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Introduction
Weibel-type instabilities (WI), which grow in plasmas with anisotropic
velocity distribution, have been studied for many years and drawn recent
interest due to their broad applicability spanning from laboratory laser
plasmas to origins of intergalactic magnetic fields in astrophysical plas-
mas. Magnetic particle trapping has been considered the main mechanism
of the nonlinear saturation of these instabilities.
Novel continuum kinetic simulations provide consistent results indicating
magnetic trapping. However, these simulations additionally show the
significant role of electrostatic trapping in cold counter-streaming beams.
This electrostatic trapping works together with magnetic trapping and
alters the saturation. The role of the electrostatic field is negligible when
the populations are at higher temperatures.
Results presented in this work have been submitted for review [Cagas
et al., 2017].

Numerical Model
This work uses the discontinuous Galerkin (DG) [Cockburn and Shu, 2001]
discretization of the full non-relativistic Vlasov-Maxwell system imple-
mented in the Gkeyll framework [Juno et al., 2017]. This approach
involves directly discretizing the Vlasov equation for each species s

∂fs
∂t + v · ∂fs

∂x + qs
ms

(E + v× B) ∂fs
∂v = 0, (1)

where f is the particle distribution defined in phase-space. The species
are then coupled together using the full Maxwell equations.
• Unlike the fluid methods, which are derived by taking the moments
of Eq. (1), the continuum kinetic method does not make any
assumptions about the shape of the particle distribution function.

• Since the full continuous distribution function is discretized, the
results are not affected by statistical noise.

• Phase-space has high dimensionality (up to 6D) and needs to be
discretized directly.

Growth Mechanism & Linear Theory

The WI growth mechanism can be explained on a case with two counter-
streaming electron populations. Without any perturbation the system is
in unstable equilibrium. However, any perturbation causes net currents
to appear which in turn increase magnetic field perpendicular to the flow.
The magnetic field then increases the filamentation. This positive feed-
back loop is causes the exponential growth of the magnetic field.
In a special case when the flows are in the y -direction and magnetic
perturbation is purely in the z-direction as a function of x , only Bz de-
velops and the full process can be described with just three phase space
coordinates – x , vx , and vy .
In order to obtain the kinetic dispersion relation, the Vlasov equation
(Eq. 1) is linearized and combined with the linearized Ampere’s law. This
then leads to the following kinetic dispersion relation,
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where ω0 is the plasma oscillation frequency, c is the speed of light, k
is the instability wave-number, ud is the drift speed of each population
(assuming symmetric drift velocities ud with respect to zero), and vth is
thermal speed. ζ = ω/(

√
2vthk), where ω = ωr + iγ. Z (ζ) is the plasma

dispersion function defined as
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Numerical Simulations
Two sets of simulations were performed; both use the same drift velocity
and initial perturbation, but differ in the temperature.

ud/c vth/c k0λD
High-temperature beams ±0.3 0.3 0.04
Low-temperature beams ±0.3 0.031 0.04

With ud = vth, the two electron populations overlap and form one popu-
lation with anisotropic temperature.

Figure 1: Evolution of the magnetic and electric field energies and magnetic field
profiles for the high-temperature case.

The bounce period from the simulation
ωsim
ωpe
≈ 2π

82 = 0.076,

corresponds very well to the theoretical magnetic bounce period [Davidson
et al., 1972]
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The low-temperature case with two distinct electron beams, however,
behaves differently. There is another frequency superimposed over the
magnetic bounce frequency and the electric field grows considerably.

Figure 2: Evolution of the magnetic and electric field energies and magnetic field
profiles for the low-temperature case.

Low-temperature Case

The transverse flows introduced by the magnetic field coupled with the
nonuniform densities of the populations (n+(x) 6= n−(x)) are the main
source of the electric field. Since By = Bx = 0 and ∂Bz/∂y = 0,
Ampere’s law in the x -direction reduces to
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where ± refers to the two counter-streaming electron populations.
The following figure shows the field variables and plasma variables for one
population. In the region of magnetic field extremes (boundary between
the populations forms here), the electric field increases to level that is
comparable with the magnetic field. This electric field then quickly stops
the filamentation flow in vx .

Figure 3: Evolution of field and plasma parameters in the low-temperature case.

The following figure shows the forces acting on the particle distributions
and corresponding potential (defined as F = −∇φ). It is clear that for
the low-temperature case, the electric field significantly alters the growth
and saturation of the WI.

Figure 4: Evolution of the forces and corresponding potentials in the low-temperature
case.

Phase-space Evolution

Following are plots of the particle distribution function at different times
of the simulation. Since the distribution function is three dimensional
(x , vx , and vy), the distribution function is integrated over one of the
components in order to visualize it. Note the increase in the temperature
(width of the distribution function).

Figure 5: Phase-space plots of the particle distribution function for the
low-temperature case. Plotted are initial conditions (top), state during the saturation
(middle) and at the end of the simulation (bottom).

Summary

• The high-order continuum kinetic methods allow for noise-free
interpretation of detailed plasma dynamics in the kinetic regime.

• Detailed description of plasma dynamics is presented leading to the
nonlinear saturation of the WI with distribution functions described
well into the nonlinear phase of the instability.

• Magnetic fields play a significant role in particle trapping; this
agrees with previous work. The simulation results using vth = ud
confirm magnetic trapping as the sole mechanism of the instability
saturation.

• However, for vth < ud , the role of electrostatic potential is also
important. In the case of cold counter-streaming plasma beams, the
electric field creates potential wells comparable to the magnetic field
potential which significantly modifies the overall particle trapping.
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