock will move at a constant speed W and the fluid behind the shock will
be at a velocity up. The fluid in front of the shock will be at rest. This situation is
illustrated in the top sketch in Fig. 4.10.

Figure 4.10. Shock wave moving at constant speed.

In this situation we know a1 and up. We do not know ap (or the corresponding
pressure pp) or the shock speed W. Note that we cannot determine ap by taking a
left-running characteristic from the initial data line to the piston because this would
involve crossing the shock wave. The characteristic relationships are not valid across
a shock.

One solution to this unsteady shock problem is to use the unsteady shock jump
relationships developed in Chapter 3. But for the case of constant up and hence
constant W , there is a simpler solution. We can look at the flow situation relative
to the shock, as illustrated in the lower sketch of Fig. 4.10. An observer moving
with the shock, sees a flow going from right to left, into the shock wave at a speed
W and sees behind the shock, a flow going from right to left at a speed W − up.
But what about the thermodynamic state, such as the temperature, pressure, sound
speed, etc.? Recall that the static thermodynamic quantities are the values which
would be measured by a probe normal to the flow moving with the fluid particles.
Hence in the upper sketch, the fluid in front of the shock has a static pressure p1

as measured by a probe which is not moving (since u1 = 0). In the lower sketch,
relative to the shock, the fluid appears to be moving at a speed W into the shock.
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The pressure in front of the shock would again be p1 as measured by a probe moving
towards the shock at speed W . Since in both sketches the actual fluid velocity (in
a absolute coordinate frame) is the same, the static quantities would be exactly the
same. The static flow quantities are independent of the reference frames. Note this
is definitely not true for stagnation quantities which most certainly depend on the
reference frame.

Now in the lower sketch of Fig. 4.10, we have a steady shock with u′
1 = W ,

a′
1 and p′1 entering the shock and u′

2 = W − up, a′
2 = ap and p′2 = pp leaving

the shock. Note we will adopt the convention that ′1 refers to quantities entering
a stationary shock (supersonic side) and ′2 refers to quantities leaving the shock
(subsonic side). The Mach number M ′

1 = W/a1. We know that from the Second
Law of Thermodynamics, that the Mach number in front of a normal shock must
be supersonic, and hence W > a1, which we have already seen in our discussion of
the coalescence of compression waves. For the steady shock problem in the relative
coordinate frame, knowing M ′

1, p′1, T ′
1 would be sufficient to determine M ′

2, p′2, T ′
2

from the Rankine-Hugoniot relationships. Note Eqs. (3.16) – (3.20) apply with
subscripts 1 and 2 replaced by ′1 and ′2. But in this problem here we know p′1 and
T ′

1 but we do not know M ′
1. We do know one more piece of information, up. We

have u′
2 = up − W = up − u′

1. We can use this information to solve the problem.
From (3.17), after adding the ′ notation we have

ρ′2
ρ′1

=
u′

1

u′
2

=
(γ + 1)M ′2

1

2 + (γ − 1)M ′2
1

. (4.77)

Substituting u′
1 = W , M ′

1 = W/a1 and u′
2 = W − up, yields

W

W − up
=

(γ + 1)W 2

2a2
1 + (γ − 1)W 2

. (4.78)

Since up and a1 are known, this results in a quadratic equation for W :

W 2 − γ + 1
2

upW − a2
1 = 0 , (4.79)

which may be solved as

W =
γ + 1

4
up +

[(
γ + 1

4

)2

u2
p + a2

1

]1/2

. (4.80)

Once W is found, we know M ′
1 = W/a1 and we can use the Rankine-Hugoniot

relationship for pressure, (3.16) to obtain

p′2
p′1

=
pp

p1
= 1 +

2γ

γ + 1

(
W 2

a2
1

− 1
)

. (4.81)
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We then use (3.17) and (3.18) to obtain

ρ′2
ρ′1

=
ρp

ρ1
=

u′
1

u′
2

=
W

W − up
, (4.82)

and
T ′

2

T ′
1

=
Tp

T1
=

a2
p

a2
1

=
p′2/p′1
ρ′2/ρ′1

. (4.83)

Sometimes, instead of knowing up and p1 and a1, we wish to solve the problem
knowing pp and p1 and a1. Then since p′2 = pp and p′1 = p1, we will know p′2/p′1
and it is straightforward to use the Rankine-Hugoniot relations to get M ′

1 = W/a1.
From (4.81), we can solve for W/a1 as

W

a1
=

[
1 +

γ + 1
2γ

(
pp

p1
− 1

)]1/2

. (4.84)

Then from (4.77) we can solve for ρ′2 = ρp and u′
2 = W − up.

Shock tubes
We consider a shock tube which consists of a long constant area duct which

initially contains gases at two different states separated by a diaphragm. On one
side, the gas is at a high pressure and this side is called the driver. On the other
side, the gas is at a low pressure and this side is called the driven. In the sketch
in Fig. 4.11, the driver is on the left side of the tube and the high pressure gas
is initially at rest at state 4. The driver and the driven often contain different
gases. The initial conditions in the driver are p4, T4, a4, γ4 with u4 = 0. The
initial conditions in the driven are p1, T1, a1, γ1 with u1 = 0. Often in addition to
p4 >> p1 the driver is heated so that T4 > T1. At t = 0 the diaphragm is broken
using an external mechanism. (The diaphragm material may be mylar or brass or
steel depending upon the size of the tube and the pressure ratio p4/p1.) When the
diaphragm is burst, there will be an interface between the two gas states which
travels down the tube from left to right at a speed up. This interface acts like a
massless piston and is actually a contact surface. The movement of the interface
generates a shock moving to the right at a speed of W and expansion waves moving
to the left into region 4. The shock raises the pressure from a low pressure of p1 to
a higher pressure p2. The expansion waves lower the pressure from p4 to p3. Since
the interface is a massless piston, there can be no force across it, so that

p2 = p3 . (4.85)

Also since there is no flow across the interface, we must have

u2 = u3 = up . (4.86)
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Figure 4.11. Open-ended shock tube.

This situation is illustrated in x–t diagram in Fig. 4.11. We can solve for the flow
in the entire tube by using characteristic relationships across the expansion fan,
the Rankine-Hugoniot relationships across the shock and the interface conditions
(4.85), (4.86). Note that the gas in regions 3 and 4 is at γ4 and the gas in regions
1 and 2 is at γ1. In solving shock tube problems, conditions in regions 1 and 4 are
generally known.
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Considering a right-running characteristic going from region 4 to region 3 gives

u3 +
2a3

γ4 − 1
= 0 +

2a4

γ4 − 1
,

which may be solved for a3 as

a3

a4
= 1 −

(
γ4 − 1

2

)
u3

a4
. (4.87)

The pressure p3 may be found from the isentropic relationships, such as used in
(4.67), to give

p3

p4
=

[
1 −

(
γ4 − 1

2

)
u3

a4

]2γ4/(γ4−1)

. (4.88)

Note that in (4.87) and (4.88), the quantity u3 has not yet been found.
Next we consider the shock wave. We can determine the shock velocity W in

terms of the piston velocity up = u2 from (4.84) as

W

a1
=

[
1 +

(
γ1 + 1
2γ1

) (
p2

p1
− 1

)]1/2

. (4.89)

We can then solve for u2 = up from (4.78) as

u2

a1
=

2(W 2 − a2
1)

(γ1 + 1)W
. (4.90)

Substituting (4.89) into (4.90) gives

u2 =
1
γ1

(
p2

p1
− 1

) [
1 +

(
γ1 + 1
2γ1

) (
p2

p1
− 1

)]−1/2

. (4.91)

We can solve for p2/p1 from (4.88), (4.91) and the two interface conditions
(4.85) and (4.86). Eq. (4.88) gives p3/p4 = f(u3/a1) and (4.91) gives u2/a1 =
g(p2/p1). Using p2 = p3 and u2 = u3 we can write p3/p4 = (p2/p1)(p1/p4) and
u3/a4 = (u2/a1)(a1/a4) and substitute into (4.88) to obtain

p2

p1

p1

p4
=

[
1 −

(
γ4 − 1

2

)
u2

a1

a1

a4

]2γ4/(γ4−1)

. (4.92)

And substituting (4.91) for u2/a1 gives the following equation involving p2/p1 as
the only unknown:

p2

p1
=

p4

p1

[
1 −

(
γ4 − 1

2

)
a1

a4

1
γ1

(
p2

p1
− 1

) [
1 +

(
γ1 + 1
2γ1

) (
p2

p1
− 1

)]−1/2
]2γ4/(γ4−1)

.

(4.93)
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Given p4/p1, a4/a1 and γ4 and γ4, (4.93) may be iteratively be solved for p2/p1.
Eq. (4.93) is sometimes referred to as the shock tube equation.

Once p2/p1 has been found we can use (4.89) to determine W/a1 and (4.90) to
find u2/a1. Then from the Rankine-Hugoniot relation (4.77) we have

ρ2

ρ1
=

ρ′2
ρ′1

=
u′

1

u′
2

=
W

W − u2
. (4.94)

And from the thermal equation of state T2/T1 = (p2/p1)/(ρ2/ρ1) and a2/a1 =√
T2/T1. For region 3, we can use the interface conditions p3 = p2 and u3 = u2 and

(4.87) to find a3/a4 and then T3/T4 = (a3/a4)2. This completes the solution to the
shock tube problem.

Some applications of shock tubes are for short duration aerodynamic testing.
An illustration of this application is illustrated in Fig. 4.12. There will be a rel-
atively uniform flow over the model between the time the shock passes over the
model and the contact surface reaches the model. The time may also be shortened
if wave reflections from the downstream end of the tube reach the model. We will
discuss shock reflections at the end of this subsection.

Figure 4.12. Shock tube as a test facility.

In general if the diaphragm is located at x = 0 and the model is located at xt

then the run time ∆t is

∆t =
(

1
up

− 1
W

)
xt . (4.95)

The Mach number of the test will be

Mt =
up

a2
=

up

a1

a1

a2
, (4.96)

where up/a1 is given in (4.91) and a2/a1 =
√

(p2/p1)/(ρ2/ρ1) with p2/p1 given in
(4.93) and ρ2/ρ1 given in (4.94).

One question that we might ask is how large can we make the test Mach number
Mt. Our intuition tells us that the stronger the shock the high the value of Mt.
Let us assume that we can strengthen the shock without bound, e.g., p2/p1 → ∞.
Then from (4.91) we can see that

up

a1
→

[
2

γ1(γ1 + 1)
p2

p1

]1/2

as p2/p1 → ∞ ,
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and after some manipulation of (4.94), we can show that

a2

a1
→

[
(γ1 − 1)
(γ1 + 1)

p2

p1

]1/2

as p2/p1 → ∞ ,

and finally

Mt →
[

2
γ1(γ1 + 1)

]1/2

as p2/p1 → ∞ .

For γ1 = 1.4, Mt ≈ 1.89. Thus, for a perfect gas with γ1 = 1.4, no matter how
strong we make the shock, the maximum value of test Mach number will be 1.89.

In order to strengthen the shock (increase p2/p1), from (4.92) we see that we
can increase p4/p1 and we can decrease a1/a4. Thus we will usually want to make
a4 as large as possible. Since a2

4 = γ4R4T4 we can achieve high sound speeds by
increasing T4, increasing γ4 and increasing R4. We can increase γ4 by using a
monatomic gas in the driver such as helium. We can increase R4 by decreasing the
molecular weight of the driver gas. Helium accomplishes this and so does hydrogen.
Sometimes hydrogen is heated and raised to a high temperature causing ignition
which further increases the temperature and pressure of the driver gases. This is
sometimes called a combustion tube.

One application for shock tubes is to generate high enthalpy flows to simulate
reentry conditions. For example a reentry vehicle at M = 30 at an altitude of
60 km where the sound speed is a∞ ≈ 372 m/sec has a stagnation enthalpy h0 =
a2
∞/(γ − 1) + U2

∞/2 ≈ 6.26 × 107 m2/sec2. If we use a wind tunnel with unheated
air (T0 = 300K) has a h0 = cpT0 ≈ 3.01× 105 m2/sec2. For a wind tunnel with air
heated to T0 = 1200K gets only h0 ≈ 1.20× 106 m2/sec2. Somewhat higher values
can be achieved in shock tunnels as shown in the following table:

Table 4.1 Shock Tube Use to Generate High Stagnation Enthalpy

p4/p1 T4/T1 p2/p1 up/a1 T2/T1 W/a1 h0(m2/sec2)

10 1 2.848 0.821 1.393 1.61 4.6×105

100 1 6.595 1.660 2.047 2.41 7.8×105

100 10 21.99 3.440 4.629 4.36 2.1×106

100 30 33.22 4.302 6.504 5.35 3.1×106

100 50 39.14 4.694 7.492 5.80 3.6×106

300 1 29.23 4.017 5.839 5.02 2.7×106

300 10 92.15 7.319 16.328 8.89 8.1×106

Higher values of test Mach numbers Mt can be generated using shock tunnels.
A shock tunnel is a shock tube followed by a diverging nozzle as shown in Fig. 4.13
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Figure 4.13. Shock tunnel.

The final part of our discussion on shock tubes consists of developing methods
of treating wave reflections from closed ends of tubes. Consider a shock tube with
closed ends on both the driver and driven side as sketched in Fig. 4.14. On the
driver side we have reflections of the expansion fan from the wall and on the driven
side we consider the shock reflection.

For the reflection of the expansion fan, the region after the reflected waves
is region 6. In this region, since we must have no penetration through the walls,
u6 = 0. The other condition in region 6 can be determined from a left-running
characteristic passing from region 3 to 6 such that

u6 −
2a6

γ4 − 1
= u3 −

2a3

γ4 − 1
,

so that

a6 = a3 −
(γ4 − 1)

2
u3 , (4.97)

and from the isentropic relationship

p6

p3
=

(
a6

a3

)2γ4/(γ4−1)

. (4.98)

Since a6 < a3 and p6 < p3 we see that the reflected waves are expansions. It
is generally true that unsteady expansion waves reflecting from a solid surface will
reflect as expansion waves. (Also unsteady, isentropic compression waves will reflect
from a solid surface as compression waves).

Next we consider the reflected shock. The region after the reflected shock we
call region 5. Again, because the wall is solid, u5 = 0. The situation for the shock
before reflection is given in Fig. 4.10. The situation after reflection is shown in Fig.
4.15, where Wr is the velocity of the reflected shock wave.
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Figure 4.14. Closed-ended shock tube.

We see that region 1′ is region 2 with the relative flow into the reflected shock
at u′

1 = Wr +u2 and the relative flow leaving the reflected shock at u′
2 = Wr. Then
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Figure 4.15. Reflected shock wave.

from the Rankine-Hugoniot condition (4.77) we see that

Wr + u2

Wr
=

(γ1 + 1)(Wr + u2)2

2a2
2 + (γ1 − 1)(Wr + u2)2

,

which results in

W 2
r +

(3 − γ1)
2

u2Wr −
(γ1 − 1)

2
u2

2 − a2
2 = 0 , (4.99)

and may be solved for Wr. A neater form of this equation may be developed using
the definitions M2 = u2/a2 and Mr = (Wr + u2)/a2. Then from (4.99) we obtain

M2
r − (γ1 + 1)

2
M2Mr − 1 = 0 , (4.100)

which may be solved as

Mr =
(γ1 + 1)

4
M2 +

[(
γ1 + 1

4

)2

M2
2 + 1

]1/2

. (4.101)

After determining Mr and hence Wr = a2Mr−u2 we can use the Rankine-Hugoniot
relations to find p5/p2 = p′2/p′1 and a5/a2 = a′

2/a′
1.

We have not discussed wave reflections from open ended tubes. In these situ-
ations waves will generally as waves of the opposite sense. Expansions will reflect
as compressions and shocks will reflect as expansions. This case is discussed in
Anderson as well as other references.
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5. METHOD OF CHARACTERISTICS

5.1 Second-Order PDE in 2 Independent Variables
Consider a second-order, quasi-linear partial differential equation in two inde-

pendent variables,

A1
∂2φ

∂x2
+ A2

∂2φ

∂x∂y
+ A3

∂2φ

∂y2
+ A4 = 0 , (5.1)

where for a quasi-linear equation, the coefficients may depend upon the independent
variables, the dependent variable and first derivatives of the dependent variable as

Ai = Ai(x, y, φ, ∂φ/∂x, ∂φ/∂y) . (5.2)

If the Ai were dependent upon the highest derivatives, the equation would be non-
linear.

Now, let us consider the conditions for which a solution φ(x, y) will be analytic.
By this we mean that suppose φ and some of its derivatives are known along a
certain line in space. Can we always determine a solution in the neighborhood of
that line by expanding in a Taylor’s series. This process is sometimes called analytic
continuation and if this is possible, we call the solution analytic.

As a first example, suppose we know the solution φ along a line x = x0. We call
this line an initial-data line. Also assume that we are given the normal derivative
∂φ/∂x along that line. Expanding in a Taylor’s series we have

φ(x0 + ∆x, y) = φ(x0, y) + ∆x
∂φ(x0, y)

∂x
+

(∆x)2

2!
∂2φ(x0, y)

∂x2
+ . . . . (5.3)

So that obviously we will need the second derivative ∂2φ/∂x2 and all the higher
derivatives evaluated along x = x0. From the partial differential equation (5.1) we
find

∂2φ(x0, y)
∂x2

= −A2

A1

∂2φ(x0, y)
∂x∂y

− A3

A1

∂2φ(x0, y)
∂y2

− A4

A1
, (5.4)

where the coefficients Ai, i = 1, . . . , 4 are evaluated at (x0, y). Now, if along the line
x = x0, φ(x0, y) = f1(y) and ∂φ(x0, y)/∂x = f2(y) where f1 and f2 are specified,
then

∂2φ(x0, y)
∂x∂y

=
df2

dy
,

∂2φ(x0, y)
∂y2

=
d2f1

dy2
,

(5.5)

so that the second x-derivative may be found from (5.4). The higher x-derivatives
may be found by differentiating the governing equation (5.1) with respect to x
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and differentiating the data f1 and f2 with respect to y. Thus we see that a
solution for φ(x, y) with data given along a line x = x0 will be analytic unless the
differential equation has the property that A1 = 0 along x = x0. If A1 = 0, then
we cannot evaluate the second x-derivative of φ from (5.4). For example, a solution
to φyy + 2φxy = f(x, y) will not be analytic about x = x0

Before we ponder the implications of non-analyticity, let us consider a more
general situation. Consider an arbitrary initial-data line whose slope is given by
dy/dx = λ(x, y). We can consider a solution to be the line in space given by
y = yλ(x). Suppose we are given the values of φ and the normal derivative ∂φ/∂n
on λ. It is then straight forward to develop relationships for the first derivatives
∂φ/∂x and ∂φ/∂y on λ. Equivalently, we can assume that the first derivatives are
prescribed directly as a function of x on λ as

∂φ[x, yλ(x)]
∂x

= f1(x) ,

∂φ[x, yλ(x)]
∂y

= f2(x) .

(5.6)

We can determine higher derivatives of φ by differentiating these expressions
with respect to x. For example, from the first of (5.6)

d

dx

∂φ[x, yλ(x)]
∂x

=
∂2φ[x, yλ(x)]

∂x2
+

∂2φ[x, yλ(x)]
∂x∂y

dyλ

dx
=

df1

dx
,

or, since dyλ/dx = λ,

∂2φ(x, yλ)
∂x2

+ λ
∂2φ(x, yλ)

∂x∂y
=

df1

dx
. (5.7)

Similarly, from the second of (5.6)

∂2φ(x, yλ)
∂x∂y

+ λ
∂2φ(x, yλ)

∂y2
=

df2

dx
. (5.8)

Thus we have two equations for the three unknown second derivatives ∂2φ/∂x2,
∂2φ/∂x∂y and ∂2φ/∂y2 at (x, yλ). The third equation can be the original partial
differential equation (4.1) evaluated at (x, yλ) such that

A1
∂2φ(x, yλ)

∂x2
+ A2

∂2φ(x, yλ)
∂x∂y

+ A3
∂2φ(x, yλ)

∂y2
= −A4 , (5.9)

where the coefficients Ai, i = 1, . . . , 4 are evaluated at the initial-data line (x, yλ).
Equations (5.7), (5.8) and (5.9) form a linear system for the second derivatives.
Thus we can see that we will not be able to determine these second derivatives
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under conditions when the determinant of the coefficients of the linear system is
zero. Thus the solution will be indeterminate when∣∣∣∣∣∣

1 λ 0
0 1 λ

A1 A2 A3

∣∣∣∣∣∣ = 0 . (5.10)

Expanding (5.10) gives the following quadratic equation for λ:
A1λ

2 − A2λ + A3 = 0 , (5.11)
which has two solutions, λ1 and λ2 given by

λ1,2 =
A2 ±

√
A2

2 − 4A1A3

2A1
, (5.12)

where λ1 corresponds to the plus sign and λ2 corresponds to the minus sign.
Thus, if we are given initial data along either line dy/dx = λ1 or dy/dx = λ2,

then we cannot determine the higher derivatives from the initial data and gov-
erning equation and we cannot solve the problem by analytic continuation. Under
these circumstances the lines are called characteristic lines of the partial differential
equation.

From the solution (5.12), the slopes of these lines depend on the specific partial
differential equation that we wish to solve. For example, if we were solving φxx −
φyy = 0, then A1 = 1, A2 = 0 and A3 = −1. The characteristic directions would
then be lines where dy/dx = ±1. On the other hand, if we were solving LaPlace’s
equation, φxx + φyy = 0, so that A1 = 1, A2 = 0 and A3 = 1. The characteristic
directions would then be complex, with dy/dx = ±i. So that for solving Laplace’s
equation, no (real) characteristic lines exist.

This property of whether or not characteristic lines exist is used as a basis to
classify quasi-linear, second-order partial differential equations in two independent
variables. The equation is said to be hyperbolic when A2

2 − 4A1A3 > 0 so that 2
(real) characteristics exist. On the other hand, the equation is said to be elliptic
when A2

2 − 4A1A3 < 0 so that no (real) characteristics exist. The case where
A2

2 − 4A1A3 = 0, leads to one (real) characteristic and the equation is said to be
parabolic.

Now let’s go back and examine the implications of having the initial data
specified on a characteristic line dy/dx = λ. We see that when λ is given by
(5.12), the solution to the linear system for the second derivatives, (5.7)–(5.9) will
be indeterminate and the determinant (5.10) will be zero. If we try solve for say
∂2φ/∂x2 by say Cramer’s rule, we obtain

∂2φ(x, yλ)
∂x2

=

∣∣∣∣∣∣
df1/dx λ 0
df2/dx 1 λ
−A4 A2 A3

∣∣∣∣∣∣∣∣∣∣∣∣
1 λ 0
0 1 λ

A1 A2 A3

∣∣∣∣∣∣
. (5.13)
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Since the denominator is zero, the solution will be infinite unless the numerator is
simultaneously zero. If we have a physical problem where we do not expect to find
infinite values of the flow derivatives, then we would expect that∣∣∣∣∣∣

df1/dx λ 0
df2/dx 1 λ
−A4 A2 A3

∣∣∣∣∣∣ = 0 , (5.14)

along a characteristic. Expanding the determinant leads to

(A3 − λA2)
df1

dx
− λA3

df2

dx
− λ2A4 = 0 ,

which, after rearranging and using (5.12) leads to

df1

dx
+ λ2,1

df2

dx
+

A4

A1
= 0 , (5.15)

where λ2,1 is given by (5.12) with the ± signs reversed. Thus, along an initial data
line which is a characteristic line, the initial data cannot be prescribed arbitrarily,
but must satisfy the relationship (5.15) if the solution and its derivatives are to
remain finite. (Note that we have determined this relationship from the requirement
that ∂2φ/∂x2 remain finite. Equivalent expressions would have been obtained by
requiring the other second derivatives to be finite.)

Since along the initial-data line ∂φ/∂x = f1(x) and ∂φ/∂y = f2(y) we can
write (5.15) as

d

dx

∂φ

∂x
+ λ2,1

d

dx

∂φ

∂y
+

A4

A1
= 0 , (5.16)

This expression, valid along a characteristic line is often called the characteristic
compatibility relation. We see that the governing partial differential equation re-
duces to an ordinary differential equation along a characteristic line. (Actually,
the number of independent variables reduces by one along a characteristic). In the
present situation, with two independent variables, the equation will reduce to an
ordinary differential equation along a characteristic. Under certain circumstances
the compatibility relation can be integrated to provide an algebraic equation valid
on characteristics. This will provide a general solution to the governing equations.
Of course this procedure, called the method of characteristics can only be used when
(real) characteristics exist, so that the governing equation must be hyperbolic or
parabolic. The method works best for second-order equations in two independent
variables (or equivalently a system of two first-order equations in two independent
variables). For higher-order systems with more than two-independent variables the
method becomes quite complicated and is rarely used. You may wish to consult a
book on partial differential equations such as Garabedian (1964) for example.
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5.2 Governing Equations for Steady, Isentropic Flow
Let us consider inviscid flows where the stagnation enthalpy is constant. From

the energy equation, as discussed in §2.8, the flow must be steady and adiabatic
with negligible body forces and uniform h0 upstream. Under this circumstance, the
Crocco relationship (2.40) states that an isentropic flow will be irrotational. Irro-
tationality provides a tremendous simplification to the governing equations, since
if ∇ × V = 0 then a velocity potential V = ∇φ will exist, since the identity
∇×∇φ = 0 must always be satisfied. Thus for irrotational flows, we can solve for
a single potential function instead of three velocity components.

If we restrict ourselves to flows where h0 is constant and entropy is constant,
then the governing equations will include the continuity equation:

V · ∇ρ + ρ∇ · V = 0 , (5.17)

the irrotationality condition:
∇× V = 0 , (5.18)

the energy equation for constant h0:

h0 = h +
V · V

2
, (5.19)

and an equation of state which may be written as

ρ = ρ(h, s) . (5.20)

This form of the equation of state will be valid for frozen or equilibrium flow. Note
that in the above system, the irrotationality condition replaces the momentum
equation. We also specify that the flow is isentropic, so that the entropy is known.

Since ρ = ρ(h, s) and s is constant, dρ = (∂ρ/∂h)sdh and from (1.55), a2 =
(∂p/∂ρ)s = ρ/(∂ρ/∂h)s, then ∇ρ = (ρ/a2)∇h. From (5.19) ∇h = −∇(V · V /2)
and substituting into (5.17) we obtain

a2∇ · V − V · ∇
(

V · V
2

)
= 0 , (5.21)

for a steady isentropic flow with uniform h0. In two-dimensional Cartesian coordi-
nates, the equation may be written as

(a2 − u2)
∂u

∂x
− uv

(
∂v

∂x
+

∂u

∂y

)
+ (a2 − v2)

∂v

∂y
= 0 . (5.22)

Since the flow is irrotational, V = ∇φ with u = ∂φ/∂x and v = ∂φ/∂y so that

(a2 − u2)
∂2φ

∂x2
− 2uv

∂2φ

∂x∂y
+ (a2 − v2)

∂2φ

∂y2
= 0 . (5.23)
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The system is closed with an equation of state of the form a = a(h, s) where
h = h0 − (u2 + v2)/2. For a perfect gas, h = a2/(γ − 1) so that from (5.19) after
evaluating h0 in the free stream, we obtain

a2

γ − 1
+

u2 + v2

2
=

a2
∞

γ − 1
+

U2
∞
2

. (5.24)

5.3 Characteristic Relations for Steady, Isentropic Flow
We now consider the development of the characteristic relations for a two-

dimensional inviscid flow with constant stagnation enthalpy and constant entropy.
We have seen that constant h0 requires the flow to be steady, and adiabatic with
negligible body forces and uniform h0 upstream. Constant entropy under these
conditions occurs when there are no shocks and the entropy is uniform upstream.
We have seen in §4.2 that the flow will be irrotational and that the governing
equation for the velocity potential is given by (4.23).

The governing equation for the velocity potential is in the form of a quasi-linear,
second-order partial differential equation in two independent variables, (4.1), with
the coefficients given as

A1 = a2 − u2 ,

A2 = −2uv ,

A3 = a2 − v2 ,

A4 = 0 .

(5.25)

The characteristic directions, given in general by (4.12), may be written for
this case as

λ1,2 =
−2uv ± 2a

√
u2 + v2 − a2

2(a2 − u2)
. (5.26)

Thus we see that two real characteristics will exist when u2+v2 > a2 or the equation
is hyperbolic when the flow is supersonic. When the flow is subsonic, the equation
is elliptic and real characteristic lines will not exist. Thus, in order to apply the
method of characteristics to this steady isentropic flow, the flow must be supersonic.

We can simplify the equation for the characteristic directions by introducing
streamline variables, the velocity magnitude V and local flow angle θ such that

V 2 = u2 + v2 ,

tan θ = v/u ,
(5.27)

which is equivalent to u = V cos θ and v = V sin θ. Then, introducing the Mach
number M = V/a, (5.26) becomes

λ1,2 =
−M2 sin θ cos θ ±

√
M2 − 1

1 − M2 cos2 θ
. (5.28)
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Next, introducing the definition of the Mach angle µ as

sinµ ≡ 1
M

, (5.29)

after some trigonometric manipulations, the characteristic directions are seen to be

λ1,2 = tan(θ ± µ) . (5.30)

The characteristic directions are the Mach lines measured with respect to the local
flow angle. This result is for a real gas as well as a perfect gas.

The characteristic compatibility relations are given in general by (4.16) in gen-
eral and for the present case, reduce to

du

dx
+ tan(θ ∓ µ)

dv

dx
= 0 , (5.31)

along the characteristics dy/dx = tan(θ ± µ). This relationship is simplified by
introducing (V, θ) from (5.27) and utilizing the Mach angle definition to obtain

1
V

dV

dθ
= ± tanµ , (5.32)

which with (5.29) reduces to the characteristic relationship

±dθ =
√

M2 − 1
dV

V
, (5.33)

on the characteristics dy/dx = tan(θ±µ). We will show in the next subsection that
for a perfect gas, (5.33) may be integrated and algebraic compatibility relationship
will follow. For a real gas we will indicate a numerical procedure to solve (5.33).

Supersonic flow of a perfect gas

For a perfect gas we can express dV/V in terms of dM/M so that (5.33) may be
integrated. From the definition of Mach number, dM/M = dV/V − da/a. From
the relationship for h0 of a perfect gas given in (4.24) we have da/a = −(γ −
1)(M2/2)dV/V so that

dV

V
=

1
1 + γ−1

2 M2

dM

M
. (5.34)

Substituting (5.34) into (5.33) gives the characteristic relationship

±dθ =
√

M2 − 1
1 + γ−1

2 M2

dM

M
. (5.35)
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The right-hand side is seen to be dν where ν is the Prandtl-Meyer function defined
by

ν ≡
√

γ + 1
γ − 1

tan−1

√
γ − 1
γ + 1

(M2 − 1) − tan−1
√

M2 − 1 . (5.36)

Thus the characteristic compatibility relationship becomes

θ ∓ ν = constant , (5.37)

along dy/dx = tan(θ ± µ). The two relationships given in (5.37) may be used to
determine a characteristic net to find θ and ν everywhere in the flow field. From ν
as defined by (5.36) it is possible to determine the Mach number M . Then knowing
M we can determine p and T from (2.35) and (2.30) since p0 and T0 will be constant
for this flow.

As a simple illustration, consider a wall where the flow inclination angle abruptly
changes from θ1 = 0 to θ2 = −∆θ as shown in the sketch below in Fig. 1. A cen-
tered expansion will occur. The solution for the flow in region 2 is determined from
a characteristic relation written along dy/dx = tan(θ − µ) where θ1 + ν1 = θ2 + ν2

so that with θ2 given as −∆θ we have ν2 = ν1 + ∆θ. Then M2 can be found along
with p2 and T2.

Figure 1. Centered expansion.

Supersonic flow of a real gas
For a real gas the characteristic relationships given in (4.33) must be integrated
numerically. In addition to the characteristic relationships, we will have that the
stagnation enthalpy h0 = h + V 2/2 and the entropy s will be constant and for
equilibrium chemistry, equations of state of the form a = a(h, s), p = p(h, s),
ρ = ρ(h, s), T = T (h, s) will be available.

As an example of a procedure which may be used, consider the Prandtl-Meyer
expansion sketched in Fig. 1. Across the expansion fan, along a characteristic
dy/dx = tan(θ − µ), the following relationship must be satisfied:

dθ =
√

M2 − 1
dV

V
, (5.38)
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An iterative procedure to satisfy this relationship now follows:
Step 1. Starting with V1, p1 and ρ1, calculate h1 = h(p1, ρ1) and s1 = s(p1, ρ1)

from a curve fit or equilibrium composition.
Step 2. Guess a value of V2.
Step 3. Then h2 = h1 + (V 2

1 − V 2
2 )/2 and s2 = s1.

Step 4. Numerically integrate (5.38) using for example a trapezoidal rule so that

θ2 − θ1 =
1
2

[
I(V1) + 2

N∑
i=1

I(Vi) + I(V2)

]
,

where
∆V =

V2 − V1

N + 1
,

Vi = V1 + i∆V ,

hi = h1 +
V 2

1

2
− V 2

i

2
,

si = s1 ,

ai = a(hi, si) ,

I(Vi) =
1
Vi

√
V 2

i

a2
i

− 1 .

Step 5. Does θ2 − θ1 equal the prescribed ∆θ? If not, use a root-finding procedure
such as a bracketing method or a secant method to modify the value of V2

and continue from Step 3.


