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Abstract – In this work, we propose an innovation-based
INS spoofing monitor that utilizes a tightly-coupled INS-
GNSS integration in a Kalman filter. The performance
of the monitor is evaluated when a spoofer tracks and
estimates the aircraft position. To create the worst case
spoofing conditions, we analytically derive a Kalman filter-
based worst-case sequence of spoofed GNSS measure-
ments. Utilizing this worst-case spoofing attack scenario
during a Boeing 747 (B747) final approach, we prove
that unless the spoofer’s position-tracking devices have
unrealistic accuracy and no-delay, the proposed INS mon-
itor performance is highly effective in detecting spoofing
attacks.

I. INTRODUCTION
GNSS spoofing attack is a critical threat to positioning

integrity, particularly in aircraft’s final approach where the
consequences are potentially catastrophic. In this paper, we
propose a simple INS spoofing monitor and statistically vali-
date its performance against worst-case spoofing attacks even
if the spoofer has the ability to estimate the real-time position
of the aircraft – for example, by means of remote tracking
from the ground.

A spoofing attack happens when a counterfeit signal is
deliberately broadcast to an aircraft, potentially resulting in
incorrect position estimates. As a result, the trajectory of the
target user can be manipulated through the fake broadcast
signals [4]. Numerous anti-spoofing techniques have been de-
veloped and vulnerability of these existing methods have been
discussed in [12, 13]. These include cryptographic authenti-
cation techniques employing modified GNSS navigation data
[14–16], spoofing discrimination using spatial processing by
antenna arrays and automatic gain control schemes [5,17,18],
GNSS signal direction of arrival comparison [19] code and
phase rate consistency checks [20], high-frequency antenna
motion [7], and signal power monitoring techniques [21, 22].
Intuitive approaches to monitor for spoofing attacks using
redundant sensors have also been proposed, however the first
thorough description of their implementation and performance
in terms of probability of false alarm and probability of missed
detection was first introduced in [3].

The INS detector introduced in [2,3] monitors discrepancies
between GNSS spoofed measurements and INS measurements.
The basis for the detector is a tightly coupled integration

of GNSS measurements and INS kinematic models using a
weighted least squares batch estimator. Receiver Autonomous
Integrity Monitoring (RAIM) concepts are implemented using
the time history of estimator residuals for spoofing detection.
Here the redundancy required for detection is provided through
INS measurements, unlike conventional usage of RAIM,
where detection is provided through satellite redundancy [24].
Using the residual based detector it is possible to analyti-
cally determine the worst-case sequence of spoofed GNSS
measurements – that is, the spoofed GNSS signal profile that
maximizes integrity risk [6].

Given this context, our previous work [3] illustrated how
a spoofer can introduce false measurements slowly into the
GNSS signal such that they corrupt the tightly coupled position
solution while going unnoticed by the detector. It was also
shown that if the spoofer knows the exact trajectory of an
aircraft and has enough time for spoofing, he or she might
eventually cause errors large enough to exceed hazard safety
limits, again without triggering an alarm from the detector.
However, it was acknowledged that in reality, the users actual
trajectory would always deviate from a prescribed path (e.g.,
a straight line final approach) due to natural disturbances
such as wind gusts and aircraft autopilot response to control
actions. Deviations from the nominal trajectory due to these
disturbances, which are assumed to be unknown to the spoofer,
would enhance detection capability of the INS monitor.

In [2], we generalized the spoofing integrity analysis by
deriving the statistical dynamic response of an aircraft to a
well-established vertical wind gust power spectrum. The main
contribution of that work was the development of a rigorous
methodology to compute upper bounds on the integrity risk
resulting from a worst-case spoofing attack without needing to
simulate individual aircraft approaches with an unmanageably
large number specific gust disturbance profiles (approximately
109 to meet aircraft landing integrity requirements). In our lat-
est work [1], we investigated the impact on spoofing detection
due to an aircrafts response to control actions (actuated by
the autopilot) due to spoofed GNSS signals. In response to
the manipulated position state estimates, the aircraft autopilot
commands an acceleration (force) to maneuver the aircraft to
the spoofer’s desired trajectory. As with the gust case, the
controller response results in transient behavior immediately
reflected by INS, but not on the spoofed signal. We showed
that even without exposure to wind gusts, autopilot reactions



to the spoofer’s input significantly enhance INS detection of
the spoofing attack.

One assumption made on all our previous studies is that the
spoofer knows that the aircraft uses INS to detect spoofing
attacks, but has no real-time knowledge of the actual aircraft
position during spoofing attack. In this paper, we first assume
that the spoofer has the ability to estimate the real-time posi-
tion of the aircraft, for example, by means of remote tracking
from the ground. In addition, we assume that the spoofer have
the knowledge of the exact INS and GNSS error models of the
aircraft, and derive a worst-case fault profile that maximizes
the integrity risk. Unlike the previous work, which used a batch
estimator to derive the worst-case fault profile, we utilize the
more realistic Kalman filter estimator and innovation-based
cumulative test statistic in analytically deriving the worst-case
fault vector. Then, we investigate the leveraging effect of the
tracking sensor errors in making INS monitoring effective even
if the spoofer has the ability to estimate the real-time position
of the aircraft. We show that although the spoofer injects the
worst-case spoofed measurements based on the sensed actual
position of the aircraft, tracking sensor errors and lack of
measuring angular states of the aircraft will be reflected as
inconsistency in the test statistic and make the proposed INS
monitor effective.

In this paper, we first define the proposed INS monitor
that utilizes a Kalman filter-based cumulative test statistic.
Next, we construct a stochastic performance evaluation model
that stands for the state estimate error dynamics and the
innovation propagation in the existence of a spoofing attack
with real-time position tracking. To obtain the worst-case
scenario within wide variety of threat space, we then introduce
the analytical derivation for a Kalman filter-based worst-case
fault. Finally, fusing the worst-case fault with the evaluation
model, we perform covariance analysis simulations to quantify
the performance of the monitor in terms of integrity risk for
B747 landing approach.

II. INS AIRBORNE MONITOR

RAIM was originally developed to detect satellite faults
by exploiting the extra redundancy in satellite measurements.
The residual vector is defined as the difference between
the predicted measurements and the actual measurements. In
RAIM monitors, the test statistic is defined as the weighted
norm of the residual vector. Under fault free conditions, the
statistical behavior of the test statistic is governed by the
measurement noise characteristics. For a given false alarm
requirement, these characteristics are used to define a threshold
for the RAIM monitor. Unlike conventional RAIM usage,
detection concepts used in this work utilize the redundancy
through INS measurements.

GNSS and INS can be coupled using a variety of integration
schemes. These can range from the simple loosely coupled
integration, to the complex ultra-tightly coupled mode in
which the INS directly aids the GNSS tracking loops [23].
This work uses a tightly-coupled integration.

A. Tightly-coupled INS-GNSS Kalman Filter Estimator

The estimator in INS utilizes a kinematic model to predict
aircraft motion as [8]

ẋn = F n xn + Gu u (1)

where xn = [�r, �v, �E]T is referred to as the INS state
vector including deviations in position vector r, velocity vector
v, and attitude vector E of the aircraft. F n is plant matrix
of the kinematic model, Gu is input coefficient matrix, and
u = [�f, �!]T contains the deviations in specific force �f and
angular velocity �! relative to the inertial frame.

IMU measures the deviations in specific force and angular
velocity, and the IMU measurement ũ is expressed in terms
of u in (1) as

ũ = u + b + ⌫n (2)

⌫n is a 6 ⇥ 1 vector including accelerometer and gyroscope
white noises, which are uncorrelated and zero-mean and b is
a 6⇥1 IMU bias vector that is modeled as a first order Gauss
Markov process as

ḃ = F b b + ⌘b (3)

where ⌘b represents the driving white noise and ⌧ represents
the autocorrelation time constants of biases.

Using (2), we augment the bias dynamics in (3) with the
INS model in (1), which yields a process model for the Kalman
filter as
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Defining w = Gww, discrete form of the process model in
(4) is written as:

xk = �xk�1 + � ũk�1 + wk�1 (5)

where � is the state transition matrix of the process model,
and � is the discrete form of G

0

u. wk ⇠ N (0, W k). The IMU
measurement ũk can be treated as a deterministic input to the
process model in (5).

Since the main focus of this work is to detect spoofing
during landing approach, we assume a double-difference (DD)
GNSS measurements. The actual GNSS code and carrier phase
measurement equation linearized about a nominal position, is
represented for the kth time epoch as [9]

zk = G⇤�rk + ⌫⇢�k (6)

where zk is the actual GNSS measurement vector containing
carrier and code phase measurements after subtracting the
nominal, G⇤ is the observation matrix including line-of-sight
information from the reference station to the satellites in



the navigation frame, �rk is the variation on the position
of the aircraft relative to reference station represented in
navigation frame, ⌫⇢�k

⇠ N (0, V k) is the DD carrier and
code measurement error vector.

In tightly coupled mechanism, raw INS and GNSS data
are processed in a unified Kalman filter where the coupling
between process model and spoofed measurement model can
be obtained by first relating the state vector �rk in (20) to the
state vector xk in the process model in (5) as

xk =


�rk

x
0

�
(7)

where x
0

refers to all the states in xk except �rk.
Using the relation in (7), the measurement in (20) is re-

formulated as
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where Hk is the observation matrix of the augmented mea-
surement model. It should be noted that, although the aug-
mentation of multipath and cycle ambiguity states in (5) and
(8) is not shown for the sake of simplicity in the equations.
They are accounted for in the implementation and the results
in Section IV.

Given the measurement model in (8) and the process model
in (5), the Kalman filter time update is

xk = � x̂k�1 + � ũk�1 (9)

where xk and x̂k�1 are the a priori estimate of x at time
epoch k and a posteriori estimate of x at k � 1, respectively.

Measurement update at time epoch k gives the a posteriori
estimate x̂k as

x̂k = xk + Lk

�
zk � Hk xk

�
(10)

where Lk is the Kalman gain at time epoch k, and optimally
computed by the actual aircraft estimator as

Lk = P̂ kHT
k V �1

k (11)

and P̂ k is the augmented state estimate error covariance at
time epoch k and is obtained as

P̂ k =
�
P

�1
k + HT

k V �1
k Hk

��1 (12)

where P k is the prior information on the state estimate error
covariance at time k and computed as

P k = � P̂ k�1�
T + W k�1 (13)

B. Kalman Filter-based INS Monitor

We use an innovation-based INS monitor, which utilizes
Kalman filter in an INS-GNSS integration. The innovation �
at time epoch k is defined as

�k = zk � Hk xk (14)

where the a priori estimate of xk is obtained from the Kalman
filter time update in (9).

Cumulative test statistic q at time epoch k is defined as the
sum of weighted norm of the innovation vectors as

qk =
kX

i=1

�T
i S�1

i �i (15)

where Sn is innovation vector covariance matrix at time epoch
n.

The proposed INS monitor checks whether the test statistic
qk is smaller than a pre-defined threshold T 2 as

qk < T 2 (16)

Let n be the number of measurements, under fault free
conditions, the test statistic qk is centrally chi-square dis-
tributed with k ⇥ n degrees of freedom. For a given false
alarm requirement, the threshold T2 is determined from the
inverse cumulative chi-square distribution. The INS monitor
alarms for a fault if qk > T 2. Under faulted conditions, qk

is non-centrally chi-square distributed with a non-centrality
parameter �2

k,

�2
k =

kX

i=1

E[�i]
T S�1

i E[�i] (17)

which is used to evaluate the performance of the monitor by
computing the probability of missed detection.

III. MONITOR PERFORMANCE EVALUATION
In this section, we derive an evaluation model for the

performance of the proposed monitor by fusing the spoofed
measurements into the Kalman filter-based estimator and de-
tector derived in the previous section. Using this evaluation
model, we derive a methodology to quantify the performance
of the INS monitor in terms of integrity risk under worst-
case spoofing attacks with aircraft position tracking. We also
introduce an analytical derivation for a Kalman filter-based
worst-case fault that maximize integrity risk. The impact of
the real-time position tracking and spoofing on the aircraft’s
compensation system and motion is described in the closed
loop block diagram in Fig. 1.

A. Evaluation Model for Spoofing Monitor Performance

To quantify the impact of the spoofing attack with position
tracking on the proposed monitor performance, we construct
a Kalman filter-based estimation error model capturing the
impact of the spoofed measurements that contain the spoofer’s
tracking sensor errors and fault.

In a spoofing attack, the GNSS measurement that the aircraft
receives will be the spoofer’s broadcast zs

k which is expressed
as

zs
k = Hk x̂s

k + ⌫⇢�k + fk (18)

where x̂s
k is the spoofer’s estimate for the actual aircraft state

xk and fk is the fault vector computed by the spoofer.
The spoofer’s estimate of the aircraft state vector x̂s

k can be
expressed in terms of the actual state xk as

x̂s
k = xk + x̃s

k (19)
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Fig. 1. An example closed loop model for an aircraft altitude hold system
in the existence of a GNSS spoofing attack with laser position tracking from
ground.

where x̃s
k is the estimate error influenced by the tracking

sensor noise.
Substituting (19) into (18), the spoofed measurement be-

comes
zs

k = Hk xk + ⌫⇢�k + Hk x̃s
k + fk| {z }
f 0

k

(20)

where f 0
k is the resultant fault vector containing the position

tracking error.
Under a spoofing attack, the actual measurement zk in the

estimator’s measurement update equation (10) is replaced with
the spoofed measurement zs

k in (20), that is

x̂k = xk + Lk
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Substituting (20) into (21) gives
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Substituting time update equation (9) into (22),
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(23)

Let us define the state estimate error as x̃k = x̂k � xk. Sub-
tracting (5) from (23) gives the state estimate error dynamics
as

x̃k = L
0

k� x̃k�1 � L
0

kwk�1 + Lk

�
⌫⇢�k + f 0

k

�
(24)

Similarly, the innovation vector under a spoofing attack is
obtained by replacing the actual measurement zk in (14) with
the spoofed measurement zs

k in (20) as

�k = zs
k � Hk xk (25)

Using (5) and (9), the current innovation vector �k in (25)
can be expressed in terms of the previous state estimate error
x̃k�1 as

�k = f 0
k + ⌫⇢�k � Hk

�
� x̃k�1 � wk�1

�
(26)

Augmenting the state estimate error model in (24) and the
innovation model in (26) results in a performance evaluation
model capturing the impact of the error in spoofer’s tracking
sensors and the fault on both the state estimate error and the
innovation as
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where y is defined as the state vector of the evaluation
model including the state estimate error and the innovation.
�y , ⌥y , and  y are the state transition, noise coefficient,
and fault input coefficient matrices of the evaluation model,
respectively. Using (27), the mean E[yk] and covariance Y k

of the evaluation model state y can be propagated as

E[yk] = �yk E[yk�1] + yk f 0
wk

(28)

Y k = �yk Y k�1�
T
yk

+⌥ykW yk⌥
T
yk

(29)

where W yk is the covariance of wyk .

B. Spoofing Integrity Risk

In this work, integrity risk is used as a metric to quantify the
performance of the spoofing monitor. Integrity risk is defined
as the probability that the aircraft state estimate error (e.g.,
altitude error) exceeds an alert limit without being detected
(i.e. q < T 2). Given spoofing hypothesis Hs, integrity risk at
time epoch k is expressed in terms of a cumulative test statistic
qk and the altitude estimate error "k as

Irk = Pr
�
|"k| > l ; qk < T 2 | Hs

�
(30)

where l is the vertical alert limit, and T 2 is pre-defined
threshold for detection which is same as that in (16).

Since the error in altitude is the most critical in landing
approach and vertical requirements are usually the most strin-
gent, it is convenient to evaluate the performance with respect
to vertical direction only. The error associated with the altitude
"k can be extracted from x̃k using the row transformation
vector ⌧ " as

"k = ⌧ " x̃k (31)

where "k is normally distributed.
Cumulative test statistic qk in (15) is expressed in vector

form as
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where Sk is the innovation covariance obtained from Y k in
(29) as

Sk = T �Y kT T
� (33)

where T � extracts the rows of yk corresponding to �k.
Similarly, non-centrality parameter �2 of the cumulative test

statistic in (17) is written as

�2
k = E[�T

1|k] S�1
1|k E[�1|k] (34)

Using the Kalman filter-based evaluation model in (27), it
is proved that E[x̃i�

T
j ] = 0 for all i � j in Appendix A.

Therefore, the cumulative test statistic qk obtained from in-
novations and the altitude error "k obtained from the current
state estimate error will be statistically independent. Therefore,
integrity risk Irk can be written as a multiplication of two
probabilities as

Irk = Pr ( |"k| > l ) Pr
�
qk < T 2

�
(35)

C. Kalman Filter-based Worst-case Fault Derivation

In this work, since all GNSS measurements may be im-
pacted by the spoofing attack, it is assumed that all GNSS
measurements are faulty and that IMU is the fault-free source
of redundancy in the INS monitor. If a spoofing attack
is not detected instantaneously, it may impact INS error
state estimates through the tightly coupled mechanism, which
impacts subsequent detection capability. Therefore, a smart
spoofer may select a fault profile f1|k that has smaller faults
at the beginning and gradually increases over time, thereby
corrupting INS calibration without being detected.

A worst case fault derivation based on a batch estimator
was previously introduced in [6]. In this work, we extend the
methodology to analytically derive the worst-case fault profile
that maximizes the Kalman filter estimate error associated with
the most hazardous state "k while minimizing the cumulative
test statistic qk or in other words, maximizing the integrity risk.
To obtain the optimal direction and magnitude of the worst-
case fault history vector f1|k, we utilize the Kalman filter-
based evaluation model in (27) by conservatively assuming
that the spoofer has the knowledge of exact error models
for the aircraft’s INS-GNSS system and account for his/her
own position tracking sensor errors in the worst-case fault
computation. (28) and (34) indicate that the fault history vector
f1|k affects the mean of x̃k and the non-centrality parameter
�2

k of the cumulative test statistic qk. The ratio E["k]2/�2
k is

called the failure mode slope ⇢2k and provides an upper bound
to the integrity risk Irk in (35) [6]. That is, the optimization
problem for obtaining the worst-case fault can be formulated
as

maximize
f1|k

⇢2k =
E["k]2

�2
k

(36)

Recall that "k and �2 are functions of the state estimate error
x̃k and the innovation history vector �1|k, respectively. Also,
x̃k and �k are both linear functions of f1|k. Using (28) and

(27), the means of x̃k and �k can be extracted as
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Assuming fault-free initial condition as E[x̃0] = 0, the
particular solution to (37) is obtained as a function of f1|k
as
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Substituting (39) into (38) gives the mean of innovation as a
function of f1|k as
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Substituting (41) into (17) gives the non-centrality parameter
of the cumulative test statistic as
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measurement at each time epoch and 0 < i < k. Then, (42)
is equivalently expressed in block matrix form as
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Substituting (39), (43) and (31) into (36) gives the failure mode
slope ⇢k as a function of only the fault history vector f1|k as
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To determine the direction of vector f1|k that maximizes ⇢k,
a change of variable is performed by defining f̆1|k as

f̆1|k =
�
S

�1/2

1|k B1|k
�
f1|k (45)

The failure mode slope in (44) can be rewritten in terms of
f̆1|k as
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(46)



0 20 40 60 80 100
0

5

10

15

20

Square−root of Test Statistic [m]

Ve
rti

ca
l E

st
im

at
e 

Er
ro

r [
m

]

 

 

Failure Mode Slope      
Fault

(I)(IV) HMI

(III) (II)

(�k, µ"k)

q
1/2

"k

⇢k
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The black curves are lines of constant joint probability density obtained using
(35).

where k is a row vector defined as

k = ⌧ "Ak

�
S

�1/2

1|k B1|k
��1 (47)

From (46), it can be concluded that f̆1|k that maximizes
fault mode slope ⇢2k must be in the direction of the vector k.
Let us denote the worst-case fault history vector fw1|k

with a
magnitude ↵w and a direction fw1|k as

fw1|k
= ↵w fw1|k (48)

Using (45) and (47), the worst-case fault direction fw1|k is
obtained as

fw1|k =
�
S

�1/2

1|k B1|k
��1

k (49)

The worst-case fault magnitude ↵w is a scalar that is deter-
mined through iteration to maximize Irk in (35) along the
worst-case direction fw1|k obtained in (49).

IV. PERFORMANCE ANALYSIS RESULTS
To test the performance of the proposed INS spoofing

monitor, a covariance analysis with a B747 flight on approach
is simulated at trimmed flight conditions in Table I. The
IMU sensor and GNSS receiver specifications are provided in
Table II. Since the spoofer is assumed to have a limited range,
the spoofing attack will be of limited duration. Therefore, we
assume that the state estimator has been running at fault free
conditions and reached steady state prior to the spoofing attack
and the monitor.

To investigate the performance of the INS monitor, we
initially assumed a spoofing attack with perfect tracking
sensors that estimates the exact aircraft position (x̃s

k = 0)
and computed the worst-case fault profile that maximizes
the integrity risk for a given spoofing attack period. An
example worst-case fault and its failure mode slope for a 140
s B747 approach are illustrated in Fig. 2. The non-central chi

TABLE I
B747 APPROACH TRIMMED FLIGHT CONDITIONS [11]

Flight Conditions Value Unit

Speed 63 m/s
Angle of Attack 8 deg
Flight Path Angle �3 deg
Altitude Sea Level �

TABLE II
INS-GNSS ERROR PARAMETERS [10]

Parameter Value Unit

Gyro angle random walk 0.001 o/
p

h
Gyro bias error 0.01 o/h
Gyro time constant 3600 s
Accelerometer white noise 10�5g m/s2

Accelerometer bias error 10�5g m/s2

Accelerometer bias time constant 3600 s
Multipath time constant 100 s
SD Carrier phase multipath noise 1 cm
SD Code phase multipath noise 30 cm
SD Carrier phase thermal noise 0.2 cm
SD Code phase thermal noise 50 cm

distribution q
1/2

k and the normal distribution "k are represented
on the x-axis and y-axis, respectively. The x-y plane is divided
into four quadrants by a typical vertical alert limit l = 10 m
and a threshold T = 56.4 m computed using fault-free test
statistic. The fourth quadrant refers to the area of hazardous
misleading information (HMI), where undetected faults result
in an unacceptably large estimation errors. The probability of
being in the HMI area corresponds to the integrity risk in
(35). Each point (�k, µ"k ) on the x-y plane corresponds to
a different fault, and for this scenario the worst-case fault is
obtained at the marker (�k = 26.8 m, µ"k = 9.7 m) located on
the worst-case fault failure mode slope (blue line). This worst-
case fault results in a distribution in the oval shape contours of
constant joint probability density (black curves). The integrity
risk for the worst-case fault is computed as Ir = 5.9 ⇥ 10�6.

To quantify the impact of the spoofing attack period on
the integrity risk, we obtained the worst-case fault profiles
for different attack periods ranging from 130 to 210 s and
computed the corresponding integrity risks. As seen in Fig. 3,
if the spoofer has perfect position tracking sensors, increasing
the attack period eventually causes high integrity risks of up to
1. The reason is that, increasing the spoofing time allows the
spoofer to inject faults to the system more slowly (see Fig. 4),
which reduces the monitors ability to detect spoofing attacks
by corrupting the estimation of INS states. On the other hand,
for limited attack periods, the integrity risk is considerably low.
For example, at the GNSS sampling frequency of 2 Hz, the
worst-case attacks having a period shorter than 135 s. results in
integrity risks of less than 10�7 even though the spoofer tracks
the aircraft position with zero-error. Fig. 3 also illustrates that
at lower GNSS sampling rates, the worst-case spoofing attacks
result in lower integrity risks for same attack periods.
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Fig. 4. The vertical components of aircraft position x and its estimate error
x̃ due to the worst-case fault profile computed for a closed-loop spoofing
attack for 140 s (left) and 280 s (right) landing approach of a B747 with
GNSS sampling rate of 2 Hz.

Previous results assumes that the spoofer is able to esti-
mate the exact position of the aircraft. In order to be more
realistic, the errors in position tracking must be accounted
for. Therefore, we assume that the spoofer’s position estimate
error x̃k is a zero-mean white noise x̃s

k ⇠ N (0, P̂
s

k). Utilizing
deterministic noise profiles for the vertical component of x̃s

k,
we illustrate the leveraging effect of the altitude tracking errors
in detecting spoofing attacks. Fig. 5 shows that for a position
tracking error of more than 4 mm (1-sigma), the integrity
risk always remains below 10�9, which is a typical safety
requirement in aviation applications. The results are very
promising because that level of tracking accuracy is unrealistic
to be achieved with any combination of the existing high-grade
position tracking systems (e.g., laser, radar, vision).

V. CONCLUSION

In this work, we developed a generalized statistical method-
ology to evaluate the performance of the INS monitor by
deriving a Kalman filter-based evaluation model, where the
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Fig. 5. The impact of altitude tracking error and attack period on the integrity
risk in the presence of worst-case spoofing attacks with a GNSS sampling
frequency of 2 Hz.

GNSS fault is fed into a tightly-coupled INS-GNSS integrated
system. We also introduced a novel analytical derivation of
a worst-case fault profile for spoofing attacks with aircraft
position tracking. Utilizing this worst case fault profile, we
performed a covariance analysis to quantify the detector per-
formance in terms of integrity risk. The simulation results
showed that, although we conservatively assumed the spoofer
knows the exact INS-GNSS error models of the aircraft and
has no-delay in his/her position tracking loop and broadcast,
the proposed monitor provides a direct means to detect spoof-
ing attacks unless the spoofer’s tracking sensors has unrealistic
high accuracy.
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Appendix A
STATISTICAL INDEPENDENCE BETWEEN
CURRENT-TIME ESTIMATE ERROR AND
INNOVATIONS

As discussed in Section III-B, the independence between
current state estimate error and innovations in the Kalman
filter-based estimator enables us formulate integrity risk as in
(35) instead of numerically more complicated form as in (30).
In this section, we prove the statistical independency between
the current-time state estimate error x̃k and innovation �k.

The current state estimate error x̃k and the innovation vector
�k are extracted from the Kalman filter-based evaluation



model in (27) as

x̃k = L
0

k� x̃k�1 � L
0

kwk�1 + Lk ⌫⇢�k + Lkfwk
(50)

�k = �Hk� x̃k�1 + Hk wk�1 + ⌫⇢�k + fwk
(51)

Using (50) and (51), covariance between the current state
estimate error x̃k and the innovation �k is obtained as

E[x̃k�T
k ] = �L

0

k

�
� P̂ k�1�

T + W k�1

�
HT

k + LkV k (52)

Recall P k = � P̂ k�1�
T + W k�1 from (13) and L

0

k =
I � LkHk from (22), and substitute them into (52)

E[x̃k�T
k ] =

�
LkHk � I

�
P k HT

k + LkV k (53)

Recall Lk = P̂ kHT
k V �1

k from (11) and substitute it into (53)

E[x̃k�T
k ] =

�
P̂ kHT

k V �1
k Hk � I

�
P k HT

k + P̂ kHT
k (54)

Re-arranging (12) gives

HT
k V �1

k Hk = P̂
�1

k � P
�1
k (55)

Substituting (55) into (54) gives

E[x̃k�T
k ] =

⇥
P̂ k(P̂

�1

k � P
�1
k ) � I

⇤
P k HT

k + P̂ k HT
k

= �P̂
�1

k HT
k + P̂

�1

k HT
k = 0

(56)

Eq. (56) proves that x̃k and �k are statistically independent.
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