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Abstract

This work aims to study ionospheric instabilities that may develop significant growth
under the conditions of the August 21, 2017 solar eclipse. Evaluating the time-
scales of several plasma instabilities, it is hypothesized that the gradient-drift (GDI)
instability is likely to develop significant growth during the timespan of a solar eclipse
given the relevant gradients that may arise. The two-fluid plasma equations are
solved using a finite volume method in the code Gkeyll to understand the growth
of the GDI with and without a temperature gradient. The August 21, 2017 solar
eclipse conditions are initialized using the International Reference Ionosphere (IRI)
and MSIS models. Numerical growth rates are derived for this set of equations for
each of these instabilities and are compared to two-fluid plasma simulations as well
as to previously published theoretical growth rates. Two-fluid plasma simulations of
the GDI show the growth of a secondary instability from the initial perturbation as
noted in the ion density but not in the electron density.

Gradient-Drift Instability (GDI)

The gradient-drift instability (GDI) has the possibility of occurring in the presence
of a magnetic field, electric field, and a density gradient [5]. The electric field, in
these simulations, is assumed to be co-rotational and is replaced by a neutral wind.
The difference in collisions with neutral particles between electrons and ions creates
a local charge separation that induces electric field perturbations. These smaller
electric fields along with the ambient magnetic field cause opposing E × B drifts
along the perturbation with no damping mechanism. Figure 1 shows the orientation
for maximum growth of the GDI. There is also a temperature gradient in the same
direction as the density gradient that can have an effect on this instability in the
solar eclipse.
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Figure 1: Geometry for maximum GDI growth. The simulation geometry is the same except that a
single mode perturbation is initialized.

Orientation of GDI with respect to eclipse

Although the focus is on mid-latitudes, the magnetic field is assumed to be primar-
ily in the up/down direction with a generally northward co-rotating electric field.
According to the geometry in Figure 1, the density gradient needs to be generally
eastward which would occur on the trailing edge of the umbra.

Figure 2: August 21, 2017 solar eclipse map across USA with superimposed conditions for the GDI
modified from a visualization by Ernie Wright in conjunction with NASA. URL:
https://svs.gsfc.nasa.gov/4518

Two-fluid plasma equations

The two-fluid plasma equations are a combination of two sets of Euler equations, one
for electrons and one for ions, and Maxwell’s equations with corrections for divergence
errors [6]. Ion-neutral and electron-neutral collisions with collision frequency νsn are
included as source terms in the momentum and energy equations. For the following
equations, s denotes the species (ion or electron). These equations include energy
and electron inertia effects which have been neglected in previous works.

∂ρs
∂t +∇ · (ρsus) = 0 (1)

∂(ρsus)
∂t +∇ · (ρsusus) +∇ps = ρsqs

ms
(E + us × B)− νsnρs(us − un) (2)

∂εs
∂t +∇ · ((εs + ps)us) = ρsqs

ms
us · E− ∑

s
1
2νsnρs(us − un) · (us − un) (3)

Where ps is the pressure found from the ideal gas law and εs is:

εs ≡
ps

γ − 1 + 1
2ρsus · us (4)

These equations are solved using the finite volume code Gkeyll [1, 2].

Initial conditions, further assumptions, and growth rates

The simulations uses values obtained from the IRI, MSIS, and IGRF models over
Sisters, OR at an altitude of 300 km. A weighted average is performed to get an
effective ion mass and ion-neutral and electron-neutral collision frequencies. The
electric field is assumed to be co-rotational with the magnetic field. The neutral
velocity is chosen such that un×B = E0, which in this case points in the positive y
direction. The number density is initialized using a hyperbolic tangent with a gradient
scale length,L, of 50 m and a change in density of 50%. The plasma is initially quasi-
neutral with a single mode perturbation of 2% in both species’ densities. Two cases
are run: one with the temperature constant throughout the domain and another with
the temperature using the same hyperbolic tangent function applied to the density.
In both situations, the electron and ion temperatures are not equal. The electron
temperature is one order of magnitude larger than the ion temperature.

The following equation is the analytical growth rate for the GDI for a simplified set
of equations [4]. More complex analytical formulae exist for the GDI growth but
with this geometry and these parameters, it is approximately the Ossakow limit [3].

γ = E0
BL (5)

Results and Discussion

Figure 3: GDI simulation with constant temperature with the electron number density on the left,
ion number density in the middle, and x direction electric field on the right at t = 1.094 s. The
pockets of the predicted oppositely oriented electric fields are seen. Turbulence devlops in the upper
part of the domain similar to the development of a Kelvin-Helmholtz instability. A secondary
instability forms in the lower part of the domain appearing only in the ion number density and
electric field but not in the electron number density.

Figure 4: Growth of GDI with constant
temperature showing electric field energy as a
function of time compared to analytical values.
A curve fit for the exponential is applied to the
numerical data and compared to the simplified
analytical growth rate. Although this is not a
perfect comparison because more less
assumptions are made in this simulation, it
provides a good baseline.

Figure 5: FFT plot showing the log of electric
field energy as a function of wave number and
time. Initially, only the single mode perturbation
is applied. There is a sharp increase in higher
modes at around 0.8 s.

Figure 6: GDI simulation with a temperature gradient with the electron number density on the left,
ion number density in the middle, and x direction electric field on the right at t = 1.094 s. Similar
fluid structures to those found in Figure 3 are found in this simulation with turbulence in the upper
domain and a secondary instability in the lower domain. The secondary instabilities also seem to
appear on top of the turbulence in the upper region. These secondary instabilities still do not appear
in the electron number density.

Figure 7: Growth of GDI with constant
temperature showing electric field energy as a
function of time compared to analytical values.
A curve fit for the exponential is applied to the
numerical data and compared to the simplified
analytical growth rate. The addition of the
temperature gradient causes the numerical
growth rate to be closer to the analytical growth
rate.

Figure 8: FFT plot showing the log of electric
field energy as a function of wave number and
time. Initially, only the single mode perturbation
is applied. There is a sharp increase in higher
modes at around 0.4 s. There is also a different
shape to the interface between the lower and
higher modes in time in this plot. The
temperature gradient causes higher modes to
grow much earlier in time.

Table of Initial Conditions
Variable Value

mi 2.67×10−26 kg
B0z 4.48×10−5 T
Te0 2000 K
Ti0 880 K
n0 3.25×1011 1/m3

νen 1.07 Hz
νin 0.542 Hz
uny 395 m/s

Future Work

Future work will look further into the secondary instabilities present in the GDI. The
simulations will be scaled up to look at more realistic solar eclipse length scales and
gradient differences. Issues arise due to varying spatial scales from larger eclipse
scales compared to the smaller instabilities shown here. The analytical growth rates
for both cases will be derived for the full two-fluid plasma equations and compared
to previous work. The importance of electron-ion collisions will also be studied.

Summary

The focus of this study is on basic instability physics and how they apply to the
August 21, 2017 solar eclipse. The gradient-drift instability has the potential to
occur during a solar eclipse in the trailing edge of the umbra. The IRI, MSIS,
and IGRF models are used to seed the initial conditions. Cases with both constant
temperature and a temperature gradient are simulated to understand their effects
on the instability growth. The temperature gradient case is closer to the expected
ionospheric conditions during a solar eclipse. Other instabilities and turbulent fluid
structures are discovered which are motivations for future work. The growth is
comparable to previous work. The case with the temperature gradient displays
faster growth and has higher modes develop earlier which shows that a temperature
gradient in the same direction as the density gradient is benefical to GDI growth.
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