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Introduction
A continuum kinetic plasma model is used to study magnetized plasma
sheaths by directly evolving the ion and electron distribution functions
along with Maxwell’s equations. Appropriate boundary conditions need
to be included to account for secondary electron emissions at the walls.
Secondary electron emission (SEE) from a solid surface can drastically
influence the plasma behavior – some recent works suggest that SEE
can even reverse the gradient of the electrostatic potential in the plasma
sheath. Therefore, a self-consistent SEE model based on real material
parameters needs to be included in numerical models. Currently, SEE
is commonly implemented using Monte-Carlo algorithms. However, this
work presents a novel approach where the full velocity distribution func-
tion of SEE is directly constructed using the incident electron population
and phenomenological material fits. This distribution function then can
be used as the boundary condition in the continuum kinetic simulation.
Parts of this work have been published [Cagas et al., 2017].

Numerical Model
This work uses the discontinuous Galerkin (DG) [Cockburn and Shu, 2001]
discretization of the full non-relativistic Vlasov-Maxwell system imple-
mented in the Gkeyll framework [Juno et al., 2017]. This approach
involves directly discretizing the Boltzmann equation for each species s

∂fs
∂t + v · ∂fs

∂x + qs
ms

(E + v× B) ∂fs
∂v = Cs, (1)

where f is the particle distribution defined in phase-space. The species
are then coupled together using the full Maxwell equations.
• Unlike the fluid methods, which are derived by taking the moments
of Eq. (1), the continuum kinetic method does not make any
assumptions about the shape of the particle distribution function.

• Since the full continuous distribution function is discretized, the
results are not affected by statistical noise.

• Phase-space has high dimensionality (up to 6D) and needs to be
discretized directly.

Plasma Sheaths
In the simplest hydrogen plasma, ion (protons) are 1836× heavier in com-
parison to electrons. This results in higher electron mobility and higher
thermal flux even if the species have the same temperature. Therefore,
when plasma comes into contact with a solid surface acting as a sink, elec-
trons quickly leave the domain and the quasineutrality no longer holds.
This non-quasineutral region near the wall is called sheath. Inside sheath,
electric field self-consistently arises and equalizes the fluxes – accelerates
ions and retards electrons. Even though it usually spans only couple Debye
lengths, it can have global effects on plasma.

Figure 1: Electron (top) and ion (bottom) distribution function from plasma sheath
simulations with one configuration space dimensions.

Numerical Simulations
To compensate for particles leaving the simulation domain, ionization
and elastic collisions are added to the right-hand-side of the Boltzmann
equation (Eq. 1).
Inelastic collisions (particle impact ionization) act as a source

C ionization
s = fn(v)

∫
V
σ(|v− v′|)|v− v′|fe(v′)dv′ (2)

BGK operator is implemented in order to account for elastic collisions

CBGK
s = νss (fM ,s − fs) , νss = e4

2πε20m2
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Figure 2: Plasma profiles in the region near the wall.

The difference between 1X2V continuum kinetic simulations and 5-
moment two-fluid simulations lies in the heat flux tensor

Qijk = m
∫

vivjvkf d3v. (4)

Its contraction leads to
1
2Qiix = qx + uxΠxx︸ ︷︷ ︸

non−ideal
+ 5
2pux + 1

2mnu3x︸ ︷︷ ︸
ideal

, (5)

where Πxx is the parallel component of the stress tensor, p is pressure,
and

qx = 1
2m
∫ ∞
−∞

∫ ∞
0

(
w 2
x + v 2

⊥
)
wx f (vx , v⊥)2πv⊥dv⊥dvx (6)

is the heat flux vector in the plasma frame, and wx = vx − ux
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Figure 3: Components of the heat flux tensor. Results of the two-fluid plasma model
(tf) are also plotted in addition to the continuum kinetic results (ck).

Secondary Electron Emission

We use the probabilistic model derived by Furman and Pivi [2002]. The
model describes the three types of the secondary electrons
Backscattered Electrons which are elastically reflected from the wall.

They are fitted with narrow Gaussian.
Rediffused Electrons which penetrate the material, scatter on atoms

inside and then leave the material again. They are fitted with a
polynomial.

True-secondary Electrons originally from the material which are excited
by incoming flux and emitted out. In the model, they are
described with a product of polynomial and exponential function.
Unlike with the previous two types, single incoming electron can
cause an emission of many true-secondary electrons.

All together give
dδ(E , θ)

dE = f1,e(E , θ) + f1,r(E , θ) +
∞∑
n=1

fn,ts(E , θ), (7)
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Figure 4: Energetic distribution of SEE based on the phenomenological model by
Furman and Pivi [2002]. Calculated for 300 eV electron beam with normal incidence.

In the original work, the function dδ/dE is used to initialize Monte-Carlo
SEE from a single particle. For continuum kinetic method, it can be used
as a part of a reflection function to initialize the full distribution function
of the emitted particles.

fSEE(vx ,o, vy ,o) =
∫ ∞
−∞

∫ ∞
0

(
dδ
dE (vx ,i , vy ,i , vx ,o, vy ,o)cos [θ(vx ,o, vy ,o)] (8)

fwall(vx ,i , vy ,i)cos [θ(vx ,i , vy ,i)]me) dvx ,idvy ,i
=
∫ ∞
−∞

∫ ∞
0

(F (vx ,i , vy ,i , vx ,o, vy ,o)fwall(vx ,i , vy ,i)me) dvx ,idvy ,i
(9)

In the continuum kinetic method, the full distribution function at the wall
is known at all times. The reflection function can be then used to directly
obtain the boundary conditions at the wall.

Figure 5: Three populations of SEE calculated from the known distribution function at
the wall.

Direct SEE Boundary Condition

For continuum kinetic DG model, SEE needs to be implemented as non-
linear boundary condition.

In order to treat SEE properly, integral over the whole velocity space needs
to be performed for each cell at wall. This can became computationally
expensive. SEE can, however, significantly alter the sheath behavior and
is vital for many applications.

Summary

• The kinetic and two-fluid results of sheath are in good agreement
for momentum and density of both species over the sheath region,
however, the heat flux vector, which is not captured in the
five-moment two-fluid model is significant for temperatures in the
sheath region.

• Since the distribution of SEE is a function of incoming energy and
angle, precise temperature (both parallel and perpendicular) in the
sheath region is required.

• Phenomenological model of SEE by Furman and Pivi [2002] can be
used as a “reflection function” to directly obtain the continuum
kinetic boundary condition at the wall.
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