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Miranda, L.R., “Application of computational aerodynamics to 

airplane design,” AIAA 82-0018, Jan 1982 

(later published in AIAA Journal of Aircraft, 21(6), 1984)

Effectiveness Codified: 1980-81

“Effectiveness of computational aerodynamics in a design environment will 

depend on the nature of the elements that constitute the computer codes used in 

a numerical flow simulation.”

Source: Ref. 5.2.1

“If increasing the accuracy of a computational procedure will detract from its 

ease and economy of use, the implied tradeoff between quality and acceptance 

should be considered carefully to determine if its effectiveness will actually be 

enhanced by the increase in accuracy.”

Effectiveness = quality x acceptance

Manager

Computational Aerodynamics

Lockheed-California Co.

Luis R. Miranda

“Although this expression [of effectiveness] has no actual

quantitative value it serves to emphasize an often overlooked

axiom: The impact that a given process has on the activity for

which it is intended depends not only on how good the process

itself is but also on how widely used or accepted it is.”

• Quality factor: accuracy and realism of numerical flow simulation

• Acceptance factor: applicability, usability, and affordability of 

selected computational method
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Key Driver: Effectiveness (= quality x acceptance)

Lockheed ACA Capability Development 
Late 1970s and Early 1980s 

• FLO 22.5: More Effective Nonlinear Full Potential Method (Raj & Reaser)

o More Accurate Geometry Modeling: Planform-conforming grid for tapered wings 

o Faster Turnaround: Multi-grid acceleration 

o Simulation Realism: Fuselage effects; Viscous effects (interactive boundary layer coupling)

o Supercritical Wing Design: Garabedian-McFadden wing design technique

o Documentation: LR 29759; AIAA 83-0262; also Journal of Aircraft, 21(2), 1984 

Source: Refs. 5.1.22, 5.1.40 to 5.1.42

• QUADPAN (Quadrilateral Panel) 

Linear Potential Method (Youngren, 

Coopersmith, Bouchard and Miranda)

o Low-order Formulation: As accurate as 

high-order for subsonic flows at greatly 

reduced cost

o Source/doublet Singularities with 

Dirichlet BC: Essential for robustness

o Pressure Formula Consistent with 

Linear Theory: Accurate force calculations

“The Quad Squad”

1. Guppy Youngren 2. Bob Coopersmith

3. Gene Bouchard         4. Luis Miranda 

o Modified Kutta Condition: For trailing edges with large included angles

1

2

34
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1981: A Pivotal Year for Lockheed 

• December 7, 1981

o Lockheed discontinues L-1011 (after $2.5B loss in 13 years!) 

 Concentrate instead on defense opportunities expected under 

Reagan military buildup

• November 1981

o Department of Defense approves Milestone 0 for Advanced Tactical Fighter 

(ATF)—a new air superiority fighter (to replace F-15)

ATF Provides Impetus for Exploring Euler Methods

Computational simulation of flows with strong shocks and free vortices

falls outside the range of validity of linear and nonlinear potential methods

o Fighter aerodynamics dominated by strong shocks and free-vortex flows

Image Source: Internet
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Level III

Euler Methods

1980s - present

Flow Model

• Inviscid, Irrotational, Isentropic

 System of nonlinear 1st order PDEs with appropriate boundary conditions 

Applicability

• All Mach numbers and attitude angles

• Flow may have shocks and free vortices as long as it’s not dominated by 

boundary-layer separation
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Euler Solver: 

One of the Four Major Developments of the Eighties

1980s: ‘Golden Era’ of Euler Methods

Image Source: Internet

Professor Emeritus 

University of Michigan

Major contributions to CFD, Fluid 

Dynamics and Numerical Analysis  

VIDEO CASSETTE RECORDER

COMPACT DISK PLAYER

EULER SOLVER

гла́сность

Bram van Leer

Source: Bram van Leer presentation at one of the AIAA 

Aerospace Sciences Meeting in Reno, NV, in the late 1980s 
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• Jameson, Schmidt, and Turkel (1981): Efficient Euler Solver 
o Strategy: Finite-volume formulation decouples solver and grid; structured C and O meshes

o Features: Cell-centered spatial discretization; a blend of second- and fourth-differences for 

numerical dissipation with pressure gradient sensor; convergence acceleration to steady 

state using multi-stage pseudo-time stepping procedure—AIAA Paper 81-1259

A Small Sample of Euler Solvers: 1980s 

• Rizzi and Eriksson (1981): Pioneering Solutions for External Flows
o Grid generation: Transfinite interpolation for 3-D boundary–conforming structured grids on 

wings or wing-bodies; O-O and C-O topologies most efficient

o Euler solver: Finite-volume formulation; explicit pseudo time-marching scheme; nonreflecting 

boundary conditions; damping filter to improve convergence—AIAA Paper 81-0999

o Shocks and wakes automatically “captured”; no explicit imposition of Kutta condition as long 

as the trailing edge was sharp

• Jameson, Baker and Weatherill (1986): Transonic Flow Over B747-200  
o Inviscid Transonic Flow over a Complete Aircraft [tetrahedral grids]—AIAA Paper 86-0103

• Benek, Buning and Steger (1985): Solutions on Complex Configurations
o A 3-D Chimera grid embedding scheme [hexahedral grids]—AIAA Paper 85-1523

• Mavriplis (1988): Accurate & Efficient Flow Simulations
o Accurate multigrid solutions on unstructured and adaptive meshes—NASA CR 181679

• Löhner, Morgan, Peraire and Zienkiewicz (1985): Unstructured Grids 
o Finite-element methods for high speed flows [tetrahedral grids]—AIAA Paper 85-1531

Source: Refs. 5.2.2 – 5.2.9

• Usab and Murman (1983): Framework for Complex Geometries
o Embedded mesh solutions on airfoils using a multiple-grid method—AIAA Paper 83-1946
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1984
• Lockheed wins USAF Wright Research & Development Center (WRDC) solicitation for

Three-dimensional Euler Aerodynamic Method (TEAM)

• Antony Jameson visits Lockheed! A fascinating individual with singular intellect!  

1987
• USAF amends contract scope and extends period of performance

Three-dimensional Euler/Navier-Stokes Aerodynamic Method (TEAM) 

1982 

• Lockheed initiates FLO 57GWB development (PI: Raj) by extending 

FLO-57 swept wing code to generalized wing-body configurations 

[FLO 57 source code courtesy of R.M. Hicks, NASA-Ames]

• Alan Brown, F-117A Program Manager and Chief Engineer, 

recommends research in free-vortex interaction with vertical tails! 

Lockheed Focus in the 1980s: 
Develop Full Aircraft Euler Analysis to Meet ATF Needs

1989
• USAF contract successfully completed; work documented in three USAF reports

Source: Refs. 5.2.10 – 5.2.15

1981 

• Jameson creates FLO 57 code for swept wings (using JST scheme in AIAA 81-1259) 

• Finite volume formulation decouples solver and grid

• Shocks and wakes “automatically captured” without explicit imposition of 

Kutta condition as long as the trailing edge is sharp
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Contract Requirements 

• Geometries: Aerodynamic analysis of 

fighter, transport, and flight research 

configurations with multiple lifting surfaces 

and flow-through or powered nacelles 

• Flow Conditions: Symmetric or asymmetric 

flights at subsonic through hypersonic 

speeds for wide range of attitude angles

• Output: Forces, moments, surface and off-

body pressures, velocities, etc.

• Validation: Demonstration of predictive 

capability using 10 test cases

USAF/Lockheed TEAM Code
Full Aircraft Computational Aerodynamic Simulation Capability (1984-1989) 

Lockheed Team 
• Raj (Principal Investigator) with Brennan, 

Keen, Long, Mani, Olling, Sikora, and 

Singer contributing over five years under 

Miranda’s leadership and supervision

USAF WRDC* Monitors
• Jobe, Sirbaugh, Jochum, Witzeman, 

Sedlock, Kinsey

Strategy for Effectiveness

• Modular Computational System: (i) Pre-

processor; (ii) Grid Generator; (iii) Euler Solver; 

and (iv) Post-processor—easier to incorporate 

technology advances

• Patched Zonal Hexahedral Grids: multiple 

topologies, grid generator of user’s choice—

facilitates analysis of complex configurations

• Spatial Discretization: FLO-57 finite-volume 

formulation, cell-centered scheme with
o JST adaptive dissipation—balanced accuracy and 

robustness

o Characteristics-based—increased robustness for 

hypersonic flows

• Time Discretization: multistage pseudo-time 

stepping to steady state—faster turnaround

Source: Refs. 5.2.13 – 5.2.15

USAF WRDC & Lockheed Lead the Way 
*Wright Research & Development Center, U.S. Air Force
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TEAM (Euler) Validation

1985-1988

• NLR 7301 airfoil – Transonic Flow (2D) 

• Wing/Body/Canard configuration – Subsonic & Transonic Flows (3D)

• Subsonic (M = 0.6) and Transonic (M = 0.9)

• Three Internal Flow Test Cases – Subsonic & Supersonic Flow

o Axisymmetric Diverging Nozzle

o 1-D Inlet Duct Hammershock

o External Compression Mach 2.5 Axisymmetric Inlet

• Cone-derived Waverider – Hypersonic Flow

• Four Free-Vortex Flow Test Cases – Subsonic and Transonic Flow

o Sharp-edged Cropped Delta Wing

o Arrow Wing

o Strake-Wing Body configuration

o Double-Delta Wing Body configuration

Improved Understanding of Predictive Capabilities and 

Shortcomings
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NLR 7301 Airfoil – Transonic Flow (2D)

321 x 321 O Grid

Far-field boundary 

80 chords away

Surface pressure distribution Surface total pressure loss distribution

Source: Ref. 5.2.16 & 5.2.36

Comparison with exact

shock-free hodograph solution

M∞ = 0.721,  α = −0.194o 

Note: Exact solution has zero loss
Localized non-smooth regions 
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NLR 7301 Airfoil – Transonic Flow (2D)

Source: Ref. 5.2.16 & 5.2.36

M∞ = 0.721,  α = −0.194o Shock-free “exact” solution: Cl = 0.5939, Cd = 0.0

Numerical Dissipation      Grid Density

Scheme

321 x 49 321 x 81 321 x 161 321 x 321

Standard Adaptive Dissipation (SAD) 0.000577 0.000294 0.00025 0.00027

Modified Adaptive Dissipation (MAD-1) 0.000464 0.000282 0.000241 0.000241

Modified Adaptive Dissipation (MAD-2) 0.000354 0.000245 0.000206 0.000207

Flux-limited Adaptive Dissipation (FAD) 0.000804 0.000505 0.000394 0.000367

Sensitivity of Euler Solutions to Grid Density and Numerical Dissipation

o Far-field boundary 80 chords away to avoid using far-field vortex correction

o Non-smooth Cp distribution near the leading edge on the upper surface most likely due to small 

‘non-smooth’ region of the airfoil geometry defined by a discrete set of points

o Computed solutions exhibit “wiggle” in transition from supersonic to subsonic flow 

 Wiggle amplitude increases as number of grid points around the circumference increase from 161 to 

241 to 321 with grid points in radial direction (between surface and far-field boundary) fixed at 49

 Wiggle amplitude decreases as grid density changes from 33x241 to 49x241 to 65x241 to 81x241

o Exact shock-free solution should have zero drag; but numerical integration of discretized surface 

pressures (of “exact” hodograph solution) gives Cd of 0.0005 (and Cl of 0.5949)!

• Grid density (O grids) 

• Sensitivity of computed drag coefficient to numerical dissipation and grid density



14 Copyright © 2020 and beyond by Pradeep Raj.  All Rights Reserved.

L7
Team (Euler) Validation 

Canard-Wing-Body Configuration – Subsonic Flow (3D)

168 x 84 x 34  H-H grid

Source: Ref. 5.2.13 & 5.2.16

Canard-Wing Interaction Effect 
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168 x 84 x 34  H-H grid

Source: Ref. 5.2.13 & 5.2.16

Canard-Wing Interaction Effect 

Team (Euler) Validation 

Canard-Wing-Body Configuration – Transonic Flow (3D)
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Source: Ref. 5.2.17

TEAM (Euler) Validation 
Internal Flow – Three Test Cases

B. 1-D Inlet Duct Hammershock

Classical Guillotine Phenomenon

M1 = 0.7

A. Axisymmetric Diverging Nozzle

Axial Station x

Density

x

M∞ = 1.26

C. External Compression Mach 2.5 Axisymmetric Inlet

Axial Station x/hcowl

p/p

x
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Source: Ref. 5.2.13 & 5.2.16

TEAM (Euler) Validation 
Cone-derived Mach 6 Waverider – Hypersonic Flow

M∞ = 6,      α = −4o, 0o, 4o 

45 x 30 x 39  O-H Grid
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Lecture 7: Key Takeaways

• CFD in the 1980s: Golden era of Euler methods!

o Rapid progress characterized by advances in
 Pre-processing—extract “watertight” surface geometry from CAD or other sources

 Grid generation—discretize computational domain

 many new methods for structured hexahedral and unstructured tetrahedral grids

 Euler solver—solve unsteady form of Euler equations using the following algorithmic features

 Finite volume or finite element formulations

 Node centered or cell-centered schemes

 Central difference with explicitly added numerical dissipation or Upwind difference with 

implicit dissipation

 Pseudo-time marching and multigrid for accelerated convergence to steady state

 Post-processing—plot forces, moments, surface pressures and flow field data

• Lockheed Focus: Full Aircraft Euler Analysis to Meet Advanced Tactical Fighter  

(ATF) Needs
 Development of TEAM code (Three-dimensional Euler/Navier-Stokes Aerodynamic Method) under 

a USAF contract managed by WRDC (Wright Research & Development Center)

 Strategy for Effectiveness

 Modular Computational System—ease of incorporating technology advances 

 Patched Zonal Hexahedral Grids—analysis of complete aircraft

 Solver based on Jameson’s FLO-57 code—robust and economical method

o finite-volume formulation, cell-centered scheme

o central differences with JST adaptive dissipation

o Multistage pseudo time stepping to steady state

• TEAM Validation: Demonstration of Predictive Capability Using Select Test Cases
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Pioneering Euler Solutions: 1981

Rizzi and Eriksson (1981) 
• Grid generation: Transfinite interpolation for 3-D 

boundary–conforming hexahedral grids on wings or 

wing-bodies; O-O and C-O topologies most efficient

Source: Refs. 5.2.2 

• Euler solver: Explicit pseudo time-marching scheme; 

nonreflecting boundary conditions; damping filter to 

improve convergence—AIAA Paper 81-0999

• Shocks and wakes automatically “captured”; 

no explicit imposition of Kutta condition for  

sharp trailing edge
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• Jameson, Schmidt, and Turkel (AIAA Paper 81-1259) 
o Purpose: develop economical methods! 

o Finite volume formulation decouples solver and grid

Efficient Euler Solver: 1981

Source: Ref. 5.2.3

o Investigation of alternative 2-D schemes to answer four 

questions:

1. What is the most efficient time stepping scheme?

 Fourth order Runge-Kutta time stepping scheme

2. What is the optimal form of the dissipative terms?

 Adaptive blend of second and fourth differences with 

local pressure gradient sensor (JST scheme)

3. What is the best way to treat the boundary conditions 

on the body surface and in the far field?

 Appropriate characteristic combinations of variables

4. How can convergence to a steady state be 

accelerated?

 Variable time step at the maximum limit set by the local 

Courant number: ∑(uiΔt/Δxi) ≤ Cmax

 Add a forcing term based on the difference between the 

local total enthalpy and its free stream value (energy 

equation must be integrated in time, and not eliminated 

in favor of the steady state condition that the total 

enthalpy is constant)

• Jameson’s FLO-57 (swept wings) followed soon after 

64x32 

O mesh

RMS Residual:

~10-9 in 1000 cycles

M = 0.45
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• Usab and Murman (1983) 

o Embedded Mesh Solutions Of The Euler Equation 

Using A Multiple-grid Method—AIAA Paper 83-1946

Towards Euler Solutions on 

Complex Geometries: 1983-84

Source: Refs. 5.2.4 & 5.2.5 

RAE 2822 Airfoil 

• Jameson and Baker (1984) 
o Multigrid solution for aircraft configurations—AIAA Paper 84-0093

M = 0.75 

a = 3o

O Meshes

Coarse: 65x17

Global Fine: 129x33 

Improved Accuracy for 

Comparable Work 

(Multi-grid Cycles)
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L7Overlapping Embedded Mesh Scheme for 

Complex Geometries: 1985 

Source: Ref. 5.2.6

Benek, Buning and Steger (1985) 
• A 3-D Chimera grid embedding scheme—AIAA Paper 85-1523

• Boundary conforming grids on component parts of the geometry

Wing/Body 

Computations 

Fuselage Grid:

47x25x25

Wing Grid:

66x23x11

M = 0.9 

a = 2o
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Unstructured-grid Euler Solvers: 1985

Source: Ref. 5.2.7

Löhner, Morgan, Peraire and Zienkiewicz (1985) 

o Finite-element methods for high speed flows—AIAA Paper 85-1531

Mach 2 Inviscid Steady Flow 

Simulated Nose Cone Section

Adaptive Mesh Refinement

Inviscid Shock Reflection off Solid Wall

Adaptive Mesh Refinement

Initial Mesh

Final Mesh

Initial 

Mesh

Final 

Mesh

Initial Solution

Final Solution
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Tetrahedral 

Mesh

12038 Nodes

57914 Cells

Complete Aircraft Euler Solution: 1986

Source: Ref. 5.2.8 

Preliminary Solutions for B747-200: 

Surface Pressure Contours 

M = 0.84, a = 2.73o

Jameson, Baker and Weatherill (1986) 
• Calculation of Inviscid Transonic Flow over a Complete Aircraft—AIAA Paper 86-0103

• Generate separate meshes for each aircraft component 

• Unite mesh points from several overlapping meshes to form a single cloud of points

• Use Delaunay triangulation to connect cloud of points to form tetrahedral cells

• Solve Euler equations using a new finite element approximation for polyhedral control 

volumes formed by the union of tetrahedra meeting at a common vertex

.
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L7Accurate Euler Solutions on 

Unstructured Adaptive Meshes: 1988
Mavriplis (1988) 

• Accurate multigrid solutions on unstructured and adaptive meshes—NASA CR 181679

Source: Ref. 5.2.9

Karman-Trefftz Airfoil 

and Flap

M = 0.125

High-lift Three-element Airfoil
M = 0.25, a = 8o

Adaptive Mesh Refinement

12830 nodes

300 multigrid cycles

7 mesh multigrid sequence


