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Abstract

The goal of this paper is to develop energy-preserving variational integrators for time-
dependent mechanical systems with forcing. We first present the Lagrange-d’Alembert prin-
ciple in the extended Lagrangian mechanics framework and derive the extended forced Euler-
Lagrange equations in continuous-time. We then obtain the extended forced discrete Euler-
Lagrange equations using the extended discrete mechanics framework and derive adaptive time
step variational integrators for time-dependent Lagrangian systems with forcing. We consider
two numerical examples to study the numerical performance of energy-preserving variational
integrators. First, we consider the example of a nonlinear conservative system to illustrate
the advantages of using adaptive time-stepping in variational integrators. We show a trade-
off between energy-preserving performance and accurate discrete trajectories when choosing
an initial time step. In addition, we demonstrate how the implicit equations become more
ill-conditioned as the adaptive time step decreases through a condition number analysis. As
a second example, we numerically simulate a damped harmonic oscillator using the adaptive
time step variational integrator framework. The adaptive time step increases monotonically
for the dissipative system leading to unexpected energy behavior.

Keywords: Energy-preserving integrators; Variational integrators; Adaptive time-step in-
tegrators; Discrete mechanics.

1 Introduction
In engineering applications, numerical integrators for equations of motion are usually derived by
discretizing differential equations. These traditional integrators do not account for the inherent
geometric structure of the governing continuous-time equations, which results in numerical meth-
ods that introduce numerical dissipation and do not preserve invariants of the system. The field
of geometric numerical integration is concerned with numerical methods that preserve the struc-
ture of the problem and the corresponding geometric properties of the differential equations. A
brief introduction to the field of geometric numerical integration can be found in [1] and various
techniques for constructing structure-preserving integrators for ordinary differential equations are
given in [2] .

Ge and Marsden [3] showed that a fixed time step numerical integrator cannot preserve the
symplectic form, momentum, and energy simultaneously for non-integrable systems. Based on
this result, structure-preserving fixed time step mechanical integrators can be divided into two
categories, symplectic-momentum, and energy-momentum integrators. Even though symplectic-
momentum integrators do not conserve energy exactly, they have been shown to exhibit good
long-time energy behavior. On the other hand, Simo and his collaborators [4, 5] have developed
mechanical integrators that conserve energy and momentum but do not preserve the symplectic
form.

Variational integrators are a class of structure-preserving integrators, that are derived by dis-
cretizing the action principle rather than the governing differential equation. The basic idea behind
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these methods is to obtain an approximation of the action integral called the discrete action. Sta-
tionary points of the discrete action give discrete time trajectories of the mechanical system. These
integrators have good long-time energy behavior and they conserve the invariants of the dynamics
in the presence of symmetries. The basics of variational integrators can be reviewed in [6] and
more detailed theory can be found in [7]. A more general framework encompassing variational
integrators, asynchronous variational integrators, and symplectic-energy-momentum integrators is
discussed in [8]. Due to their symplectic nature, variational integrators are ideal for long-time
simulation of conservative or weakly dissipative systems found in astrophysics and molecular dy-
namics. The discrete trajectories obtained using variational integrators display excellent energy
behavior for exponentially long times.

The fixed time step variational integrators derived from the discrete variational principle can-
not preserve the energy of the system exactly. To conserve the energy in addition to preserving
the symplectic structure and conserving the momentum, time adaptation needs to be used. These
symplectic-energy-momentum integrators were first developed for conservative systems in [9] by
imposing an additional energy preservation equation to compute the time step. The same inte-
grators were derived through a variational approach for a more general case of time-dependent
Lagrangian systems in [7] by preserving the discrete energy obtained from the discrete variational
principle in the extended phase space.

Numerically equivalent methods were derived independently through the Hamiltonian approach
by Shibberu in [10]. Shibberu has discussed the well-posedness of symplectic-energy-momentum
integrators in [11] and suggested ways to regularize the governing set of nonlinear discrete equations
in [12]. These symplectic-energy-momentum integrators require solving a coupled nonlinear implicit
system of equations at every time step to update the configuration variables and time variable. The
time-marching equations for these energy-preserving integrators are ill-conditioned for arbitrarily
small time steps and existence of solutions for these discrete trajectories is still an open problem.

The purpose of this paper is twofold. First, we develop variational integrators for time-
dependent Lagrangian systems with nonconservative forces based on the discretization of the
Lagrange-d’Alembert principle in extended phase space. We modify the Lagrange-d’Alembert
principle to include time variations in the extended phase space and derive the extended forced
Euler-Lagrange equations. We then present a discrete variational principle for time-dependent La-
grangian systems with forcing and derive extended discrete Euler-Lagrange equations. We use the
extended discrete mechanics formulation to construct adaptive time step variational integrators for
nonautonomous Lagrangian systems with forcing that capture the rate of energy evolution accu-
rately. Second, we consider two numerical examples to understand the numerical properties of the
adaptive time step variational integrators and compare the results with fixed time step variational
integrators to illustrate the advantages of using adaptive time-stepping in variational integrators.
We also study the effect of initial time step and initial conditions on the numerical performance of
the adaptive time step variational integrators.

The remainder of the paper is organized as follows. In Section 2, we review the basics of
Lagrangian mechanics and discrete mechanics. We also discretize Hamilton’s principle to derive
both fixed time step and adaptive time step variational integrators. In Section 3, we modify the
Lagrange-d’Alembert principle in the extended phase space and derive extended forced Euler-
Lagrange equations. In Section 4, we derive the extended forced discrete Euler-Lagrange equations
and obtain adaptive time step variational integrators for time-dependent Lagrangian systems with
forcing. In Section 5, we give numerical examples to understand the numerical performance of the
adaptive time step variational integrators. Finally, in Section 6 we provide concluding remarks
and suggest future research directions.

2 Background: Variational Integrators
In this section, we review the derivation of both fixed and adaptive time step variational integra-
tors. Drawing on the work of Marsden et al. [9, 13, 7], we first derive equations of motion in
continuous-time from the variational principle and then derive variational integrators by consider-
ing the discretized variational principle in the discrete-time domain. To this end, we first derive
continuous-time Euler-Lagrange equations of motion from Hamilton’s principle. After deriving
equations of motion, we use concepts of discrete mechanics developed in [7] to derive discrete
Euler-Lagrange equations and then write them in the time-marching form to obtain both fixed and
adaptive time step variational integrators for Lagrangian systems.
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2.1 Lagrangian Mechanics
Hamilton’s principle of stationary action is one of the most fundamental results of classical me-
chanics and is commonly used to derive equations of motion for a variety of systems. The forces
and interactions that govern the dynamical evolution of the system are easily determined through
Hamilton’s principle in a formulaic and elegant manner. Hamilton’s principle [14] states that:
The motion of the system between two fixed points from ti to tf is such that the action integral
has a stationary value for the actual path of the motion. In order to derive the Euler-Lagrange
equations via Hamilton’s principle, we start by defining the configuration space, tangent space and
path space.

Consider a time-independent Lagrangian system with the smooth configuration manifold Q,
state space TQ, and a Lagrangian L : TQ → R. For a given time interval [ti, tf ], we define the
path space to be

C(Q) =
{
q : [ti, tf ]→ Q | q is a C2 curve

}
(1)

where q has the coordinate expression (q1, ..., qd). The corresponding action B : C(Q) → R is
obtained by integrating the Lagrangian along the curve q(t), which gives

B(q) =

∫ tf

ti

L(q(t), q̇(t)) dt (2)

A variation δq(t) of q(t) is defined as

δq(t) =
d

dε
qε(t) |ε=0 (3)

where qε(t) is a smooth one-parameter family of trajectories for some real parameter ε with q0(t) =
q(t). Hamilton’s principle seeks paths q(t) ∈ C(Q) which pass through q(ti) and q(tf ) and also
satisfy

δB(q) = δ

∫ tf

ti

L(q(t), q̇(t)) dt = 0 (4)

We compute variations of the action

δB(q) =

∫ tf

ti

[
∂L(q(t), q̇(t))

∂q
· δq +

∂L(q(t), q̇(t))

∂q̇
· δq̇

]
dt (5)

which after using integration by parts gives

δB(q) =

∫ tf

ti

[
∂L(q(t), q̇(t))

∂q
− d

dt

(
∂L(q(t), q̇(t))

∂q̇

)]
· δq dt+

[
∂L(q(t), q̇(t))

∂q̇
· δq

]tf
ti

(6)

Since the endpoints are fixed, we set the variations of q(t) at the endpoints δq(ti) and δq(tf ) equal
to zero. Now, requiring that the variations of the action are zero for any admissible δq gives the
Euler-Lagrange equations for the autonomous Lagrangian system

∂L(q(t), q̇(t))

∂q
− d

dt

(
∂L(q(t), q̇(t))

∂q̇

)
= 0 (7)

which in the coordinate form is
∂L(q(t), q̇(t))

∂qi
− d

dt

(
∂L(q(t), q̇(t))

∂q̇i

)
= 0 for i = 1, ..., d (8)

The Lagrange-d’Alembert principle generalizes Hamilton’s principle to Lagrangian systems with
external forcing. For an autonomous Lagrangian system with forcing (time-independent), we use
the Lagrange-d’Alembert principle which seeks paths that satisfy

δ

∫ tf

ti

L(q(t), q̇(t)) dt+

∫ tf

ti

fL(q(t), q̇(t)) · δq dt = 0 (9)

where the second term accounts for the virtual work done by the forces when the path q(t) is
varied by δq(t). Using integration by parts gives∫ tf

ti

[
∂L(q(t), q̇(t))

∂q
− d

dt

(
∂L(q(t), q̇(t))

∂q̇

)
+ fL(q(t), q̇(t))

]
· δq dt+

[
∂L(q(t), q̇(t))

∂q̇
· δq

]tf
ti

= 0

(10)
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Setting the variations at the endpoints equal to zero, gives the forced Euler-Lagrange equations

∂L(q(t), q̇(t))

∂q
− d

dt

(
∂L(q(t), q̇(t))

∂q̇

)
+ fL(q(t), q̇(t)) = 0 (11)

which can be written in the coordinate form by

∂L(q(t), q̇(t))

∂qi
− d

dt

(
∂L(q(t), q̇(t))

∂q̇i

)
+ f iL(q(t), q̇(t)) = 0 for i = 1, ..., d. (12)

2.2 Variational Integrators
This subsection presents a systematic approach to derive fixed time step variational integrators for
autonomous Lagrangian systems with or without forcing. We use the concepts from discrete La-
grangian mechanics developed in [7] to derive the discrete Euler-Lagrange equations. The discrete
trajectories obtained from solving the derived equations are written in a time-marching form to
describe the discrete system as an integrator of the continuous system.

Having derived the continuous-time equations of motion from Hamilton’s principle, we consider
the discrete counterpart to derive fixed time step variational integrators. Consider a discrete
Lagrangian system with configuration manifold Q and discrete state space Q×Q. For a fixed time
step h =

tf−ti
N , the discrete trajectory is defined by the configuration of the system at the sequence

of times { tk = ti + kh|k = 0, ..., N} ⊂ R. The discrete path space is

Cd(Q) = Cd({ tk}Nk=0, Q) = { qd : { tk}Nk=0 → Q} (13)

We introduce the discrete Lagrangian function Ld(qk,qk+1), an approximation of the action inte-
gral along the curve between qk and qk+1. It approximates the integral of the Lagrangian in the
following sense

Ld(qk,qk+1) ≈
∫ tk+1

tk

L(q(t), q̇(t)) dt (14)

The discrete action map Bd : Cd(Q)→ R is defined by

Bd(qd) =

N−1∑
k=0

Ld(qk,qk+1) (15)

From the discrete Hamilton’s principle, we know that a discrete path qd ∈ Cd(Q) is a solution if
the variation of the discrete action is zero for arbitrary variations δqd ∈ TqdCd(Q) . Taking the
variation of the discrete action map gives

δBd(qd) =

N−1∑
k=0

[D1Ld(qk,qk+1) · δqk +D2Ld(qk,qk+1) · δqk+1] (16)

where Di denotes differentiation with respect to the ith argument of the discrete Lagrangian Ld.
The variation can be rearranged to give

δBd(qd) =

N−1∑
k=1

[D1Ld(qk,qk+1)+D2Ld(qk−1,qk)]·δqk+D1Ld(q0,q1)·δq0+D2Ld(qN−1,qN )·δqN

(17)
Setting the variation of the discrete action equal to zero for arbitrary variations gives the discrete
Euler-Lagrange equations

D2Ld(qk−1,qk) +D1Ld(qk,qk+1) = 0, k = 1, ..., N − 1 (18)

Given (qk−1,qk), the above equation can be solved to obtain (qk,qk+1). This defines the discrete
Lagrangian map FLd

: Q×Q→ Q×Q and the discrete system (18) can be seen as an integrator
of the continuous system (7).

We define the discrete momentum pk = D2Ld(qk−1,qk) for each k, which simplifies the second-
order discrete time-marching equations (18) to first-order form

−D1Ld(qk,qk+1) = pk (19)
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pk+1 = D2Ld(qk,qk+1) (20)

Given (qk,pk), (19) is solved implicitly to obtain qk+1, which is then used to obtain pk+1 from
(20).

For cases with forcing, we define two discrete forces f±d : Q×Q→ T ∗Q which approximate the
continuous-time force integral in the following sense

f+d (qk,qk+1) · δqk+1 + f−d (qk,qk+1) · δqk ≈
∫ tk+1

tk

fL(q(t), q̇(t)). · δq dt (21)

The discrete Lagrange-d’Alembert principle seeks curves { qk }Nk=0 that satisfy

δ

N−1∑
k=0

Ld(qk,qk+1) +

N−1∑
k=0

[f+d (qk,qk+1) · δqk+1 + f−d (qk,qk+1) · δqk] = 0 (22)

which gives the forced discrete Euler-Lagrange equations

D2Ld(qk−1,qk) +D1Ld(qk,qk+1) + f+d (qk−1,qk) + f−d (qk,qk+1) = 0 k = 1, ..., N − 1 (23)

These equations can be implemented as a variational integrator for forced Lagrangian systems as
follows

−D1Ld(qk,qk+1)− f−d (qk,qk+1) = pk (24)

pk+1 = D2Ld(qk,qk+1) + f+d (qk,qk+1) (25)

The fixed time step variational integrators (19)-(20) are symplectic and momentum-preserving.
These fixed time step algorithms have bounded energy error; the magnitude of the energy error
depends on where the trajectory is in the phase space. To preserve the energy of the Lagrangian
system exactly, time adaptation must be used. To this end, we use the extended Lagrangian
mechanics framework where, in addition to dynamic configuration variables, time is also treated
as a dynamic variable.

2.3 Extended Lagrangian Mechanics
Consider a time-dependent Lagrangian system with configuration manifold Q and time space R. In
the extended Lagrangian mechanics framework [7], we treat time as a dynamic variable and define
the extended configuration manifold Q̄ = R × Q; the corresponding state space TQ̄ is R × TQ.
The extended Lagrangian is L : R× TQ→ R.

In the extended Lagrangian mechanics framework, t and q are both parametrized by an inde-
pendent variable a. The two components of a trajectory c are c(a) = (ct(a), cq(a)). The extended
path space is

C̄ =
{
c : [a0, af ]→ Q̄| c is a C2 curve and c′t(a) > 0

}
(26)

For a given path c(a), the initial time is t0 = ct(a0) and the final time is tf = ct(af ). The extended
action B̄ : C̄ → R is

B̄ =

∫ tf

t0

L(t,q(t), q̇(t))dt (27)

Since time is a dynamic variable in this framework, we substitute (t,q(t), q̇(t)) =
(
ct(a), cq(a),

c′q(a)

c′t(a)

)
in the above equation to get

B̄ =

∫ af

a0

L

(
ct(a), cq(a),

c′q(a)

c′t(a)

)
c′t(a) da (28)

We compute variations of the action

δB̄ =

∫ af

a0

[
∂L

∂t
δct +

∂L

∂q
· δcq +

∂L

∂q̇
·
(
δc′q(a)

c′t
−
c′qδc

′
t(a)

(c′t)
2

)]
c′t(a)da+

∫ af

a0

Lδc′t(a) da (29)

Using integration by parts and setting the variations at the end points to zero gives

δB̄ =

∫ af

a0

[
∂L

∂q
c′t −

d

da

∂L

∂q̇

]
· δcq(a)da+

∫ af

a0

[
∂L

∂t
c′t +

d

da

(
∂L

∂q̇
.
c′q
c′t
− L

)]
δct(a) da (30)
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Using dt = c′t(a)da in the above expression gives two equations of motion. The first is the Euler-
Lagrange equation of motion

∂L

∂q
− d

dt

(
∂L

∂q̇

)
= 0 (31)

which is the same as the equation obtained using the classical Lagrangian mechanics framework in
Section 2.1. The second equation is

∂L

∂t
+
d

dt

(
∂L

∂q̇
.q̇− L

)
= 0 (32)

which describes how the energy of the system evolves with time.

2.4 Energy-preserving Variational Integrators
For the extended Lagrangian mechanics, we define the extended discrete state space Q̄× Q̄. The
extended discrete path space is

C̄d = { c : { 0, ..., N} → Q̄| ct(k + 1) > ct(k) for all k} (33)

The extended discrete action map B̄d : C̄d → R is

B̄d =

N−1∑
k=0

Ld(tk,qk, tk+1,qk+1) (34)

where Ld : Q̄×Q̄→ R is the extended discrete Lagrangian function which approximates the action
integral between two successive configurations. Taking variations of the extended discrete action
map gives

δB̄d =

N−1∑
k=1

[
D4Ld(tk−1,qk−1, tk,qk) +D2Ld(tk,qk, tk+1,qk+1)

]
· δqk

+

N−1∑
k=1

[
D3Ld(tk−1,qk−1, tk,qk) +D1Ld(tk,qk, tk+1,qk+1)

]
δtk = 0 (35)

Applying Hamilton’s principle of least action and setting variations at end points to zero gives the
extended discrete Euler-Lagrange equations

D4Ld(tk−1,qk−1, tk,qk) +D2Ld(tk,qk, tk+1,qk+1) = 0 (36)

D3Ld(tk−1,qk−1, tk,qk) +D1Ld(tk,qk, tk+1,qk+1) = 0 (37)
Given (tk−1,qk−1, tk,qk), the extended discrete Euler-Lagrange equations can be solved to obtain
qk+1 and tk+1. This extended discrete Lagrangian system can be seen as a numerical integrator
of the continuous-time nonautonomous Lagrangrian system with adaptive time steps.

In the extended discrete mechanics framework, we define the discrete momentum pk by

pk = D4Ld(tk−1,qk−1, tk,qk) (38)

We also introduce the discrete energy

Ek = D3Ld(tk−1,qk−1, tk,qk) (39)

Using the discrete momentum and discrete energy definitions, we can re-write the extended discrete
Euler-Lagrange equations (36) and (37) in the following form

−D2Ld(tk,qk, tk+1,qk+1) = pk (40)

D1Ld(tk,qk, tk+1,qk+1) = Ek (41)
pk+1 = D4Ld(tk,qk, tk+1,qk+1) (42)
Ek+1 = −D3Ld(tk,qk, tk+1,qk+1) (43)

Given (tk,qk,pk, Ek), the coupled nonlinear equations (40) and (41) are solved implicitly to obtain
qk+1 and tk+1. The configuration qk+1 and time tk+1 are then used in (42) and (43) to obtain
(pk+1, Ek+1) explicitly. The extended discrete Euler-Lagrange equations were first written in the
time-marching form in [7] and are also known as symplectic-energy-momentum integrators.
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3 Modified Lagrange-d’Alembert Principle
The extended discrete Euler-Lagrange equations derived in Section 2.4 can be used as energy-
preserving variational integrators for Lagrangian systems. In order to extend this energy-preserving
variational integrator framework to Lagrangian systems with external forcing, we need to dis-
cretize the Lagrange-d’Alembert principle in the extended Lagrangian mechanics framework. We
first present the Lagrange- d’Alembert principle in extended phase space for time-dependent La-
grangian systems with forcing by considering the variations with respect to time t. Using the
extended Lagrangian mechanics framework, we derive the extended Euler-Lagrange equations for
time-dependent Lagrangian systems with forcing.

As mentioned in Section 2.1, the Lagrange- d’Alembert principle (9) modifies Hamilton’s prin-
ciple of stationary action by considering the virtual work done by the forces for a variation δq in
the configuration variable q. Since the standard Lagrangian mechanics framework treats time only
as an independent continuous parameter, it does not account for time variations in the Lagrange-
d’Alembert principle. Thus, we need to modify the Lagrange-d’Alembert principle in the extended
Lagrangian mechanics framework to account for time variations.

We modify the Lagrange-d’Alembert principle by adding an additional term in the variational
principle that accounts for virtual work done by the external force fL due to variations in the time
variable

δ

∫ tf

t0

L(t,q(t), q̇(t)) dt+

∫ tf

t0

fL(t,q(t), q̇(t)) · δq dt−
∫ tf

t0

fL(t,q(t), q̇(t)) · (q̇δt) dt = 0 (44)

Using the extended Lagrangian mechanics framework discussed in Section 2.3 to derive the equa-
tions of motion, we first re-write the modified Lagrange-d’Alembert principle

δ

∫ af

a0

L

(
ct(a), cq(a),

c′q(a)

c′t(a)

)
c′t(a) da+

∫ af

a0

fL

(
ct(a), cq(a),

c′q(a)

c′t(a)

)
· (δcq − q̇δct) c′t(a)da = 0

(45)
Taking variations of the discrete action with respect to both configuration q and time t gives∫ af

a0

[
∂L

∂t
δct +

∂L

∂q
· δcq +

∂L

∂q̇
·
(
δc′q(a)

c′t
−
c′qδc

′
t(a)

(c′t)
2

)]
c′t(a)da+

∫ af

a0

Lδc′t(a) da

+

∫ af

a0

(fL · δcq) c′t(a)da−
∫ af

a0

(fL · q̇) δct c
′t(a)da = 0 (46)

Using integration by parts and setting variations at the end points to zero gives∫ af

a0

[
∂L

∂q
c′t −

d

da

∂L

∂q̇
+ fL

]
· δcq(a)da+

∫ af

a0

[
∂L

∂t
c′t +

d

da

(
∂L

∂q̇
.
c′q
c′t
− L

)
− fL · q̇

]
δct(a) da = 0

(47)
Using dt = c′t(a)da in the above expression gives two equations of motion for the forced time-
dependent Lagrangian system. The first equation is the well-known forced Euler-Lagrange equation
for a time-dependent system

∂L

∂q
− d

dt

(
∂L

∂q̇

)
+ fL = 0 (48)

whereas the second equation is the energy evolution equation

∂L

∂t
+
d

dt

(
∂L

∂q̇
q̇− L

)
− fL · q̇ = 0 (49)

Thus, for the forced case, the energy evolution equation describes how the energy of the Lagrangian
system depends on the input power by the external force fL. If we consider an associated curve
q(t) satisfying the forced Euler-Lagrange equations and compute the energy evolution equation we
get

∂L

∂t
+
d

dt

(
∂L

∂q̇
.q̇− L

)
− fL.q̇ =

∂L

∂t
+
d

dt

(
∂L

∂q̇

)
.q̇ +

∂L

∂q̇
.q̈− dL

dt
− fL.q̇ (50)

which after substituting d
dt

(
∂L
∂q̇

)
= ∂L

∂q + fL simplifies to

∂L

∂t
+
d

dt

(
∂L

∂q̇
.q̇− L

)
− fL.q̇ =

(
∂L

∂t
+

(
∂L

∂q
+ fL

)
.q̇ +

∂L

∂q̇
.q̈
)
− dL

dt
− fL.q̇ = 0 (51)
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which shows that (48) implies (49). Thus, for continuous-time forced Lagrangian systems, the
additional energy evolution equation obtained by taking the variation with respect to time does
not provide any new information concerning the forced Euler-Lagrange equations.

Remark 1. It should be noted that both (48) and (49) depend only on the associated curve
q(t) and the time component ct(a) of the extended path cannot be determined from the govern-
ing equations. Thus, the "velocity" of time, i.e. c′t(a), is indeterminate in the continuous-time
formulation of time-dependent Lagrangian systems with forcing.

4 Energy-preserving Variational Integrators
In this section, we derive the extended discrete Euler-Lagrange equations for time-dependent La-
grangian systems with forcing by discretizing the modified Lagrange-d’Alembert principle given
in Section 3. The key difference from the extended discrete Euler-Lagrange equations derived in
Section 2.4 is that we will have additional discrete terms accounting for the virtual work done by
the external forcing.

The modified Lagrange-d’Alembert principle presented in Section 3 has two continuous-time
force integrals in the variational principle. In order to derive the extended forced discrete Euler-
Lagrange equations, we define two discrete force terms f±d : Q̄× Q̄→ T ∗Q̄ which approximate the
virtual work done due to variations in q in the following sense

f+d (tk,qk, tk+1,qk+1) · δqk+1 + f−d (tk,qk, tk+1,qk+1) · δqk ≈
∫ tk+1

tk

fL(t,q(t), q̇(t)) · δq dt (52)

We also define two discrete power terms g±d : Q̄× Q̄→ R which approximate the virtual work done
due to time variations in the following sense

g+d (tk,qk, tk+1,qk+1)δtk+1 + g−d (tk,qk, tk+1,qk+1)δtk ≈
∫ tk+1

tk

−fL(t,q(t), q̇(t)) · (q̇δt) dt (53)

For the time-dependent Lagrangian system with forcing, we seek discrete-time paths which satisfy

δ

N−1∑
k=0

Ld(tk,qk, tk+1,qk+1) +

N−1∑
k=0

[f+d (tk,qk, tk+1,qk+1) · δqk+1 + f−d (tk,qk, tk+1,qk+1) · δqk]

+

N−1∑
k=0

[g+d (tk,qk, tk+1,qk+1)δtk+1 + g−d (tk,qk, tk+1,qk+1)δtk] = 0 (54)

Setting all the variations at the endpoints equal to zero in (54) gives the extended forced discrete
Euler-Lagrange equations

D4Ld(tk−1,qk−1, tk,qk)+D2Ld(tk,qk, tk+1,qk+1)+ f+d (tk−1,qk−1, tk,qk)+ f−d (tk,qk, tk+1,qk+1) = 0
(55)

D3Ld(tk−1,qk−1, tk,qk)+D1Ld(tk,qk, tk+1,qk+1)+ g+d (tk−1,qk−1, tk,qk)+ g−d (tk,qk, tk+1,qk+1) = 0
(56)

We modify the definitions of the discrete momentum and energy to account for the effect of forcing

pk = D4Ld(tk−1,qk−1, tk,qk) + f+d (tk−1,qk−1, tk,qk) (57)

Ek = −D3Ld(tk−1,qk−1, tk,qk)− g+d (tk−1,qk−1, tk,qk) (58)

Using the modified discrete momentum and energy definitions (57) and (58), the extended forced
discrete Euler-Lagrange equations can be re-written in the following form

−D2Ld(tk,qk, tk+1,qk+1)− f−d (tk,qk, tk+1,qk+1) = pk (59)

D1Ld(tk,qk, tk+1,qk+1) + g−d (tk,qk, tk+1,qk+1) = Ek (60)

pk+1 = D4Ld(tk,qk, tk+1,qk+1) + f+d (tk, qk, tk+1, qk+1) (61)

Ek+1 = −D3Ld(tk,qk, tk+1,qk+1)− g−d (tk,qk, tk+1,qk+1) (62)
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Given a time-dependent Lagrangian system with external forcing, the extended discrete Lagrangian
system obtained by solving (59)-(62) can be used as an adaptive time step variational integrator
for the continuous-time system.

Remark 2. The modified discrete energy (58) has a contribution from the external forcing which
accounts for the virtual work done during the adaptive time step. Thus, the discrete trajectory
obtained by solving the extended discrete Euler-Lagrange equations preserves a discrete quantity
which is not the discrete analogue of the total energy of the Lagrangian system. This detail be-
comes important when we simulate a dissipative Lagrangian system with an adaptive time step
variational integrator in Section 5.2

5 Numerical Examples
In this section, we implement the extended discrete Euler-Lagrange equations as numerical integra-
tors of continuous dynamical systems. We first consider a nonlinear conservative dynamical system
studied in [9] and compare the fixed time step variational integrator results with the corresponding
results for the adaptive time step variational integrator. We then study the damped harmonic os-
cillator, a time-independent dynamical system, using the extended forced discrete Euler-Lagrange
equations in order to investigate the numerical properties of the adaptive time step variational
integrators for forced systems.

5.1 Conservative Example
We consider a particle in a double-well potential. The Lagrangian for this conservative one degree
of freedom dynamical system is

L(q, q̇) =
1

2
mq̇2 − V (q) (63)

where
V (q) =

1

2

(
q4 − q2

)
(64)

5.1.1 Fixed time step algorithm

For the fixed time step case, we choose a constant time step h. The discrete Lagrangian is obtained
using the midpoint rule

Ld(qk, qk+1) = hL

(
qk + qk+1

2
,
qk+1 − qk

h

)
(65)

Using (20), the discrete momentum pk+1 is given by

pk+1 = m

(
qk+1 − qk

h

)
+ h

((
qk+1 + qk

4

)
−
(
qk+1 + qk

2

)3
)

(66)

For given (qk, pk) at the kth time step, using (19) gives the following implicit equation

m

(
qk+1 − qk

h

)
− h

((
qk+1 + qk

4

)
−
(
qk+1 + qk

2

)3
)

= pk (67)

5.1.2 Adaptive time step algorithm

For the adaptive time step case, we have discrete time tk as an additional discrete variable. We
use the midpoint rule to obtain the discrete Lagrangian Ld

Ld(tk, qk, tk+1, qk+1) = (tk+1 − tk)

[
1

2
m

(
qk+1 − qk
tk+1 − tk

)2

− 1

2

((
qk+1 + qk

2

)4

−
(
qk+1 + qk

2

)2
)]
(68)
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(a) q(0) = 0.74, q̇(0) = 0 (b) q(0) = 0.995, q̇(0) = 0

Figure 1: Two initial conditions are studied for the energy error analysis for the particle in double-
well potential. An initial time step of h0 = 0.01 is used for both cases and phase space trajectories
for both fixed time step and adaptive time step algorithms are compared to the benchmark tra-
jectory. The trajectories in each figure are indistinguishable.

The discrete momentum pk and discrete energy Ek are obtained by substituting the Ld expression
in (42) and (43)

pk+1 = m

(
qk+1 − qk
tk+1 − tk

)
+ (tk+1 − tk)

((
qk+1 + qk

4

)
−
(
qk+1 + qk

2

)3
)

(69)

Ek+1 =
1

2
m

(
qk+1 − qk
tk+1 − tk

)2

+
1

2

((
qk+1 + qk

2

)4

−
(
qk+1 + qk

2

)2
)

(70)

The implicit time-marching equations for the adaptive time step algorithm are

m

(
qk+1 − qk
tk+1 − tk

)
− (tk+1 − tk)

((
qk+1 + qk

4

)
−
(
qk+1 + qk

2

)3
)

= pk (71)

1

2
m

(
qk+1 − qk
tk+1 − tk

)2

+
1

2

((
qk+1 + qk

2

)4

−
(
qk+1 + qk

2

)2
)

= Ek (72)

Since the dynamical system being considered here is time-independent, we rewrite the time-
marching equations in terms of hk = (tk+1 − tk) and vk =

(
qk+1−qk
tk+1−tk

)
F (qk, pk, hk, vk) = mvk − hk

((
vkhk + 2qk

4

)
−
(
qk +

vkhk
2

)3
)
− pk = 0 (73)

G(qk, Ek, hk, vk) =
1

2
mv2k +

1

2

((
qk +

vkhk
2

)4

−
(
qk +

vkhk
2

)2
)
− Ek = 0 (74)

These time-marching equations are solved using Newton’s iterative method with the restriction
hk > 0 to obtain discrete trajectories in the extended space. This extended discrete system can be
used as a variational integrator for the continuous-time dynamical system.

Remark 3. In [9], an alternative optimization method has been implemented where instead
of solving the nonlinear coupled equations (73) and (74), the following quantity is minimized

[F (qk, pk, hk, vk)]2 + [G(qk, Ek, hk, vk)]2 (75)

over the variables vk and hk with the restriction hk > 0. The drawback of using this approach
is that numerically it violates the energy evolution equation and the underlying structure is no
longer preserved. In fact, due to this optimization approach, the energy plots given in [9] do not
clearly convey the advantage of energy-preserving variational integrators.
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(a) q(0) = 0.74, q̇(0) = 0 (b) q(0) = 0.995, q̇(0) = 0

Figure 2: Energy error plots for both fixed time step and adaptive time step algorithms are
compared for two different initial conditions. Each figure shows the superior energy performance
of the adaptive time step algorithm.

(a) q(0) = 0.74, q̇(0) = 0 (b) q(0) = 0.995, q̇(0) = 0

Figure 3: Adaptive time step versus iteration number for both initial conditions.

5.1.3 Initial condition

We have considered two regions of phase space, similar to the numerical example in [9], to under-
stand numerical properties of the adaptive time step variational integrator for conservative systems.
Since our aim is to use these discrete trajectories as numerical integrators for continuous dynami-
cal systems, instead of starting with two discrete points we consider a continuous-time dynamical
system with given initial position q(0) and initial velocity q̇(0) and use the benchmark solution to
obtain initial conditions for the adaptive time step variational integrator.

For a given set of initial conditions, i.e. (q(0), q̇(0)), we first decide the initial time step h0 and
then use the benchmark solution to compute discrete configuration q1 at time t1 = h0, configuration
at first time step. Thus, we have obtained two discrete points in the extended state space (t0, q0)
and (t1, q1) and using these two discrete points we can find discrete momentum p1 and discrete
energy E1. After obtaining (t1, q1, p1, E1), we can solve the time-marching equations (59)-(62) to
numerically simulate the dynamical system.

5.1.4 Results

The discrete trajectories for both fixed and adaptive time step algorithms are compared with the
benchmark solution in Figure 1. The position q = qk+qk+1

2 and velocity q̇ = qk+1−qk
hk

are computed
from the discrete trajectories for both fixed and adaptive time step algorithms and compared with
continuous time q and q̇. For both initial conditions, discrete trajectories from the adaptive time
step and fixed time step match the benchmark trajectory.

The energy error plots for both cases show the superior energy behavior of adaptive time
step variational integrators for conservative dynamical systems. Instead of using the optimization
approach discussed in Remark 3, we have obtained the discrete trajectories by solving the nonlinear
coupled equations exactly to preserve the underlying structure. The energy error plots given in
Figure 2 quantify the difference in energy accuracy for fixed time step and adaptive time step
method clearly. The energy-preserving performance was not evident in similar results given in
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[9] because of the optimization approach used to obtain discrete trajectories instead of solving the
implicit equations directly. The energy error comparison in Figure 2a shows that the adaptive time
step method has energy error magnitude around 10−14 whereas the fixed time step method has
energy error around 10−8. In Figure 2b the energy error for fixed time step increases to 10−6 while
the adaptive time step method shows nearly exact energy preservation. Although the magnitude
of energy error for fixed time step method is bounded, the magnitude of energy error oscillations
depends on where the trajectory lies in the phase space. Thus, for areas in phase space where the
magnitude of energy error oscillations is substantial for fixed time step method, the adaptive time
step method can be used to preserve the energy of the system more accurately.

The energy error plots for the adaptive time step algorithm exhibits small jumps in energy error
which, we believe, is due to the ill-conditioned nature of the coupled implicit nonlinear equations.
Since the governing implicit equations aren’t solved exactly, small numerical errors are introduced
at every adaptive time step. These small numerical errors lead to jumps in discrete energy error
because of the ill-conditioned nature of the implicit equations.

Figure 3 shows how the adaptive time step oscillates for both cases. The adaptive time step
doesn’t increase substantially compared to the initial time step of h0 = 0.01 for the first case in
Figure 3a, while Figure 3b indicates the adaptive time step increases by 4 times the initial time
step for the second case. The amplitude of adaptive time step oscillations depends on the region of
phase space in which the discrete trajectory lies. The adaptive time step algorithm computes the
adaptive time step such that the discrete energy is conserved exactly. There is no upper bound on
the size of the adaptive time step, but very large adaptive time step values make the discretization
assumption made in (68) erroneous leading to inaccurate discrete trajectories.

Remark 4. It is important to understand that adaptive time step variational integrators are
fundamentally different from traditional adaptive time-stepping numerical methods which com-
pute the adaptive time step size based on some error criteria. Adaptive time step variational
integrators treat time as a discrete dynamic variable and the adaptive time step is computed by
solving the extended discrete Euler-Lagrange equations. Thus, the adaptive time step is coupled
with the dynamics of the system whereas, for most of the the adaptive time-stepping numerical
methods, the step size computation and dynamics of the system are independent of each other.

(a) q(0) = 0.74, q̇(0) = 0 (b) q(0) = 0.995, q̇(0) = 0

Figure 4: In these plots, an initial time step of h0 = 0.1 is used to study the effect of initial time
step on the accuracy of discrete trajectories.

5.1.5 Effect of initial time step

From the discrete energy definition it is clear that the initial time step value plays an important
role in the adaptive time step algorithm. We study the effect of initial time step on the phase
space and energy error plots by simulating the two cases considered in the previous subsection but
with a larger initial time step h0 = 0.1.

The phase space trajectories shown in Figure 4 show that even with an initial time step of
h0 = 0.1 discrete trajectories from both fixed and adaptive time step show good agreement with the
benchmark solution. In Figure 4a, the discrete trajectories lie on top of the benchmark solution for
the first set of initial conditions. In Figure 4b, the fixed and adaptive time step discrete trajectories
give slightly inaccurate results near the turning point. The discrete energy error plots in Figure
5 show that for fixed time step variational integrators, the discrete energy errors increase with
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increase in the time step size but for the adaptive time step variational integrators, increasing
the time step size leads to more accurate discrete energy behavior. This unexpected behavior is
due to the ill-conditioned nature of the implicit extended discrete Euler-Lagrange equations, which
become more ill-conditioned for smaller time steps. The plots of condition number in Figure 6 show
that the implicit equations become more ill-conditioned as the initial time step value is decreased.

It is important to note that for a conservative system, the continuous-time trajectory preserves
the continuous energy which is different from the discrete energy that adaptive time step variational
integrators are constructed to preserve. This explains why, despite the superior energy behavior
in Figure 5b compared to Figure 2b, the discrete trajectory in Figure 4b is less accurate than the
discrete trajectory in Figure 1b. We know that as the time step value tends to zero the discrete
energy and continuous energy become equal but the condition number analysis and the energy
error plots reveal that smaller initial time steps for adaptive time variational integrators lead to an
increase in energy error. Thus, there is a trade-off between preserving discrete energy and ensuring
accuracy when choosing an initial time step for the adaptive time step variational integrators.

(a) q(0) = 0.74, q̇(0) = 0 (b) q(0) = 0.995, q̇(0) = 0

Figure 5: The energy error plots with an initial time step of h0 = 0.1.

(a) q(0) = 0.74, q̇(0) = 0 (b) q(0) = 0.995, q̇(0) = 0

Figure 6: The condition numbers increase with decrease in initial time step in the case of the
adaptive time step algorithm.

Remark 5. The discrete energy error plotted in Figure 2 and Figure 5 is different from our
traditional idea of energy error. We usually define energy error as the difference between the
energy of the continuous-time system and the energy obtained from the discrete trajectories. This
traditional energy error can be broken down into discrete energy error and discretization error.
The discrete energy error is the error in preserving the discrete energy of the extended discrete
Lagrangian system. The discretization error is the error incurred by discretizing a continuous-time
system. Thus, the discretization error is the difference between the continuous energy and the
discrete energy that our integrators aim to preserve, whereas the discrete energy error is the error
between the true and computed discrete energy.
Remark 6. For a conservative system, we expect discrete energy to be constant and thus the
discretization error is also constant. Since this constant discretization error is orders of magnitude
larger than the discrete energy error, traditional energy error plots do not show the advantages of
using adaptive time-stepping. We evaluate the performance of variational integrators by comparing
how well these integrators preserve the discrete energy.
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5.2 Dissipative Example
We consider a damped harmonic oscillator in order to better understand the numerical behavior
of the adaptive time step variational integrator for forced Lagrangian systems. The (continuous)
Lagrangian for the single degree of freedom system is

L(q, q̇) =
1

2
mq̇2 − 1

2
kq2 (76)

and the dissipative force is
f = −cq̇ (77)

where m is the mass, k is the stiffness and c is the damping parameter of the single degree of
freedom system. For the discrete Lagrangian Ld, we use the midpoint rule which gives

Ld(tk, qk, tk+1, qk+1) = (tk+1 − tk) L

(
qk + qk+1

2
,
qk+1 − qk
tk+1 − tk

)
(78)

Similarly, we can write the discrete force f±d as

f±d = −1

2
c(tk+1 − tk)

(
qk+1 − qk
tk+1 − tk

)
(79)

and the corresponding power term g±d is

g±d = −f±d

(
qk+1 − qk
tk+1 − tk

)
=

1

2
c(tk+1 − tk)

(
qk+1 − qk
tk+1 − tk

)2

(80)

The discrete momentum pk+1 and discrete energy Ek+1 expressions are

pk+1 = D4Ld(tk, qk, tk+1, qk+1) + f+d

= m

(
qk+1 − qk
tk+1 − tk

)
− k(tk+1 − tk)

(
qk + qk+1

4

)
− c

(
qk+1 − qk

2

) (81)

Ek+1 = −D3Ld(tk, qk, tk+1, qk+1)− g+d

=
1

2
m

(
qk+1 − qk
tk+1 − tk

)2

+
1

2
k

(
qk + qk+1

2

)2

− c
(

(qk+1 − qk)2

tk+1 − tk

) (82)

For given (tk, qk, Ek, pk), the time-marching implicit equations are obtained by substituting the
discrete Lagrangian and discrete force expressions into (59) and (60)

m

(
qk+1 + qk
tk+1 − tk

)
+ k(tk+1 − tk)

(
qk+1 + qk

4

)
− c(tk+1 − tk)

(
qk+1 − qk

2

)
= pk (83)

1

2
m

(
qk+1 − qk
tk+1 − tk

)2

+
1

2
c(tk+1 − tk)

(
qk+1 − qk
tk+1 − tk

)2

+
1

2
k

(
qk+1 + qk

2

)2

= Ek (84)

The above two coupled nonlinear equations in qk+1 and tk+1 are solved with the restriction
tk+1 > tk and substituted in (81) and (82) to obtain the discrete momentum pk+1 and dis-
crete energy Ek+1 for the next step. We re-write the above time-marching equations in terms
of hk = tk+1 − tk and vk =

(
qk+1−qk
tk+1−tk

)
F (qk, pk, hk, vk) = mvk +

hk
4

(2qk + hkvk) +
1

2
chkvk − pk = 0 (85)

G(qk, Ek, hk, vk) =
1

2
mv2k +

1

2
chkv

2
k +

1

2
k

(
qk +

hkvk
2

)2

− Ek = 0 (86)

Remark 7. Since the Lagrangian and the forcing for this example are both time-independent, we
can replace tk+1−tk by the kth adaptive time step hk as shown above. For time-dependent mechan-
ical systems with either time-dependent Lagrangian or time-dependent forcing, this simplification
cannot be made and the implicit equations must be solved for tk+1.
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(a) ζ = 0.001 (b) ζ = 0.005

(c) ζ = 0.01

Figure 7: Three damping ratio values are studied for the spring mass damper system. Discrete
trajectories for both fixed time step and adaptive time step variational integrators are plotted
and compared with the analytical solution. The analytical solution is used to prescribe initial
conditions for an initial time step h0 = 0.01 and natural frequency ωn = 2 rad/s.

5.2.1 Results

We have studied the damped simple harmonic oscillator for three small damping values of the
damping ratio ζ = c

2
√
km

for a single natural frequency ωn =
√

k
m = 2 rad/s to understand the

numerical properties of adaptive time step variational integrators derived for forced systems in
Section 4. Just like the conservative case, our aim is to simulate the continuous-time dynamical
system using discrete trajectories obtained from the adaptive time step variational integrator. The
discrete trajectories from both fixed and adaptive time step algorithms are compared in Figure 7.
Both are nearly indistinguishable from the analytical solution for all three cases.

The energy error plots in Figure 8 show how both adaptive and fixed time step variational
integrators start with same energy accuracy for all three cases but, as we march forward in time,
the fixed time step variational integrator outperforms the adaptive time step variational integrator.
The amplitude of the energy error oscillations for the fixed time step algorithm decreases faster than
it does for the adaptive time step algorithm which suggests that for long-time simulations the energy
behavior of fixed time step variational integrator is better than the adaptive time step variational
integrator. This is contrary to what we expected because the adaptive step variational integrator
solves an additional discrete energy evolution equation to capture the change in energy of the
forced system accurately.

These unexpected results can be understood by looking at the two components of the energy
error discussed in the Remark 5. Due to exact preservation of discrete energy, the discrete energy
error for adaptive time step variational integrators is orders of magnitude lower than it is for
the fixed time step variational integrator. Unlike the conservative system example considered
in Section 5.1, the continuous energy and the corresponding discrete energy, for this dissipative
system, are not constant. Thus, the energy errors are computed by comparing the continuous
energy with the discrete counterpart. The discrete energy for forced Lagrangian systems has terms
accounting for virtual work done by the external force during the adaptive time step and hence the
adaptive time step variational integrators are preserving a discrete quantity which is not analogous
to the continuous time energy. Since the difference between continuous and discrete energy is orders
of magnitude larger than the discrete energy error of the variational integrator, the resulting energy
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(a) ζ = 0.001 (b) ζ = 0.005

(c) ζ = 0.01

Figure 8: Energy error for fixed time step and adaptive time step variational integrators are
compared for three cases. Analytical solution at the discrete time instant is used to compute the
continuous energy.

error plots do not reflect the advantage of using adaptive variational integrators over fixed time
step variational integrators.

Another reason behind the higher energy error for adaptive time step variational integrators is
the monotonically increasing adaptive time step shown in Figure 9. The velocity approximation
q̇ ≈ qk+1−qk

hk
used in computing the discrete energy becomes more inaccurate as the adaptive time

step increases. As we go forward in time, the adaptive time step hk keeps on increasing leading to
higher energy error for adaptive time step variational integrators. Thus, the magnitude of energy
error for adaptive time does not decrease as quickly as it does for fixed time step variational
integrators.

In Figure 9 the adaptive time step evolution over time for all three damping parameter values
is plotted. For all three cases, the adaptive time step was found to be monotonically increasing.
This is not good for a numerical algorithm as eventually it would lead to numerical instability. We
have also studied the damped harmonic oscillator system for negative damping parameter values
and the results for those systems showed a uniformly decreasing adaptive time step. Thus, there
seems to be some inverse relation between the rate of change of energy and the rate of change of
the adaptive time step.

6 Conclusions and Future work
In this work we have presented adaptive time step variational integrators for time-dependent me-
chanical systems with forcing. We have incorporated forcing into the extended discrete mechanics
framework so that the resulting discrete trajectories can be used as numerical integrators for La-
grangian systems with forcing. The paper first presented the Lagrange-d’Alembert principle in the
extended Lagrangian mechanics framework and then derived the extended forced discrete Euler-
Lagrange equations from the discrete Lagrange-d’Alembert principle. We demonstrated a general
method to construct adaptive time step variational integrators for Lagrangian systems with forcing
through a damped harmonic oscillator example. The results from the numerical example showed
that the adaptive time step algorithm works well for cases where the rate of change of energy
of the system is very slow. The adaptive time step for the dissipative system was found to be
monotonically increasing which makes the algorithm unsuitable for long-time simulation.
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Figure 9: Adaptive time step versus the time for the energy-preserving variational integrator.

We have also presented results for a nonlinear conservative system by solving the discrete
equations exactly, as opposed to the optimization approach suggested in [9]. The energy error
results show the advantage of solving discrete equations exactly for adaptive time step variational
integrators. We have studied the effect of initial time step on energy error and phase space
trajectories and also shown how the discrete equations become more ill-conditioned as the initial
time step becomes smaller.

In future work, we would like to study the connection between the rate of change of energy and
the size of the adaptive time step which is evident in the example of the damped harmonic oscilla-
tor. It would also be desirable to investigate the numerical performance of variational integrators
for time-dependent Lagrangian systems.
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