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Abstract
The discontinuous Galerkin (DG) method is employed in this
work to study plasma instabilities using high-order accuracy.
DG method has the advantage of resolving shocks and sharp
gradients that occur in neutral fluids and plasmas. An un-
structured DG code has been developed in this work to study
plasma instabilities in general geometries using the two-fluid
plasma model. Unstructured meshes are known to produce
small and randomized grid errors compared to traditional struc-
tured meshes. Benchmark tests for Euler and MHD system are
performed. MHD and preliminary two-fluid plasma model re-
sults are provided for simulation of Kelvin-Helmholtz instabili-
ties.

Discontinuous Galerkin Method
DG method combines features of the finite element and finite
volume methods and it is only piecewise continuous (Cockburn
and Shu [1988]). When using the DG method, we project the
solution onto a set of orthogonal bases. The polynomial bases
can be either modal bases or nodal bases as shown in equation
1 and 2.
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Then we multiply both sides of the equations with the orthog-
onal test functions and integrate them over one cell. For 2-D
hyperbolic equations in balance-law form we have:
Conservation Law:

∂q
∂t + ∂F

∂x + ∂G
∂y = 0 (3)

Here we choose Lagrange polynomial as the test function. Then
the problem becomes cell-wise. Excluding the source term on
the right hand side, we solve the following equation for each
cell, and update the solution using Runge-Kutta methods.
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For more details about RKDG methods see Cockburn and Shu
[1989] and Hesthaven and Warburton [2007].

Unstructured DG code
An unstructured DG code is developed to perform the simula-
tions for arbitrary geometries. This code uses nodal DG with
Lax-Friedrichs numerical flux. High order numerical method
often results in numerical oscillations for solutions with sharp
gradients. These oscillations can violate positivity of density
and pressure for problems with low densities or low pressure.
Thus, a slope limiter developed by Moe et al. [2015] is applied
to reduce the numerical oscillations on the shock locations and
a positivity-preserving limiter from Zhang et al. [2012] is ex-
tended to maintain positive density and pressure for the MHD
and two-fluid equations.

Benchmark cases for Euler and MHD systems

Figure 1: Top: demonstration of the unstructured mesh used. Bottom: density profile of forward facing
step case at time t = 4.0 using Euler’s equation. Mesh resolution: 67,000 trangular elements.

Figure 2: Top: demonstration of the unstructured
mesh used. Bottom: density (ion) profile of
Orszag-Tang vortex at time t = 0.5 using
ideal-MHD model. Mesh resolution: 27,000
trangular elements.

Forward facing step initial and inflow boundary condition
(

(ρ, u, v , p) = (1.0, 3.0, 0.0, γ−1)
)
(Mach 3 inflow) is used to benchmark

the Euler solver. Figure 1 shows the late-time density profile. For the MHD case, the Orszag-Tang vortex is a well-known, well-
benchmarked problem in plasma turbulence. This case tests the robustness of the unstructured DG algorithm for the MHD equations
when there are significant interactions between shocks. Figure 2 shows the late-time density evolution of the vortex. For both cases,
second-order polynomial Runge-Kutta Discontinuous Galerkin method is used.

Kelvin-Helmholtz instability

The Kelvin-Helmholtz instability (KHI) occurs in a range of plasmas from fusion to space. Bench-
mark simulations are performed using the unstructured discontinuous Galerkin method applied to
the MHD and two-fluid plasma models with a code presently under development. Initial conditions
include regions of different velocity, the inner fluid has a density of ρ = 2 and the outer fluid
has a density of ρ = 1. A uniform magnetic field is initialized in the x -direction. A single mode
perturbation is applied initially on the velocity in the y direction. Boundary condition is periodic
everywhere in the domain. Figure 4 presents late-time density evolution of a single-mode KHI for
the MHD and the two-fluid models. Also included is a plot of the out-of-plane Bz magnetic field
which is zero for the MHD model but non-zero for the two-fluid model due to currents that develop.
The ion-to-electron mass ratio is chosen to be 100 in the two-fluid plasma simulations. Figure 3: Grid selected for KHI

simulations

Figure 4: Density (ion) profile of Kelvin-Helmoholtz instability at time t = 2.5 using ideal-MHD model (left) and two fluid plasma mode (middle). The
out-of-plane magnetic field (BZ) from the two-fluid model is also shown (right). A mesh with 133,000 triangular elements is used in these simulation with a
second-order polynomial basis for the Runge-Kutta Discontinuous Galerkin method. Vectors of the current are superimposed on Bz .

MHD model
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Two-fluid plasma model
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We solve Euler’s equation for each species and then solve
Maxwell equations.

Summary

An unstructured high-order discontinuous Galerkin code is de-
veloped and benchmarked for cases using Euler and MHD equa-
tion systems. Computations with plasma Kelvin-Helmholtz
instabilities are presented using MHD and two-fluid plasma
model. Further tests and benchmarks for the two-fluid plasma
solver are underway.
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