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Abstract Controlling volume fractions of nanoparti-

cles in a matrix can have a substantial influence on com-

posite performance. This paper presents a multi-start

topology optimization algorithm that designs nanocom-

posite structures for objectives pertaining to stiffness

and strain sensing. Local effective properties are ob-

tained by controlling local volume fractions of carbon

nanotubes (CNTs) in an epoxy matrix, which are as-

sumed to be well dispersed and randomly oriented. Lo-

cal Young’s Modulus, conductivity, and piezoresistive

constant drive the global objectives of strain energy

and resistance change. Strain energy is obtained via a

modified solution of Euler-Bernoulli equations and re-

sistance change is obtained via solution of a bilinear

quadrilateral finite element problem. The optimization

uses a two-step restart method in which Pareto points
from the first step are used as starting conditions in the

second step. An efficient method for obtaining analytic

sensitivities of the objective functions is presented. The

method is used to solve a set of example problems per-

taining to the design of a composite beam in bending.
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The results show that the strain energy may be opti-

mized by placing high volume-fraction CNT elements

away from the neutral axis. Resistance change is op-

timized through a combination of shifting the neutral

axis, formation of conductive paths between electrodes,

and asymmetric distribution of highly piezoresistive el-

ements. Results also show that the strain energy is gov-

erned by the volume fraction constraint and the resis-

tance change is dependent on a combination of the vol-

ume fraction constraint and the boundary electrode lo-

cation.
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1 Introduction

Recent developments in advanced materials have led to

the emergence of multifunctional structures. “A mul-

tifunctional structure combines the functional capabil-

ities of one or more subsystems with that of the load

bearing structure” [30]. In addition to reducing the mass

and volume of the overall system by integrating subsys-

tems within the structure [28], multifunctional struc-

tures may also introduce novel behavior to the system.

Within the aerospace field, one of these possible be-

haviors is self-sensing [11], in which a structure is able

to directly collect information about its operating en-

vironment and relay that information to pilots, testing

engineers, and maintenance engineers. Heavily related

to this concept is the idea of the digital twin. The dig-

ital model of an aircraft would use systems such as the

embedded sensor to track loading conditions of the air-

craft throughout its lifetime. Thus, each aircraft would

be paired with a digital model detailing the entire flight
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history of that craft, allowing maintenance engineers to

make more informed decisions about fatigue, damage,

etc. [12].

While classical strain measurement systems are rel-

atively inexpensive and are sensitive at the macroscale,

they suffer from several drawbacks. They are fixed di-

rectional sensors, they have low resolution at nanoscales,

and cannot be easily embedded in a structure without

disrupting its mechanical behavior [22]. The inability to

embed a traditional sensor in the structure is a siginifi-

cant limitation for composites, in which cross-sectional

or interlaminate failures may not be observable at the

surface [39]. This helps to motivate the investigation of

multifunctional structures in which the sensing material

is dispersed throughout the structure.

Of the candidate materials for use in creating self-

sensing structures, carbon nanotubes (CNTs) are the

subject of much attention [22]. CNT based composite

strain sensors have been shown to have higher sensitiv-

ities than classic strain gauges at the macroscale [10]

and exhibit strain sensing through several mechanisms.

These include variation of conductive networks formed

by CNT contact, tunneling resistance change in neigh-

boring CNTs as distance between neighbors changes,

and the inherent piezoresistivity of the CNTs [5].

Over the last several years, additive manufacturing

techniques have evolved to allow for the fabrication of

complex structures, and have even been extended to

nanocomposites. “Additive manufacturing holds strong

potential for the formation of a new class of multifunc-

tional nanocomposites through embedding of nanoma-

terials [15].” In fact, Postiglione et al. have shown it is

now possible to additively manufacture CNT/polymer

composites with finely tailored microstructures using

liquid deposition [25]. This motivates the development

of a design algorithm that can combine the develop-

ments in multifunctional materials with those of ad-

vanced manufacturing processes. For this, topology op-

timization is a promising candidate.

Recently, much has been done to apply topology

optimization to the design of multifunctional materi-

als. Rubio [29] investigated topology optimization of a

piezoresistive patch in a compliant mechanism in which

orientation of a monolithic Wheatstone bridge was op-

timized in addition to the topology of the compliant

structure. Stanford et. al [37] optimized a carbon fiber

reinforced latex wing for an aeroelastic response. These

wings were then manufactured and tested, and it was

found that even with a low fidelity aeroelastic model

the optimization was able to improve upon aerody-

namic performance. Sigmund and Torquato [36] used

multi-phase topology optimization to design two mate-

rial structures with extreme thermoelastic coefficients

given constraints on volume fractions of each phase.

This behavior came at the cost of a low bulk modu-

lus, reinforcing the need for an optimization routine to

design a structure with appropriate bulk stiffness that

still maximizes thermoelastic performance. Kruijf [18]

optimized a beam-like structure for maximum stiffness

and thermal conductivity, and also introduced a mi-

cromechanics model to compute the optimal unit cell.

This unit cell was then used to determine the macro

scale material properties and a Pareto front was cre-

ated relating thermally conductive optima to maximum

stiffness optima. It was found that the material compo-

sition of the unit cell lattice structure significantly im-

pacted both thermal and elastic compliance. Maute et.

al [19] used level set topology optimization to design a

set of printable SMP (shape memory polymer)-elastic

matrix composites to match a specified deformed shape

once actuated. Zegard and Paulino connected additive

manufacturing with topology optimization for a single

objective, single material system [42].

However, a majority of published works focus on

on/off topologies, in which there are a limited (often

1 or 2) candidate materials. This paper introduces the

design of a graded nanocomposite structure, in which

any element may contain a different effective material

via variation in the local CNT volume fraction. This

volume fraction is not penalized or driven to any on/off

configuration.

The problem is posed as the design of a strain sens-

ing beam of constant cross-section in order to optimize

measures of stiffness and sensing. The beam is loaded

with a constant prescribed curvature, representative of

a bending test. Constraints are imposed on both the lo-

cal and global CNT volume fractions as representations

of manufacturing and cost constraints, respectively. Mi-

cromechanics models are used to obtain element ef-

fective properties and are functions of the local CNT

volume fraction. The performance of optimal topolo-

gies of the cross-sections are compared across different

constraint limits and electrostatic boundary conditions,

and conclusions are drawn about the usefulness of lever-

aging topology optimization in the design of distributed

multifunctional systems.

Section 2 introduces the general topology optimiza-

tion algorithm and the specific problem statement. Sec-

tion 3 follows with the relevant micromechanics, Euler-

Bernoulli equations, and formulation of the electrostatic

finite element equations. This section also contains the

equations necessary for computing the sensitivities of

the objective functions with respect to changes in CNT

volume fraction. Section 4 introduces the Pareto-Based

restart method for finding improved Pareto Fronts in

a complex coupled problem with many minima. Re-
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sults of this method, as applied to the self-sensing beam

for several volume fraction constraints and electrostatic

boundary conditions, are shown in Section 5. Conclu-

sions are summarized and possible extensions of the

work are highlighted in Section 6.

2 Topology Optimization Overview and

Problem Statement

In a single material system, topology optimization seeks

to design a structure by first discretizing the design

space and then driving the local material volume frac-

tions in each element of that space to their optimal

values. The general problem is formulated as follows:

minF (v) = F (f1(v), f2(v))

s.t. 0 ≤ ve ≤ 1∑
ve ≤ Vp

(1)

Here the set of design variables are designated as the

vector v, and may correspond to a ‘relative density’

of material or a phase volume fraction. The relative

density in each element is denoted by ve. The objec-

tive function F may be multiobjective, and be formed

from single objective functions f1 and f2. For this paper

f1 =
∆R

R0
(v), the resistance change due to strain, and

f2 = U(v), the strain energy in bending. The design

variables are used within one or more material inter-

polation schemes, which govern the effective material

properties of the corresponding element. As an exam-

ple, consider the classic Solid Isotropic Material with

Penalization, or SIMP method [4]. Applying SIMP to

an effective Young’s Modulus leads to

Ee = vpeE0 (2)

where the effective Young’s Modulus at the eth element

as a function of the design variables and the material

modulus E0. The penalty variable, p, is added to drive

ve to either 0 or 1 during the optimization. An element

with ve = 0 has no stiffness and an element with ve = 1

has the material stiffness E0. There exists some opti-

mal layout of 1’s and 0’s that satisfy the constraint on

the total volume fraction permitted, Vp, while minimiz-

ing the objective function F (v). For a comprehensive

review on topology optimization, see [7] and [4].

Rather than considering a single material property

and driving this property to 1 (on) or 0 (off) via the

SIMP method, one may instead consider a microme-

chanics model, such as a rule of mixtures [38,40], in-

verse rule of mixtures [38,26], or a method that makes

use of the Eshelby solution [9], such as the Mori-Tanaka

method [21]. These models relate effective material prop-

erties to the volume fraction of an inhomogeneity in a

matrix. Therefore, one may substitute a micromechan-

ics model in place of the SIMP method equation above,

and the design variables then become the local volume

fraction of an inclusion. In the case of this paper, that

is the volume fraction of CNT in each element. What

results is no longer an ’on’ or ’off’ design, but rather

a distributed system of CNT-epoxy nanocomposite in

which each element may have a different material com-

position.

In Figure 1 the general optimization algorithm is

paired with the steps that pertain to the solution of

a topology optimization problem for a multifunctional

CNT based composite. The problem of interest, the de-

sign of the cross-section of a beam subject to a pre-

scribed curvature, is illustrated in Figure 2. The cross-

section is discretized into a 2D finite element mesh and

each element is given a single design variable represen-

tative of the volume fraction of CNT in that element.

There are constraints on both the amount of CNT avail-

able to a single element and on the total amount of CNT

in the cross-section; vp and Vp, respectively. For a self-

sensing cross-section it is desirable that the structure

have some measure of stiffness so that it can perform

its structural application. Strain energy was chosen as

an objective to capture the stiffness. It is also necessary

that a measure of the sensing signal be maximized. Re-

sistance change in the presence of strain is a common

measure of a sensor’s capability [23,1], and is selected

as the second objective. These objectives will be shown

to be competing for a limited amount of CNT, with the

stiffness optimization wanting to place material in loca-

tions that may be disadvantageous for sensing, and vice-

versa. The problem is solved using an epsilon-constraint

optimization, in which the strain energy objective is

rewritten as a constraint [8,14,20], leading to the opti-

mization problem

minF (v) = −∆R(v)

R0(v)

s.t. U(v) ≥ U∗

0 ≤ ve ≤ vp∑
ve ≤ Vp

(3)

where ve is the CNT volume fraction of the eth element.
∆R(v)

R0(v)
is the resistance change between the strained

and unstrained cross-section ∆R, normalized by the un-

strained resistance, R0. U is the strain energy, and U∗

is a prescribed strain energy constraint. By changing

U∗ one can trade relative importance of stiffness versus
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Fig. 1 Topology Optimization Algorithm.

Fig. 2 Beam with prescribed curvature and the cross-section
to be designed.

sensing in the design. However, care must be taken in

the selection of U∗ to ensure the constraint is feasible.

Epsilon-constraint method reformulates the multiobjec-

tive problem into ‘Give the best value of Objective A

while satisfying constraints on Objective B to a thresh-

old’. The remaining two constraints state that there

may not be greater than vp CNT in a given element

and the summation of all the CNT volumes must be

less than or equal to the global volume fraction con-

straint, Vp.

3 Analysis and Sensitivity of the Objectives

3.1 Micromechanics

Micromechanics laws relate the design variables to lo-

cal Young’s Modulus, resistivity, and piezoresistive con-

stant in a given element. It is assumed that within an

element the CNT are well dispersed and randomly ori-

ented, giving linear and isotropic effective properties.

3.1.1 Young’s Modulus

At low volume fractions the effective Young’s modulus

in a CNT-epoxy composite linearly increases as more

CNT are added [34]. A rule of mixtures model is used to

approximate the composite effective Young’s modulus.

The rule of mixtures equation is:

Ee = ECNT ve + Emat(1− ve) (4)

where Ee represents the local effective Young’s Modu-

lus of the eth element, and ve the local volume fraction

of CNT in the eth element. ECNT is the modulus of the

CNTs, and Emat is the modulus of the matrix. The rule

of mixtures is continuous and differentiable, both desir-

able qualities when the equation is to be incorporated

within an optimization algorithm. By nature of being

the highest possible bound on effective modulus, the

rule of mixtures model for stiffness acts to add conser-

vatism to the sensing objective, which will be shown to

be dependent on strain. The sensitivity of the Young’s

modulus with respect to a change in the volume fraction

is

dEe
dve

= ECNT − Emat (5)

3.1.2 Resistivity

Small increases in CNT volume fraction can decrease

the composite effective resistivity by orders of magni-

tude [24]. This behavior is seen to be nonlinear even at

low volume fractions, requiring use of an inverse rule of

mixtures model [27]. Continuing with the assumption

that the CNT are randomly oriented and well dispersed,

it is assumed that effective resistivity is isotropic and

given as

ρ0e =
1

ve
ρCNT0

+
1− ve
ρmat0

(6)

where ρ0e is the effective resistivity of the eth element

with a local CNT volume fraction ve. The CNT and

matrix resistivities are given by ρCNT0 and ρmat0 , re-

spectively The sensitivity is given by

dρ0e
∂ve

= −

1

ρCNT0

− 1

ρmat0

(ρ0e)2
(7)

3.1.3 Piezoresistive Constant

Piezoresistivity is a property that dictates how changes

in strain influence resistivity. A piezoresistive constant,

sometimes called a normalized gage factor, can be used

to measure this property. The piezoresistive constant is
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Table 1 Constants used to form the element effective
piezoresistivity

A1 A2 A3 B1

243613 122516 24571.2 100
B2 C1 C2 C3

1.05 406.25 16.25 3.9375

denoted as the variable g, and the local effective piezore-

sistive constant of the eth element is ge. Bauhofer and

Kovacs [3] have shown that depending on the percola-

tion threshold of a given CNT-Epoxy composite, the

piezoresistive behavior can exhibit an almost discrete

on/off behavior. Below the percolation threshold the

piezoresistivity is small, and at the percolation thresh-

old the piezoresistivity is maximized. Alamusi et al. and

Kuelemans [2,16] show that after crossing percolation,

continuing to add CNT will reduce the piezoresistive

constant. Depending on the type of nanotube and fab-

rication procedure, the percolation threshold of CNT-

Epoxy composites can be as low as .0025 percent CNT

volume fraction [31] but it is most common that this

threshold is between 1.5 and 4.5 percent [33,3]. In the

current micromechanics model 2 percent volume frac-

tion was chosen for the percolation threshold. The ef-

fective piezoresistive constant is small before 2 percent,

peaks at the percolation volume fraction of 2 percent,

and decreases for larger volume fractions. A curve fit

model is used to approximate this behavior.

ge =


3∑
i=1

Ai tan((2i− 1)πve) ve ≤ .015

2(cos(B1πve) +B2) .015 < ve ≤ .02

−C1v
2
e + C2ve + C3 .02 < ve ≤ .1

(8)

The sensitivity of the piezoresistive constant to the CNT

volume fraction is

dge
dve

=


3∑
i=1

Ai(2i− 1)π sec((2i− 1)πve)
2 ve ≤ .015

−2B1π sin(B1πve) .015 < ve ≤ .02

−2C1ve + C2 .02 < ve ≤ .1
(9)

In Equations 8 and 9, the constants A1-A3, B1-B2, and

C1-C3 are selected to ensure that the curve is continu-

ous and has a continuous first derivative. These param-

eters may be altered to tune the piezoresistive model

to fit a specific manufacturing process and/or available

experimental data. Table 1 shows the values identified

for these constants in this paper.

Table 2 Matrix and fiber material properties

CNT Epon
Resistivity ρ0 (ohm/cm) 1 1e9
Young’s Modulus E (GPA) 270 2.6

3.1.4 Material Properties and Micromechanics Plots

Material properties for CNT and Epon 862 are pre-

sented in Table 2 [33,43]. It should be noted that the

Poisson’s ratio of the nanocomposite was assumed to be

a constant ν = 0.3. Effective Poisson’s ratios of CNT-

Epon composites were modeled using a Mori-Tanaka

method in [6,13], where it was found that for aligned

CNT the composite effective properties were νeff12 =

0.3772, νeff23 = νeff13 = .2629. For randomly oriented

nanotubes it can be assumed that these values may

be averaged, resulting in an effective Poisson’s ratio of

.300. The micromechanics equations are plotted against

CNT volume fraction in Figure 3.

Fig. 3 Local effective properties as a function of CNT vol-
ume fraction.

3.2 Strain Energy of a Beam with Prescribed

Curvature

The strain energy of a beam in bending can be related

directly to bending rigidities and the bending curva-

tures. Bending rigidities may be computed from modi-

fied Euler-Bernoulli beam equations [17] as

EIz =

∫
Ey2dA =

nele∑
e=1

Eey
2
eAe

EIy =

∫
Ez2dA =

nele∑
e=1

Eez
2
eAe

EIyz =

∫
EyzdA =

nele∑
e=1

EeyezeAe

(10)

where ye and ze are distances from the cross-section

centroid of a beam with the x direction oriented along

the beam’s length. These are given by

ze = Ze − Zc
ye = Ye − Yc

(11)
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where Ye and Ze are locations of the element centers in

the cross-section. Zc and Yc coordinates of the neutral

axis, given by

Zc =

∑nele
e=1 EeZeAe∑nele
e=1 E

eff
e Ae

Yc =

∑nele
e=1 EeYeAe∑nele
e=1 E

eff
e Ae

(12)

The bending rigidities may then be related to bending

moment as

[
My

Mz

]
=

[
EIy EIzy
EIzy EIz

] [
κy
κz

]
(13)

where κy and κz are the bending curvatures about the

y and z axes. Here the problem may be simplified if the

bending is applied about a single axis, and symmetry

is enforced. For example let κy = 0, and symmetry

dictates that EIzy = 0. The only remaining component

of the moment is Mz = EIzκz.

The strain energy is then given by

U =
1

2

M2
z

EIz
=

1

2
EIzκ

2
z (14)

and the sensitivity of the strain energy with respect to

a change in the design variables is computed as

∂U

∂ve
=

1

2

∂EIz
∂ve

κ2z (15)

Equation 14 shows that for a prescribed curvature,

maximization of the strain energy corresponds to a max-

imization of the bending rigidity. Sensitivity of the strain

energy is then dependent on the sensitivity of the bend-

ing rigidity with respect to the element volume frac-

tions, which is given by

∂EIz
∂ve

=
dEe
dve

y2eAe + 2

nele∑
e=1

Eeye
∂ye
∂ve

Ae (16)

where
dEe
dve

comes from the micromechanics equations.

The sensitivity of the change in the Yc with respect to

the change in design variable must also be considered.

∂ye
∂ve

=

dEe
dve

Ae

(
nele∑
e=1

EeYeAe

)
− dEe
dve

YeAe

(
nele∑
e=1

EeAe

)
(
nele∑
e=1

EeAe

)2

(17)

3.3 Resistance Change

In classic strain sensors the gage factor is used to con-

vert the measured resistance of a sensor into an approx-

imation of strain. Gage factor is defined as the change

in resistance between the strain and unstrained cross

section divided by the unstrained resistance and the

strain. Maximizing the resistance change between the

strained and unstrained structure leads to an increase

in signal-to-noise ratio in strain sensing.

The resistance change maximization problem is for-

mulated based on Figure 2. A set of electrodes, denoted

by the red and blue bars, are located on the boundary

of the cross-section and are used to prescribe a volt-

age difference. The cross-section is also subject to the

same curvature as the strain energy maximization prob-

lem, and thus the same strain field. Two solutions of an

electrostatics finite element problem are required to ob-

tain the resistance change. The finite element solution

is used to obtain the unstrained and the strained cur-

rents, which may be related to the resistance through

Ohm’s law.

3.3.1 Electric Current

The electrostatics continuity equation (conservation of

charge) states that the divergence of the current density

(Ψ) is 0.

∇·Ψ = 0 (18)

Current density is related to electric conductivity (σ)

and the electric field (E) via Ohm’s law as

Ψ = σE (19)

The electric field is the negative of the gradient of the

potential. Substituting this into Equation 18 gives

∇·Ψ = −∇· (σ∇φ) = 0 (20)

In the 2D case the electric potential varies in the z and

the y directions, φ = φ(z, y). Conductivity may also

change in both directions, σ = σ(z, y). Rewriting the

equation gives

∂

∂z

(
σ(z, y)

∂φ(z, y)

∂z

)
+

∂

∂y

(
σ(z, y)

∂φ(z, y)

∂y

)
= 0

(21)

The governing equations are discretized via the fi-

nite element method, resulting in the algebraic equa-

tions
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Cφ = f (22)

or, for a given element

Ceφe = fe (23)

where Ce is the element electrostatic ‘stiffness’ matrix,

φe is the element electric potential vector, and fe is the

element current vector. The electrostatic version of the

stiffness matrix depends on the conductivity matrix σ.

Ce(ve) =

∫
ξ

∫
η

BTσeB|Je|dξdη (24)

where B is the gradient matrix, |Je| is the determinant

of the element Jacobian, and σe =

[
σze 0

0 σye

]
and is

determined by the local element volume fraction. Prior

to the application of strain, i.e. non-piezoresistive prob-

lem, the current is calculated from element conductivi-

ties of the form σz = σy =
1

ρ0e
. For the coupled prob-

lem with strain applied, the piezoresistive term will be

added and discussed in a later section.

Equation 22 is divided into submatrices based on

which degrees of freedom are constrained. The subscript

u denotes degrees of freedom which are unspecified, but

on the boundary. The subscript s indicates these de-

grees of freedom are part of the boundary condition,

and have their electric potential specified. This rep-

resents specifying the placement of electrodes on the

structure. Finally, the subscript i indicated degrees of

freedom on the interior of the cross-section.

Cii Ciu CisCiu Cuu Cus
Cis Cus Css

φiφu
φs

 =

fifu
fs

 (25)

In this equation the entire C matrix is known, and

φs = φs0 is known along the electrodes. fu = fi = 0

unless non-electrode boundary or interior currents are

specified. There are two forms of these equations that

are convenient for use in solving and obtaining sensi-

tivities.

Form A:Cii Ciu 0

Ciu Cuu 0

0 0 II

φiφu
φs

 =

−Cisφs0−Cusφs0
φs0

 (26)

or, in simplified Form A: Ĉφ = b. Here the symbol II

is used to represent the identity matrix.

Total current, Ibc, is measured as the summation

of the nodal currents across a boundary electrode. The

vector q is created to aid in the summation. q has a

value of 1 for degrees of freedom on the boundary elec-

trode to be summed over, and is 0 for the degrees of

freedom on the other boundary electrode.

Ibc = qT
[
CT
is C

T
us C

T
ss

]
φ = pTφ (27)

The adjoint method is used to obtain the sensitivity

of the current. The total derivative is

dIbc
dve

=
∂Ibc
∂ve

+
∂Ibc
∂φ

∂φ

∂ve
(28)

The state equation is used to help solve the above equa-

tion. The state equation is Ĉφ−b = 0. As this equation

is equal to 0, the derivative is also 0 and is given as

∂Ĉ

∂ve
φ+ Ĉ

∂φ

∂ve
− ∂b

∂ve
= 0 (29)

The sensitivity equation is appended with the above

equation times the adjoint variable, λ. Rearranging leads

to

dIbc
dve

=
∂Ibc
∂ve

+λT (
db

dve
− dĈ
dve

φ)+(
∂Ibc
∂φ
−λT Ĉ)

∂φ

∂ve
(30)

where λ may be chosen as any arbitrary vector. It is

convenient to select a λ that makes the third term in

the above equation 0. This results in the adjoint state

equation:

Ĉλ = (
∂Ibc
∂φ

)T = p (31)

which is solved for λ and substituted to obtain the ad-

joint form of the sensitivity.

dIbc
dve

=
∂Ibc
∂ve

+ λT (
db

dve
− dĈ

dve
φ) (32)

It is now necessary to derive each of the terms:
∂Ibc
∂ve

,

db

dve
, and

dĈ

dve
.

∂Ibc
∂ve

= qT (
d

dve

[
CT
is C

T
us C

T
ss

]
])φ (33)

db

dve
= (

d

dve

−Cis−Cus
II

)φs0 (34)
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dĈ

dve
=

d

dve

Cii Ciu 0

Ciu Cuu 0

0 0 II

 (35)

The above equations depend on the sensitivities of

the electrostatic stiffness matrix with respect to changes

in the design variables. As these variables (the CNT vol-

ume fractions in each element) are local, sensitivity of

a particular element matrix can be used for the sensi-

tivity of the element volume fraction.

∂Ce
∂ve

= BT ∂σe
∂ve

B|J |e (36)

∂σe
∂ve

=

∂σze∂ve
0

0
∂σye
∂ve

 (37)

where
∂σze
∂ve

and
∂σye
∂ve

have explicit known values based

on the micromechanics laws used. All the terms needed

to solve for the sensitivity are now known.

Care must be taken to choose the correct indices

for each ve, as each ve corresponds to an element, and

that element may have nodal degrees of freedom that lie

on the interior, on the unprescribed boundary, and/or

on the electrode. This can be simplified if the adjoint

method is applied to the alternate solution of the cur-

rent.

Form B:Cii Ciu 0

CT
iu Cuu 0

CT
is C

T
us −II

φiφu
fs

 =

−Cisφs0−Cusφs0
−Cssφs0

 (38)

And the simplified Form B: C̃y = b̃. The solution

follows the same steps as the solution of Form A. First,

the current is given as

Ibc =
[
0 0 q

]T
y (39)

Then the adjoint equation (the state variable is now y

instead of φ) is updated

C̃T λ̃ =
∂Ibc
∂y

= qT (40)

and finally the sensitivity equation is updated as

dIbc
dve

=
∂Ibc
∂ve

+ λ̃T

(
db̃

dve
− dC̃

dve
y

)
(41)

Here the form of Ibc is convenient in that
∂Ibc
∂ve

= 0.

Furthermore, it is noted that (
db̃

dve
− dC̃

dve
y) may be re-

arranged, as it is a derivative of the original electrostatic

equations, Cφ = f

d

dve

−Cisφs0−Cusφs0
−Cssφs0

− d

dve

Cii Ciu 0

CT
iu Cuu 0

CT
is C

T
us −II

φiφu
fs

 = −dC
dve

φ

(42)

The differentiation of the Form B equations is indepen-

dent of whether or not the element contains boundary

degrees of freedom.

dIbc
dve

= −λ̃T dC
dve

φ = −λ̃e
T

((BT ∂σe
∂ve

B|J |e)φe) (43)

3.3.2 Resistance Change due to Strain

Resistance change due to strain,
∆R

R0
, is measured as

the difference in resistance between the unstrained struc-

ture (R0) and the resistance of the strained structure

(Rε), normalized by the unstrained resistance i.e.

∆R

R0
=
Rε −R0

R0
(44)

Resistance is related to current through Ohm’s law,

R =
V

I
=

∆φ

Ibc
. ∆φ is the prescribed potential differ-

ence across the electrodes, and is a constant for both

the strained and unstrained resistances. This allows for

simplification of the resistance change function.

∆R

R0
=
Rε −R0

R0
=
Ibc0
Ibcε
− 1 (45)

Thus, the resistance change requires the calculation

of two different currents. The currents may be calcu-

lated using the equations in the previous section, but

differ in the formulation of the conductivity matrix. The

unstrained element conductivity matrix is

σ0e =


1

ρ0e
0

0
1

ρ0e

 (46)

where ρ0e is given explicitly by Equation 6, and has a

sensitivity given by Equation 7. The sensitivity of the

unstrained conductivity matrix is then
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∂σ0e

∂ve
=


−∂ρ0e
∂ve
ρ20e

0

0
−∂ρ0e
∂ve
ρ20e

 (47)

Once the structure is loaded the resistivity changes

due to the piezoresistive effect. This adds an additional

term to the resistivity equation [41,5]. For a beam with

prescribed bending curvature about a single axis it is

assumed that the axial strain dominates this response.

The resistivity of the eth element in the presence of

strain is given as

ρεe = ρ0e(1 + geεxxe) (48)

The above equation leads to changes in the sensi-

tivity as the piezoresitive constant is a direct function

of the element volume fraction. Also, the axial strain

in an element depends on the prescribed curvature and

the distance of the element from the centroid.

εxxe = κzye (49)

Thus, the sensitivity of the strained resistivity is

∂ρεe
∂ve

=
∂ρ0e
∂ve

(1 + geκzye) + ρ0e
∂ge
∂ve

κzye + ρ0egeκz
∂ye
∂ve
(50)

where
∂ρ0e
∂ve

is given by Equation 7,
∂ge
∂ve

is given by

Equation 9, and
∂ye
∂ve

is given by Equation 17. Finally,

Equations 48 and 50 are substituted into Equations 46

and 47, which are in turn used to solve for strained

current and sensitivity by repeating either the Form A

or Form B calculations from the previous section.

4 A Pareto-Based Restart Method for

Problems with Multiple Minima

Multifunctional topology optimization is known to ex-

hibit flat design spaces and local minima [32]. The pres-

ence of local minima means that the starting condition

may have a significant influence on the resulting topol-

ogy and performance. It is beneficial to develop a multi-

start method that can efficiently cover a large amount of

the design space without sacrificing final performance.

Fig. 4 Results of the coarse mesh optimization with a 2 per-
cent volume fraction constraint and the electrode boundary
condition shown in the insert.

While topology optimization exhibits mesh depen-

dence [35], coarse mesh optima may capture general

trends in the solution that can be scaled to a finer

mesh. The restart method implemented here takes ad-

vantage of this fact. It first uses a multi-start method

on a coarse mesh to solve a simplified version of the

problem. Coarse mesh solutions are computationally in-

expensive, and many starting conditions can be used

to get better coverage of the design space. The best

(Pareto optimal) results of the coarse mesh optimiza-

tion are then selected, scaled up to a finer mesh size,

and used to restart the problem. Thus, a comparatively

small amount of starting conditions are used for the

more expensive, fine mesh phase.

Consider the cross-section optimization of a beam in

bending, subject to a two percent global volume frac-

tion constraint, a ten percent local volume fraction con-

straint, and with prescribed electrodes shown in the di-

agram inserted into Figure 4. The design problem is

minF (v) = −∆R(v)

R0(v)

s.t. U(v) ≥ U∗

0 ≤ ve ≤ .1∑
ve ≤ .02

(51)

Figure 4 also shows the results of a coarse mesh

multiobjective optimization in which high resistance

change and high strain energy are preferred. All re-

sults in this paper were obtained by using Sequential

Quadratic Programming (SQP) within Matlab’s fmin-

con optimization package. Function decrease tolerance,
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constraint feasibility tolerance, and optimality toler-

ance were all set to 1E − 6. Each point on the figure

is the result of one full optimization of the coarse mesh

problem, and was obtained by optimizing with a coarse

mesh random initial condition. The tiers in the strain

energy constraint were obtained by first performing sin-

gle objective optimization to obtain approximate utopia

points. These points were used to set the bounds on the

epislon-constraint, which was linearly varied between

these bounds. Additionally, one set of the random ini-

tial conditions was performed with an inactive strain

energy constraint, hence the lack of tiered structuring

in the bottom right of the figure.

The best points from this set of solutions are marked

as nondominated points by the black triangles. The

topologies which correspond to these points are scaled

to the finer restart mesh size, and are used to start the

finer scale, computationally expensive optimization. In

the presented example, the fine mesh contains 1600 ele-

ments and the coarse mesh contains 400 elements. This

four-to-one increase affects both the number of design

variables in the optimization problem and also the num-

ber of elements and associated degrees of freedom in the

analysis and sensitivities of the objectives, resulting in

a much larger design problem. The relative errors in

strain are less than 1e-10 percent when comparing the

same topology in coarse or fine mesh. The relative er-

rors in the strained resistance are on the order of three

to four percent when going from 400 elements to 1600

elements. As the method re-optimizes at the fine mesh

and furthermore uses multiple course Pareto optimal

starting points, it is able to handle discretization errors

of these sizes when moving from coarse to fine meshes.

Applying the Pareto-based restart to Figure 4 re-

sults in Figure 5, where the triangles mark the starting

conditions kept from the coarse mesh phase, the blue

circles mark refined mesh optima, and the red circles

mark the new Pareto Front. In this example problem

the restart with a finer mesh is able to improve upon

the initial topologies provided by the coarse mesh opti-

mization.

It is important to note that every nondominated

point from the coarse mesh is used as a starting point

for every epsilon-constraint level in the refined mesh

optimization. The importance of this is illustrated in

Figure 6. Here the set of coarse mesh nondominated

points, marked by the triangles, are color coded. The

circles represent results of a refined mesh restart opti-

mizations, and the color of the circle indicates which

coarse mesh topology was used to restart that partic-

ular case. It is seen that certain coarse optima may be

better restart points than others, even if they are far

from the original location in the objective space. For

Fig. 5 Restart Method results for a 2 percent volume frac-
tion constraint and the electrode boundary condition shown
in the insert.

0 5 10 15
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C4
C5
C6
C7

Fig. 6 Restart Method with starting condition tracking.
Coarse mesh optima are used as starting conditions.

example, restarting with the topology corresponding to

the cyan triangle, C6 Nondom, returns nondominated

points for the restart method at 4 locations, all of which

are located on a different strain energy tier than the C6

Nondom point itself.

As seen in Figure 7, the restart method provides bet-

ter optima than just using random starting conditions

at refined mesh scale. The restart method was also more

computationally efficient, arriving at better optima in

37.2 percent of the CPU time required to obtain the

refined mesh results using just a random start.

5 Results

The problem illustrated in Section 4 is reintroduced

here, and eight test cases are formed. In each case the

restart method is used to solve the multiobjective topol-

ogy optimization for a beam with prescribed electrode



Multifunctional Topology Optimization of Strain-Sensing Nanocomposite Beam Structures 11

Fig. 7 Comparing random start vs restart optima for 2 per-
cent volume fraction constraint and the electrode boundary
condition shown in the insert.

Fig. 8 Boundary condition electrode placement.

configuration. Four electrode boundary conditions are

considered along with two volume fraction constraints.

The boundary conditions are labeled and illustrated in

Figure 8. For each boundary condition a test case is

formulated with a two percent global volume fraction

constraint and without any global volume fraction con-

straint. This results in a total of eight applications of

the restart method to generate eight Pareto Fronts.

The problem is solved first for a two percent global

volume fraction constraint, as was first shown in Section

4 for a single boundary condition. It is now solved for

the all four boundary conditions. The process is then

repeated with the global volume fraction constraint re-

moved. For each Pareto Front a coarse mesh of 20 x 20

elements is first optimized. The coarse mesh uses eleven

different epsilon-constraint values and ten different ran-

dom starting conditions, for 110 total coarse optimiza-

tions. The nondominated points from this mesh have

their associated topologies scaled to a 40 x 40 mesh

and used as initial conditions for the restart method.

Fig. 9 Coarse mesh multi-start results for a 2 percent volume
fraction constraint and BC1.

Fig. 10 Refined mesh restart method results for a 2 percent
volume fraction constraint and BC1.

Figure 9 presents the coarse mesh multi-start opti-

mization results for a two percent global volume frac-

tion constraint and the full length electrode boundary

condition, BC1. This is the same set of optima as Figure

4, now with three of the optimal topologies overlaid to

indicate where they fall in the design space. The color

bar represents local CNT volume fraction in each ele-

ment. The restart method results for this problem are

shown in Figure 10, showing increased detail in the de-

sign and the associated increase in performance. This

process is repeated across the array of constraints and

boundary conditions in the following sections.

5.1 Strain Energy and Resistance Change

Optimization with a Two Percent Global Volume

Fraction Constraint

The refined mesh Pareto Fronts associated with the two

percent global volume fraction constraint are shown in

Figure 11. A Pareto Front is shown for each of the 4

boundary conditions illustrated in Figure 8. Numbered

markers are used to relate the specific point to its topol-

ogy in Figure 12. The numbering convention is laid
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Fig. 11 Pareto Fronts with labeled nondominated points.
2% global VF constraint.

B
C
1
.2
.1

B
C
1
.2
.2

B
C
1
.2
.3

B
C
2
.2
.1

B
C
2
.2
.2

B
C
2
.2
.3

B
C
3
.2
.1

B
C
3
.2
.2

B
C
3
.2
.3

B
C
4
.2
.1

B
C
4
.2
.2

B
C
4
.2
.3

Fig. 12 Comparing topologies with a 2 percent volume frac-
tion constraint. Black and grey bars are used to mark elec-
trode locations on the cross-sections. Labels associate the
topology with its associated Pareto point in Figure 11.

out as Electrode Configuration.Volume Fraction Con-

straint.Topology Index. Thus, label BC1.2.1 is used to

mark a design that was optimized with the BC1 elec-

trode configuration, a two percent volume fraction con-

straint, and is indexed as topology number 1, indicat-

ing a high strain energy constraint. Each labeled topol-

ogy is presented with its strain energy and resistance

change. Boxed black and grey lines on the boundary

of the topologies mark the electrode locations and the

color bar maps the local CNT volume fraction.

BC1.2.1-BC4.2.1 are all topologies that maximize

stiffness. Stiffness is maximized by placing high con-

centrations of CNT away from the bending axis. This

sandwich beam configuration is somewhat intuitive, as

bending rigidity is effectively an integration of local ele-

ment stiffness multiplied by the distance from the bend-

ing axis.

BC1.2.3-BC4.2.3, are all topologies that maximize

the resistance change objective for the given electrode

boundary condition. All share a stiff right side and a

conductive path of lower volume fraction elements con-

necting the electrodes. Note that higher volume fraction

elements cause horizontal shifts in the neutral axis lo-

cation, leading to higher strains on the opposite side

of the cross-section. As piezoresistivity is dependent on

the strain it is beneficial to put highly piezoresistive ma-

terial in the region opposite the highly stiff elements.

Also, the micromechanics equation for resistivity in the

presence of strain, Equation 48, is sign dependent. Two

elements of the same volume fraction on opposite sides

of the neutral axis may generate canceling resistance

change contributions. This further reinforces the asym-

metric behavior seen in these topologies. The stiff ma-

terial pulls the neutral axis in that direction and the

highly piezoresistive material on the opposite side take

advantage of the larger strains.

In all cases, a conductive path between the elec-

trodes is necessary to measure resistance. For BC1 and

BC2 this path must cross the neutral axis. For these

electrode configurations there will always be some piezore-

sistive elements on both sides of the neutral axis in the

path, resulting in some canceling of peizoresistivity. Ad-

ditionally, the formation of the conductive path across

the neutral axis forces material towards the center of

the cross section, which is sub-optimal for stiffness max-

imization.

The competing relationship between stiffness and

resistance change can be partially decoupled by placing

the electrodes on one side of the neutral axis, as per

BC3 and BC4. For these electrode configurations the

highly piezoresistive elements form a conductive path

located on one side of the strain field. Adding the stiff

elements on the opposite side, the right edge in the

topologies shown, moves the neutral axis in that direc-

tion without it reducing the total piezoresistive contri-

butions. This also improves strain energy performance

by allowing the design to form a conductive path while

maintaining a sandwich beam topology.

Figure 13 helps to further illustrate this behavior

by plotting the local resistivity change due to strain

along with a vector plot to show the conductive path.

The red and green colormap shows positive and nega-

tive piezoresistive contributions, respectively. Elements

within the conductive path will contribute to the re-

sistance change objective. The left and right plots cor-

respond to BC1.2.3 and BC4.2.3, respectively. While

there is a band of red elements in right topology shown

in the figure, these elements do not fall in the conduc-

tive path and do not detract from the sensing perfor-

mance. Conversely, in the left topology the conductive
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Fig. 13 Comparing local piezoresistive contributions for
BC1.2.3 anc BC4.2.3. Colormap shows signed change in lo-
cal resistivity due to strain. Vector plot shows the conductive
path.

path flows from left to right, and there will be some

subtractive contribution from the red elements.

The influence of boundary condition is evident when

comparing points BC1.2.1 and BC2.2.1 to BC3.2.1 and

BC4.2.1, in which all designs are able to obtain the same

strain energy value. BC1 and BC2 must sacrifice the

formation of a conductive path between their left and

right electrodes and any asymmetry along this path to

obtain the strain energy value required by the epsilon-

constraint. BC3 and BC4 form a conductive path to

their top and bottom electrodes while still moving stiff

material away from the neutral axis. These electrode

configurations are able to produce equivalent strain en-

ergy values with higher resistance change values.

5.2 Strain Energy and Resistance Change

Optimization without a Global Volume Fraction

Constraint

The unconstrained results are shown in Figures 14 and

15. Here the label ’UC’ in the topology labels refers

to designs that are unconstrained in the global volume

fraction. Removing the volume fraction constraint pro-

vides a 90% increase in the normalized strain energy,

when compared to the two percent constrained solution.

As adding CNTs always increases the stiffness, there is

a direct relationship between the global volume fraction

constraint and the strain energy of the cross-section.

As the strain energy constraint is relaxed and the

resistance change increases, the design does not use all

the available material. BC4.UC.3, the topology with the

greatest resistance change of all the presented results,

uses less than four percent CNT globally. The same

mechanisms for improving sensing are repeated here. A

stiff right hand side is used to shift the neutral axis,

netting larger strains on the left half of the topology. A

conductive path connects the electrodes, and piezore-

Fig. 14 Pareto Fronts with labeled nondominated points. No
global VF constraint.
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Fig. 15 Comparing topologies without a volume fraction
constraint. Black and grey bars are used to mark electrode
locations on the cross-sections. Labels associate the topology
with its associated Pareto point in Figure 14.

sistive volume fractions are only used on the left half of

the design.

5.3 Comparing Results Across All Constraint Values

A final summary of the results is presented in Figure 16.

The boundary conditions are sorted by line and marker

color, and the volume fractions constraints are sorted

by marker shape, with the two percent volume fraction

constraint solutions being marked by circles and the

unconstrained solutions marked by squares.

As could be expected, the unconstrained solutions

dominate their constrained counterparts. However, and

examination of the total amount of CNTs used in the

unconstrained designs shows that not all of the ma-

terial is used in designs where sensing performance is

valued. Table 3 shows objective values against total vol-
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Fig. 16 Comparing Pareto Fronts across different volume
fractions and boundary conditions

Table 3 Total volume fraction vs optimized resistance
change and strain energy. Best performers highlighted.

ID Global VF Norm. U Norm.
∆R

R0
1.UC.1 9.38% 1.210E−2 1.208E−3
1.UC.2 7.96% 8.050E−3 1.251E−2
1.UC.3 5.76% 5.290E−3 1.523E−2
2.UC.1 9.96% 1.210E−2 1.797E−3
2.UC.2 7.58% 8.860E−3 1.543E−2
2.UC.3 6.02% 6.430E−3 1.724E−2
3.UC.1 9.95% 1.210E−2 6.323E−3
3.UC.2 4.50% 6.430E−3 2.100E−2
3.UC.3 3.42% 4.596E−3 2.287E−2
4.UC.1 9.53% 1.210E−2 6.285E−3
4.UC.2 4.81% 7.240E−3 2.041E−2
4.UC.3 3.43% 4.992E−3 2.396E−2

ume fraction used for the labeled unconstrained optimal

topologies. When large strain energies are required by

the constraint, the optimal solution uses nearly all of

the available material for the highest attainable strain

energy. When strain energy constraint is relaxed and

resistance change increases, the optimal solution uses

less CNT, down to less than 4 percent for the highest

resistance change values.

6 Conclusions

An optimization algorithm was developed to solve mul-

tiobjective topology optimization problems with mul-

tiple minima. The method implements micromechan-

ics to obtain local effective properties, which are used

within analytic beam bending and electrostatic finite

element solutions to obtain measure of cross-sectional

stiffness and strain sensing, respectively. Analytic gra-

dients are used to obtain sensitivities of the objectives

with respect to the design variables.

A Pareto-based restart method was introduced to

efficiently obtain improved Pareto Fronts. The method

uses a two-stage optimization procedure in which Pareto

points from a simplified problem (in the form of a coarse

mesh representation of the design space) are used as

starting conditions for the fine scale problem. In the

example shown the Pareto-Based Restart method was

computationally less expensive than a multi-start method

with random initial topologies, and also resulted in a

significantly better defined Pareto Front.

Four different boundary conditions and two differ-

ent global volume fraction constraints were compared.

It was found that relaxing the global volume fraction

constraint directly improved strain energy results. The

optimal topology without a global volume fraction con-

straint has over 90% more strain energy than the opti-

mal topology with a two percent volume fraction con-

straint. In the case of the constant curvature beam

strain energy is maximized by placing high CNT vol-

ume fractions as far from the neutral axis as possible.

Relaxing the global CNT volume fraction constraint

also improves resistance change. However, the best sens-

ing topologies did not use all available material, prefer-

ring between three and four percent CNT. For a given

boundary condition, resistance change is maximized via

shifting the neutral axis, creating piezoresistive asym-

metry across the strain field, and developing a conduc-

tive path between the boundary electrodes. Placing the

electrodes such that the conductive path does not have

to cross the neutral axis leads to topologies that can

perform well in both stiffness and sensing.

This study shows that the electrode boundary con-

dition plays an important role in the sensing perfor-

mance. In the future it may be beneficial to not only

design the CNT distribution, but the electrode loca-

tion as well. Also, extending the mechanics presented

here and their associated sensitivities to 2D and 3D

structures, relaxation of randomly oriented and well

dispersed assumptions, or inclusion of additional nano-

material additives are all interesting avenues of further

investigation.
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