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No Shortage of Turbulence Models for 

RANS Equations! 
• Zero-equation models

o Cebeci-Smith (1967) and Baldwin-Lomax (1978): two layer, algebraic

• Half-equation models

o Johnson-King (1985): ODE to specify shear stress level

• One-equation models

o Baldwin-Barth (1990) and Spalart-Allmaras (1992): turbulent kinetic energy

• Two-equation models

o Jones-Launder (1972): k-e (turbulent kinetic energy and turbulent dissipation)

o Wilcox (1988): k-w;   Smith (1990): k-kl;  Menter (1993): SST* k-w

• Explicit Algebraic Reynolds Stress Models (EARSM or ASM)  

o Gatzki-Speziale (1993);  Girimaji (1996)

• Reynolds Stress Transport Models (RSTM or RSM)

o Speziale-Sarkar-Gatski (1991)

“…no model is universal, giving good results for 

all flows of interest.”  
Peter Bradshaw, FRS, Imperial College & Stanford, 1999

Source: Ref. 6.1.12*Shear Stress Transport
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Why Don’t We Have a Universal 

Turbulence Model?

Source: Ref 6.1.14

Accurate Modeling of Complex, Multiscale, Nonlinear 

Phenomena with a Few Free Parameters is 

an Extremely Long Shot Indeed

Turbulence is Complex, Multiscale, and 

Nonlinear with Flow-dependent Features 
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Fundamental Nature of Turbulence 

Source: Ref. 6.1.15 and 6.1.16

“big whirls have little whirls 

that feed on their velocity, 

and little whirls have lesser whirls 

and so on to viscosity”
Lewis F. Richardson, 1922

Multiscale in 

Space and Time!

Ratio of the Largest to Smallest Length Scale in 

Turbulent Flows is ~ Re3/4

(Re based on the largest eddy)

Energy Cascade

largest

eddies

smallest

eddies
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How Complex is Turbulence?

"I am an old man now, and when I die and go to

Heaven there are two matters on which I hope for

enlightenment. One is quantum electrodynamics,

and the other is the turbulent motion of fluids. And

about the former I am really rather optimistic."

Sir Horace Lamb
Address to British Association for the Advancement of Science

London, U.K., 1932
27 Nov 1849 – 4 Dec 1934

Turbulence Has Been

the Bane of 

Fluid Dynamicist’s

Existence—Seemingly

Forever!

Source: Ref. 4.6

Leonardo da Vinci, Flow behind obstacle, ca. 1510 – 1513, (from Royal Collection Trust, London, UK)
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What’s the Dominant Contributor to 

Error in RANS Solutions? 

Interesting Findings from [“Crude”] Statistical Analysis

• Approach: 39 datasets from Third High-Lift Prediction Workshop (2017) and 31 

datasets from Fifth Drag Prediction Workshop (2016) matched into groups based on 

three primary variables: mesh, flow solver, and turbulence model.

• “Crude” statistical analysis due to sparse amount of data in each group.

• Qualitative Conclusions

o Mesh and turbulence model appear to have about equally large impacts on outputs.

 Results of different mesh sets with the same flow solver and turbulence model differed 

about as much as the average results for the three groups varied from each other!

o Even with relatively fine meshes used, there are still flow features resolved by some 

meshes and not others.

o Flow solver is at least as big a difference as other factors. 

 Community needs to do a better job of verification of numerical model and turbulence 

model implementations.

o User selected input parameters can cause significant variation in output values. 

 Improved user training can help.

Is it the Mesh, the Solver, or the Turbulence Model?

Ollivier-Gooch, AIAA 2019-1334 

Source: Ref. 6.1.17
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RANS-based ACA is Unlikely to be Fully Effective for 

All Types of Flows Anytime Soon, If Ever!

With Advances in High Performance Computing (HPC) and 

Numerical Modeling, Effectiveness of RANS-based ACA Will 

Steadily Increase, But RANS Will Not Produce Credible Data

Due to Turbulence [and Transition] Modeling Inadequacies.

RANS-Based ACA Effectiveness:
Author’s Summary Assessment

“It is the mark of an educated man to 

look for precision in each class of 

things just so far as the nature of 

the subject admits.” – Aristotle

Source: Internet for image and quote
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“…the state of aeronautical CFD makes difficult to 

evade the conclusion that a decisive 

improvement in turbulence accuracy must be 

achieved before CFD becomes general.”

“…the author [Spalart] deems it unlikely that a 

RANS model, even complex and costly [RSTM], 

will provide the accuracy needed in the variety of 

separated and vortical flows we need to predict.”

Philippe R. Spalart

Senior Technical Fellow

Boeing Commercial Airplanes

“…it is more than plausible that Reynolds averaging suppresses too 

much information, and that the only recourse is to renounce it to 

some extent, which means calculating at least the largest eddies 

simply for their nonlinear interaction with the mean flow.”

Source: Ref. 6.1.18

RANS-Based ACA Effectiveness:
An Expert’s Assessment
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So What Are the Prospects for 

Fully Effective ACA? 
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If RANS cannot provide credible solutions, 

what are the other options that could possibly be used to  

computationally simulate turbulent flows?

Future Prospects of Fully Effective ACA

RANS
(Reynolds-Averaged 

Navier-Stokes)

DES
(Detached Eddy 

Simulation)

LES
(Large Eddy 

Simulation)

DNS
(Direct Numerical 

Simulation)

Level of Empiricism High Medium Low None

Unsteady Flows No Yes Yes Yes

# of Grid Points 107 107 to 108 1011 1020

Feasibility

Demonstration
1995 2010 2045* 2080*

Typical Commercial Transport Aircraft Wing

AR = 12, Rex = 50 million

*Estimated feasibility demonstration time frame assuming Moore’s Law will still hold!

Note: Dense grids also need extra time steps—hence much more computational time!

DNS, With No Empiricism, Is the Only Option for 

Fully Effective ACA
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DNS and LES Grid Requirements 

• WR-LES (Wall Resolved LES): small-scale eddies near the wall accounted for 

by inherent numerical dissipation [aka implicit LES or ILES]

• WM-LES (Wall Modeled LES): small scale eddies near the wall modeled using 

sub-grid-scale (SGS) models

Rec Nwm Nwr

106 3.63 x 107 5.23 x 107

107 8.20 x 108 7.76 x 109

108 9.09 x 109 5.98 x 1011

109 9.26 x 1010 4.34 x 1013

Airfoil: LES computational domain for turbulent boundary layer, no separation 

Aspect Ratio 4, Rex0 = 5 x 105

Haecheon Choi and Parviz Moin, “Grid-point requirements for large eddy simulation: 

Chapman’s estimates revisited” Physics of Fluid, 24, Jan 2012

• DNS: Grids must be fine enough to accurately resolve small-scale eddies

DNS computational domain for flat plate turbulent boundary layer

x0 is streamwise location beyond which flow is turbulent

# of grid points:
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DNS and LES of Flow Past an Airfoil: 
An Example 

Selig/Donovan SD7003 Low Reynolds Number Airfoil

Max thickness 8.5% at 24.4% chord          Max camber 1.2% at 38.3% chord

Source: UIUC Airfoil Coordinates Database

M = 0.1  a = 4o

Source: Ref. 6.2.4

Typical Flow Features Exhibited in Experiments and Computations 

• Fairly stable laminar separation 

bubble on the upper surface

• Transition in shear layer leads to 

turbulent flow

Re = 60,000

https://m-selig.ae.illinois.edu/ads/coord_database.html
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AR = 0.2        Far-field boundary at 100 chords

DNS Mesh

84,700 hexahedra      646,100 wedges

8,700 hexahedra         47,900 wedges

ILES (WR-LES) Mesh

SD7003 Low Reynolds Number Airfoil M = 0.1, a = 4o, Re = 60,000   

DNS and LES of Flow Past an Airfoil 

Source: Ref. 6.2.4

DNS requires much finer grids than LES!
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DNS and LES of Flow Past an Airfoil

SD7003 Low Reynolds Number Airfoil

Snapshot 

of 

Velocity

norm

Snapshot 

of 

Vorticity

norm

M = 0.1, a = 4o, Re = 60,000   

DNS

DNS

ILES (WR-LES)

ILES (WR-LES)

Source: Ref. 6.2.4
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DNS and LES of Flow Past an Airfoil

Temporal evolution of lift and drag coefficients

Note: tc = c/U is convective time = 7.6x10-4  sec (est.)

SD7003 Low Reynolds Number Airfoil M = 0.1, a = 4o, Re = 60,000   

*16,000 CPUs on “Jugene” (https://en.wikipedia.org/wiki/JUGENE)

DNS ILES XFoil Expt. (TU-BS) Expt. (AFRL)

CL (mean) 0.602 0.607 0.583 -

CD (mean) 0.0196 0.020 0.0181 -

Separation (xsep/c) 0.209 0.207 0.26 0.30 0.18

Reattachment (xr/c) 0.654 0.647 0.57 0.62 0.58

CPU-Hrs* for one tc 11,001 415 - -

Lift coefficient Drag coefficient

Source: Ref. 6.2.4 & 6.2.5

DNS (blue)

ILES (red)

DNS (blue)

ILES (red)

DNS took 25X more CPU time than ILES

t = 30 ms
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Lecture 11: Key Takeaways

• Turbulence Modeling

o No shortage of turbulence models ranging from simple algebraic to complicated 

Reynolds stress transport (RSTM)

• RANS-based ACA is Unlikely to be Fully Effective Anytime Soon, If 

Ever!

o Accurate modeling of Complex, Multiscale, Nonlinear phenomena that 

characterize turbulence using just a few free parameters is an Extremely Long 

Shot Indeed

• DNS is Seemingly the Only Path to Fully Effective ACA—but…

o DNS is not expected to be feasible─even for a wing─until around 2080, LES is 

probably a more promising option to explore to improve ACA effectiveness

o Incredible reductions in turnaround times and total cost are required to produce 

credible solutions using DNS for airplane configurations

o DNS effectiveness low in spite of its extremely high ‘Quality’ factor because of 

very low ‘Acceptance’ factor
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