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ABSTRACT

This paper describes the derivation, analysis and evaluation of a new sequential integrity monitoring for Kalman
filter (KF) applications. The monitor uses innovation sequence obtained from a single Kalman filter for fault detection.
Unlike multiple hypothesis solution separation monitors, it does not require running sub-filters to detect and exclude
the fault. The main contributions of this paper is an analytical recursive expression of the worst case failure mode
slopes, which is direct means of computing protection levels in real-time. The performance of the monitor is evaluated
and verified against single satellite faults through a tightly-coupled INS/GNSS integrated navigation systems in
aircraft approach and en route operations. However, the methodology developed in this paper is not limited to
INS/GNSS systems but applicable to any other multi-sensor systems using KF estimators.

I. INTRODUCTION

Of primary concern in safety critical applications is integrity, which is a measure of trust in sensor information.
The integrity risk is defined as the probability of a system state estimation error exceeding a predefined limit of
acceptability (or alert limit) without timely warnings. For example, in aircraft final approach applications, states
of interest include the aircraft’s vertical position coordinate, and, the alert limit ranges from ten to tens of meters
depending on the mission. For ground transportation applications, especially self-driving cars, the lateral alert limits
are in sub-meter levels. Therefore, alert mechanisms are required to guarantee the positioning integrity. The challenge
in integrity monitoring is not so much to design estimators and detectors, as it is to quantify the risk of undetected
faults causing estimation errors to exceed the alert limit. Because sensor faults are rarely occurring events, we know
very little about them other than, sometimes, their mean rate of occurrence. To address this problem, and to account
for the impact of undetected faults on estimation errors, worst-case approaches are adopted.

In this work, we assume that faults cause unknown, time-varying shifts in mean measurement error. On the
one hand, large-size faults have a significant impact on estimation error but are easy to detect. On the other
hand, smaller and slow building faults will likely go undetected, but will not impact estimation error much. Thus,
integrity monitoring can be seen as an optimization process: finding the worst-case fault, which maximizes estimation
error while going undetected, thereby maximizing integrity risk. For snapshot estimators and detectors, analytical
solutions exist to find the worst-case fault vector magnitude and direction, even when multiple measurements are
simultaneously faulted [8], [4]. If robust time-propagation models for state estimate and measurement errors are
available, then time-sequential estimators, such as a KF, surpass snapshot estimators in accuracy performance. Under
the same assumptions, sequential detectors can be significantly more efficient than snapshot detectors, especially
against slowly increasing faults.

Multiple-Hypothesis Solution Separation (MHSS) can be used for integrity monitoring in time-sequential
implementations [7]. In MHSS, under a given fault hypothesis, the detection test statistic is the difference between
the full-set solution and the subset fault-free solution that excludes all faulty observations. The main drawback
of MHSS is that it requires banks of KFs for each fault hypothesis, which brings a heavy computational burden
especially in the existence of multiple sensor faults and a higher risk of false alarms due to multiple tests [4], [9]. In
contrast, a chi-squared detector uses a single test statistic. We can distinguish two chi-squared test statistics, either
derived from the weighted norm of KF measurement residuals, or innovations. In this work, we focus on the latter
because its distribution is easier than that of residuals in quantifying the integrity risk. The innovation-based test
statistic, which is the sum of weighted norms squared for a sequence of KF innovations is chi-squared distributed
[1].

A major challenge with a KF estimator and an innovation-based (IB) detector is to find the worst-case fault profile
over time that maximizes integrity risk. A first answer to this question was provided in [1]. It showed that, in general,
the worst-case fault profile is neither a step, a ramp, nor a quadratic function, which are often assumed when no
other methods were available. The mathematical framework to quantify integrity risk described in [1] captures the
impact of fault history on estimation error and innovations using block matrices obtained from time propagation
of KF. These block matrices were used to determine the maximum failure-mode slope (FMS), the maximum ratio
of the mean estimation error over the non-centrality parameter of the test statistic. Unfortunately, this approach is
computationally limited due to growing size block matrices, especially for en route aircraft operations requiring a

2441



larger fault monitoring window. In response, this work describes a fully recursive approach to compute the worst-
case fault, thereby providing a rigorous and computationally efficient method to upper-bound the integrity risk in
widely-used KF applications.

This paper describes a new sequential integrity monitoring for Kalman filter (KF) applications. Its integrity and
computational performance are superior to the existing baseline A-RAIM (Advanced Receiver Autonomous Integrity
Monitoring) techniques using solution-separation-based monitors. There are mainly two reasons for that: 1) Unlike
snapshot A-RAIM techniques, the proposed monitor utilizes a time sequence of a single KF innovations for fault
detection that leverages satellite motion over time, especially against gradual and consistent constellation faults, 2)
It incorporates onboard inertial sensors without any modification to the receivers, which tremendously increases the
monitor’s immunity to faults in the existence of poor satellite visibility or signal spoofing where all the baseline
A-RAIM techniques lose their functions.

In the first part of the paper, we present a derivation for a sequential update of the worst-case FMS. For time
sequential monitors, detecting gradual faults is much more difficult than that on abrupt faults, therefore the resulting
worst-case FMS may increase as the time window for fault gets longer [1]. On the other hand, when only a sub-set
of measurements are faulty the maximum FMS may be bounded over time since the redundancy due to the healthy
measurement will increase as time elapses, which offers more opportunities to detect a fault, especially when using
accumulated innovation norm. The key step in the derivation is capturing the impact of the fault time and the
unfaulty measurements on the worst-case FMS in a sequential formulation, which is composed of a successive time
update and fault downdate processes. The FMS time update equation is obtained by simplifying the block matrix
approach previously developed in [1], by using matrix inversion lemmas. The fault downdate equation is obtained
using rank one update methods [2]. It is remarkable that the worst-case FMS recursion is established on a square
matrix with a dimension of the number of KF states and does not require any inversion. This is of fundamental
importance implying that lower computation and memory resources are required to provide a tight integrity risk
bound.

Innovations sequence monitors when used with a single Kalman filter, does not have the capability of excluding
faulty measurements. It is common to use bank of sub-filters with solution separation methods to bring the exclusion
capability, which however comes with the computational cost of multiple filters. By means of the sequential FMS
approach, the second part of the paper constructs a mathematical framework for fault exclusion without needing to
run multiple filters.

In the final section of the paper, we evaluate the innovation sequence monitor on an integrated INS/GNSS
navigation systems. Using the sequential approach worst-case FMS values, resulting integrity risks are recorded and
verified against those obtained from the block matrix approach developed in the prior work. The leverage of satellite
motion and inertial sensors are quantified. For aircraft approach and en route aircraft operations, it is demonstrated
that the proposed monitor meets all RNP0.1, RNP0.3, LPV200, CAT-I, and CAT-II/III integrity requirements in the
existence of minimal satellite redundancy (e.g. minimum 5 or more satellites in view). In the absence of satellite
redundancy where all baseline A-RAIM monitors fail, it was shown that the proposed INS monitor still guarantees
LPV200 and CAT-I integrity while it preserves integrity for limited (but reasonable) durations for the CAT-II/III,
RNP0.1, and RNP0.3.

II. KALMAN FILTER INNOVATION SEQUENCE MONITOR

Kalman filter innovation monitoring is a common feature of Kalman filter applications. It is useful for detecting
short-term faults. When monitoring snapshot innovations, the monitor responds poorly to faults that build up
gradually. The reason is that the state estimates are corrupted before the fault becomes hazardous. However, slowly
growing faults can be identified by forming a test statistic containing the past and current innovations. This is known
as innovation sequence monitoring [10].

Let process and measurement models be

xk = Φkxk−1 + Γk−1ũk−1 + wk (1)

zk = Hkxk + νk (2)

2442



where Φ (m × m) is the state transition matrix of the process model, ũk (1 × 1) is deterministic input to the
process, Γ (m × 1) is the input coefficient matrix, wk ∼ N (0,Wk) (m × 1) is the process noise, Hk (n ×m) is
the observation matrix, and νk ∼ N (0,Vk) is the measurement noise vector (n× 1).

Then, the Kalman filter time update can be written as

xk = Φk−1 x̂k−1 + Γk−1 ũk−1 (3)

where xk is the a priori estimate of xk.
And, the measurement update gives the a posteriori estimate x̂k as

x̂k = xk + Lk

(
zk −Hk xk

)
(4)

where Lk (m× n) is the optimal Kalman gain.
Based on the Kalman filter estimator defined in (3) and (4), one can define a detector that utilizes the Kalman

filter innovation sequence as follows:
Let an innovation vector γk be

γk = zk −Hk xk, (5)

then a test statistic qk can be defined as the sum of squares of the normalized innovation sequence as

qk =

k∑
i=1

γᵀ
i S−1i γi (6)

where Si is innovation vector covariance matrix at epoch i.
The innovation sequence monitor simply checks whether the test statistic qk is smaller than a pre-defined threshold

T 2
k as

qk ≷ T 2
k (7)

Under fault free conditions, the test statistic qk at the kth measurement update is chi-square distributed with kn
degrees of freedom. For a given false alarm requirement, the threshold T 2

k is determined from the inverse chi-square
innovation sequence distribution function. The monitor alarms for a fault if qk > T 2

k . Under faulted conditions, qk
is non-centrally chi-square distributed with a non-centrality parameter λ2k,

λ2k =

k∑
i=1

E[γᵀi ]S
−1
i E[γi] (8)

which is used to evaluate the probability of missed detection. It should be noted that selection of the innovation
sample size is a trade off between detector’s response time and sensitivity to slow faults, that is the longer the
sample size, the less sensitive the monitor is whereas it has a faster response time faults as the sample size gets
smaller.

III. INTEGRITY RISK AND FAILURE MODE SLOPE FOR PERFORMANCE EVALUATION

Under fault hypothesis, the measurement vector zk in (4) and (5) can be replaced by zk + fk where fk is a
(n × 1) fault vector that contains fault for each measurement. In this work, integrity risk, the probability that the
state estimate error exceeds an alert limit without being detected (i.e., q < T 2), is used as a metric to quantify
the performance of the innovation sequence monitor. Assuming a prior fault probability of PHi , for a given fk the
integrity risk associated with ith hypothesis is expressed in terms of the test statistic qk and the estimate error εk as

Irk = P
(
|εk| > `, qk < T 2

k | fk
)

PHi
(9)

where ` is the vertical alert limit, and T 2
k is pre-defined threshold for detection. The error associated with the state

of interest, εk, can be extracted from the state estimate error vector x̃k = x̂k − xk using the row transformation
vector Tε as εk = Tε x̃k. Since E[x̃iγ

ᵀ
j ] = 0, which was shown in [1], the test statistic qk obtained from γ1 . . .γk,
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and the error state of interest εk obtained from x̃k, will be statistically independent. As a result, the integrity risk
Irk can be written as a product of two probabilities

Irk = P (|εk| > ` | fk) P
(
qk < T 2

k | fk
)

PHi (10)

In order to protect the system against all potential faults, the integrity risk must be conservatively evaluated. An
upper bound on the integrity risk can be determined by computing a worst-case failure mode (FMS), ρ2k = E[εk]2/λ2k,
that is maximizing the position estimate error (most hazardous) while minimizing the non-centrality of the chi-square
test statistic (most misleading):

arg max
f1:k

ρ2k =
E[x̃ᵀ

k]t
ᵀ
εtεE[x̃k]

λ2k
. (11)

The worst-case failure mode slope(FMS) ρ∗
2

k for Kalman filter estimators, was previously derived in [1] using a
block matrix approach. However, this approach is computationally expensive because it uses block matrices that are
growing unboundedly over time. This paper addresses this problem by developing a recursive approach to obtain
FMS.

IV. A REVIEW OF BLOCK MATRIX SOLUTION TO FAILURE MODE SLOPE

This section is a review the block matrix approach which will be a foundation to recursive approach in the next
section.

Replacing z = z+ f and x̂ = x+ x̃ in Kalman filter equations through (1)-(4), one can derive a sequential form
of the means of state estimate error x̃k (m× 1) and innovation γk (n× 1) in terms of f as [1]:

E[x̃k] =
(
I− LkHk

)
ΦkE[x̃k−1] + Lkfk (12)

E[γk] = −HkΦkE[x̃k−1] + fk. (13)

To generalize (12) and (13) for subset measurement faults, in which case fk will have zero rows, one can
decompose fk as

fk = Tkfk (14)

where fk (r× 1) is a non-zero fault vector, Tk (n× r) is an orthogonal transformation matrix It simply adds zeros
to corresponding fault-free measurement rows, r is the number of faulty measurements and 1 < r ≤ n. It should
be noted that Note that Tᵀ

kTk = I and for full-set measurement fault case it can be simplified as Tk = I.
Given a fault-free initial condition as E[x̃0] = E[γ0] = 0, the particular solution to the difference equation (12)

is obtained as a function of f1:k as

E[x̃k] =
[
A1kT1 . . . AkkTk

]︸ ︷︷ ︸
A1:k

f1
...

fk


︸ ︷︷ ︸
f1:k

(15)

where

Aij =

{(∏i+1
t=j

(
I− LtHt

)
Φt

)
Li if i < j

Li if i = j
(16)

where A1:k (m × rk) is a horizontally growing size matrix containing current and past Kalman filter information
whereas Aik (m× n) has a constant size containing only the current time information.

Substituting (15) into (13) gives the mean of innovation as a function of f1:k as

E[γk] =
[
−Hk Φk A1:k−1 Tk

]︸ ︷︷ ︸
Bk

[
f1:k−1

fk

]
︸ ︷︷ ︸

f1:k

(17)
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where Bk (n× rk) is also horizontally growing matrix.
Using (6), the non-centrality of the test statistic can be written as

λ2k =

k∑
i=1

f
ᵀ
1:iB

ᵀ
i S−1i Bi f1:i. (18)

Let Bi =
[
Bi 0n×r(k−i)

]
and 0 < i < k. Then, (18) is equivalently expressed in block matrix form as

λ2k = f
ᵀ
1:k

[
B

ᵀ
1 . . . B

ᵀ
k

] S−11

. . .
S−1k


︸ ︷︷ ︸

S−11:k

B1

...
Bk


︸ ︷︷ ︸
B1:k

f1:k (19)

where B1:k (nk× rk) is a lower block triangular matrix that grows both horizontally and vertically over time. Note
that for full-set measurement fault, that is r = n, it will be a square matrix, therefore invertible; otherwise it will
be rectangular matrix.

Substituting (15), (19) into (11) gives the FMS ρk as a function of the fault sequence f1:k as

ρ2k =
f
ᵀ
1:kAᵀ

1:ktᵀεtεA1:kf1:k

f
ᵀ
1:kB

ᵀ
1:kS−11:kB1:kf1:k

. (20)

The direction of fault sequence vector f1:k that maximizes ρ2k in (20), was derived in [1], and the associated
worst-case (maximum) FMS was obtained in terms of growing size matrices A1:k and B1:k as

ρ∗
2

k = tεA1:k(B
ᵀ
1:kS−11:kB1:k)

−1Aᵀ
1:ktᵀε (21)

The block matrix approach reviewed above, computationally infeasible for infinite time Kalman filter processes.
However, (21) and the definition of the growing size matrices provide a foundation for developing a sequential
formulation for the FMS, which is covered in the next section.

V. SEQUENTIAL SOLUTION TO FAILURE MODE SLOPE

Recursive expressions of each of the growing size matrices, B1:k, A1:k, S−11:k, are the first step to achieve a
recursive formulation to the FMS expression in (21). These individual terms are easy to recursively express, however
the inverse of parenthesis in (21) requires meticulous block matrix inversion operations. This section will describe the
key steps in the recursive formulation derivations, yet leave the exhausting parts of the derivations to Appendices A
and B.

Eq. (16) suggests Aik =
(
I−LkHk

)
ΦkAi{k−1} for i 6= k and Akk = Lk. Substituting these into the definition

of A1:k in (15) yields:
A1:k =

[(
I− LkHk

)
ΦkA1:k−1 LkTk

]
(22)

Eq. (19) shows that S1:k is a block diagonal and symmetric matrix, therefore its recursive expression is trivial:

S−11:k =

[
S−11:k−1 0

0 S−1k

]
. (23)

Also, using the definitions in (17) and (19), B1:k can be written as

B1:k =

[
B1:k−1 0

−Hk Φk A1:k−1 Tk

]
. (24)

Unfortunately, the inversion term (B
ᵀ
1:kS−11:kB1:k)

−1 in (21) grows in size over time and does not have an explicit
recursive expression. However, one can notice that the whole term A1:k(B

ᵀ
1:kS−11:kB1:k)

−1Aᵀ
1:k in (21) is an m×m
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matrix of which size is bounded by the number of states in Kalman filter. Using block matrix inversion lemmas [3]
its semi-recursive expression is obtained in Appendix A as

A1:k(B
ᵀ
1:kS−11:kB1:k)

−1Aᵀ
1:k = RkA1:k−1

(
B

ᵀ
1:k−1S

−1
1:k−1B1:k−1 + Aᵀ

1:k−1JkA1:k−1
)−1

Aᵀ
1:k−1R

ᵀ
k + Kk (25)

where Kk and Rk are full-rank (m ×m) matrices, and Jk (m ×m) has (n − r) rank. The definition of each is
given in terms of current time Kalman filter parameters (i.e., Φk, Hk, Φk, Sk, Lk, and Tk) in Appendix A.

Eq. (25) in its current form, is not fully recursive due to the second term inside the inverse parenthesis. Due to Jk

multiplication, the second term has also (n−r) rank and one can notice that it is the direct effect of (n−r) fault-free
measurements on the worst-case FMS. That is, the FMS will get smaller as the number of healthy measurements
increases in the system. If there is no fault-free measurement in the system, this term will be zero (i.e., n = r),
then the ‘time update’ recursion of FMS will be fully sequential and complete.

For subset measurement fault hypothesis, an additional recursion, which is over fault-free satellite measurements
from 1 to (n− r) at each time epoch k, is inevitable, which we later define as ‘fault downdate’.

To do that, (n− r) rank Jk matrix is first defined as

Jk = J
(1)
k + J

(2)
k + . . .+ J

(n−r)
k (26)

where each J
(j)
k has rank 1 and can be obtained by singular value decomposition of the highlighted term in Jk

where 1 ≤ j ≤ n − r; or simply zeroing all of its rows except the jth row where 1 ≤ j ≤ n. Note that the latter
might be computationally less expensive.

Then let us define a matrix

N
(i)
k ,

{
B

ᵀ
1:kS−11:kB1:k +

∑i
j=1 Aᵀ

1:kJ
(j)
k+1A1:k if i > 0

B
ᵀ
1:kS−11:kB1:k if i = 0

(27)

where using (26) each term of the summation in (27) will have rank 1. It should also be noted that N
(j)
k is rank-1

update of N
(j−1)
k where 0 ≤ j ≤ n− r.

Substituting (27) in (25) yields

A1:kN
(0)−1

k Aᵀ
1:k = RkA1:k−1N

(n−r)−1

k−1 Aᵀ
1:k−1R

ᵀ
k + Kk (28)

Let us define another (m×m) matrix Ψ
(j)
k , A1:kN

(j)−1

k Aᵀ
1:k, then (28) will be

Ψ
(0)
k = RkΨ

(n−r)
k−1 Rᵀ

k + Kk (29)

which is the FMS ‘time update’ equation and should be computed once at each Kalman filter time epoch. Using
the rank one update formula in [2] one can derive a relationship between Ψ

(j)
k and Ψ

(j−1)
k as

Ψ
(j)
k = Ψ

(j−1)
k −

Ψ
(j−1)
k J

(j)
k+1Ψ

(j−1)
k

1 + tr
(
Ψ

(j−1)
k J

(j)
k+1

) (30)

which is defined as FMS ‘fault downdate’ equation and should be computed r times, which means downdating the
FMS due to fault-free satellites. The derivations of the fault downdate expression in (30) is given in Appendix B in
details.

The worst-case FMS ρ∗
2

k = tεΨ
(0)
k tᵀε can be sequentially propagated using (29) and (30) with proper initial

conditions. Using (15), (16),(17), and (27), B0:0 = T0 and A0:0 = A00 = L0T0 at k = 0, therefore the initial
condition will be

Ψ
(0)
0 = L0T0(T

ᵀ
0S−10 T0)

−1Tᵀ
0Lᵀ

0 (31)
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A. Fault Exclusion Capability of Innovation Sequence Monitor

Innovations sequence monitors when used with a single Kalman filter, does not have the capability of excluding the
subset measurements associated with the fault. To bring the fault exclusion capability to the system, multi-hypothesis
solution separation monitors (MHSS) that uses multiple sub-filters, is usually implemented. Such monitors can detect
and isolate the measurements when detected, however it comes with the computational cost of sub filters. This section
discusses the opportunity of utilizing the sequential FMS approach in bringing exclusion capability although using
a single filter.

Recall that in the sequential FMS approach, both the time update and fault downdate recursions are established
over the matrix Ψk that is computed for each fault hypothesis i (1 < i ≤ n). It was previously shown in [4] that the
normalized failure mode slope ρ(i)k for fault hypothesis i is linked to the standard deviation of solution separation
σ
(i)
k and full-set solution σ(0)

k (associated with the hazardous state εk) for batch estimators as

σ
(i)
k = σ

(0)
k

√
1 + ρ

(i)2

k (32)

Substituting the failure mode slope ρ∗k = ρkσ
(0)
k , previously formulated as ρ∗

2

k = tεΨ
(0)
k tᵀε , into (34) yields:

σ
(i)2

k = σ
(0)2

k + ρ
(i)2

k (33)

This relation is useful because the standard deviation of the solution separation can be obtained using a single
filter with the sequential failure mode slope approach instead of running sub-filters. The standard deviations of the
solution separations are used to compute the threshold for each test in MHSS. Using (33), one can extract the failure
mode slope by ρ

(i)2

k = tεΨktᵀε , where recall the recursive equation for Ψk previously defined in (61) and (62)
and tε extracts the diagonal element in Ψk corresponding to the hazardous state. Given that information, one can
generalize (33) as

P̂
(i)
k = P̂

(0)
k + Ψk (34)

where Ψk corresponds to the difference between the sub-set and full-set covariances.
Using the same approach, one can also extract the solution separation, sub-set solutions x̂

(i)
k , which acts as the

detection test statistic for MHSS, from a full-set solution x̂
(0)
k without needing to run parallel Kalman filters.

x̂
(i)
k = x̂

(0)
k −

(
P̂

(0)
k + Ψk

)
H

(i)ᵀ

k γ
(i)
k

σ
(i)2

k − α2
k

(35)

where γ(i)k (1×1) and H
(i)
k (1×m) are the innovation and observation matrix corresponding to the ith measurement,

respectively, and α2
k = H(i)

(
P̂

(0)
k + Ψk

)
H

(i)ᵀ

k is a scalar. The derivation of (35) is provided in the Appendix C.
(34) and (35) are computationally inexpensive way to obtain the sub-set solution without having to run sub-filters.

VI. INNOVATION SEQUENCE BASED INTEGRITY MONITORING FOR INTEGRATED INS/GNSS NAVIGATION
SYSTEMS

This section verifies, analyzes, and evaluates the proposed sequential integrity monitoring approach for a tightly
coupled INS/GNSS system that is commonly used in aircraft navigation.

A. Comparison of Block Matrix and Sequential Solutions to Failure Mode Slope

Using the sequential FMS approach, we compute the worst-case FMS and resulting integrity risk (due to a single
satellite faults) values and compared them against the values obtained from the prior block matrix method. Prior
fault, Kalman filter is assumed at steady-state with a tactical-grade inertial (STIM300) integrated to a differential
GPS system with poor satellite geometry (i.e., n = 4). The poor satellite visibility scenario is intentionally selected
to obtain non-zero integrity risk values for fair comparison. Table I shows the worst-case FMS values in degrees
whereas Fig. 1 shows the resulting integrity risks for faults occurring for different time windows ranging from 2
min to approximately 3 min. In this example, we use an alert limit ` = 10 m, a prior fault probability PH = 1, and
a probability of false alarm PFA = 10−6. One can notice that the block matrix and sequential approach results are
approximately the same, for example the integrity risk values are matching perfectly even in 10−8 level.
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TABLE I: Block vs sequential solution to worst-case
FMS for STIM300 integrated with a differential GPS
receiver

Post-Fault
Monitoring, s

Worst-Case FMS, deg
Block Matrix Sequential

120 20.223 20.223
128 23.062 23.063
136 26.029 26.030
144 29.091 29.092
152 32.211 32.213
160 35.351 35.353
168 38.473 38.475
176 41.542 41.544
184 44.528 44.530

Block Matrix

Fig. 1: Block vs sequential solution to integrity risk with
` = 10 m vertical alert limit and PFA = 10−6 probability
of false alarm.

B. Effect of Satellite Geometry

For baseline ARAIM techniques, without the inertial aid, detection function is available only when there is satellite
redundancy, that is n−r ≥ 4. To investigate the effect of satellite redundancy on the proposed monitor performance,
we simulate a fixed satellite geometry (i.e., n = 6) in the existence of worst-case faults where the number of faulty
satellites varies as 6 ≥ r ≥ 1. Fig. 2 shows the worst-case FMS for a GNSS receiver tightly-coupled to a navigation-
grade IMU through a 5 min time window. As seen in the figure, for single and dual satellite fault hypothesis (r ≤ 2)
where there is satellite redundancy, FMS levels off at small values less than 10◦. This is because the redundant
measurements reflect and accumulate in the test statistic over time, which ultimately overcomes the degrading effect
of threshold increase, thereby the detection capability is preserved regardless of the fault duration. On the other
hand, the figure also shows that for higher number of fault hypothesis (6 ≥ r ≥ 3), FMS increases and ultimately
converges to the highest value, 90◦ which is because there is no satellite redundancy. In such cases, inertial sensors
resists to faults for a while, however it is ultimately corrupted in a tightly-coupled mechanism, thereby the monitor

Fig. 2: The effect of satellite redundancy on the worst-case FMS. r is the number of faulty satellites, n is the number
of total visible satellites.
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loses its detection capability over time.

C. Factor of Inertial Sensor Quality

The integrity performance of the monitor is quantified using different inertial sensors including generic automative-
grade (AUTO), low/high-end tactical-grades (LTAC/HTAC), navigation-grade (NAV), as well as a commonly used
specific one, STIM300, specifications of which is presented in Table II.

TABLE II: Examples of Different Quality IMU Sensor Specifications
AUTO LTAC STIM300 HTAC NAV Units

Sampling interval 10.0 10.0 8.0 10 10 ms
Bias Time Constant 1 1 1 1 1 hr
Gyro Bias Stability 100 10 0.5 0.1 0.01 deg/hr

Gyro Bias Repeatibility 1000 100 4.0 1.0 0.1 deg/hr
Acceleration Bias Stability 10.0 1 0.05 0.2 0.010 mg

Acceleration Bias Repeatibility 100 10.0 0.75 2.0 0.1 mg
Angular Random Walk 3 0.6 0.15 0.06 0.0018 deg/

√
hr

Velocity Random Walk 0.1174 0.0587 0.07 0.0293 0.0018 m/s/
√

hr

Using the inertial specifications, the worst-case FMS are propagated through a 90 min single satellite fault when
there are 6 and 5 satellites in view in Figure 3. Both of the scenarios have satellite redundancy for detection,
therefore regardless of the inertial quality the worst-case FMS converges to small values (less than 2◦) which results
in zero integrity risks in the simulations. This is because the satellite redundancy provides sufficient information
for detection without needing use of inertial sensor measurements. To clearly see the difference in the monitor
performance when used with and without inertial sensors, we simulate a scenario where an infinite process noise
is fed into Kalman filter (equivalent to use of a dummy inertial sensor). The resulting worst-case FMS is shown
with the hatched black curve, which as seen in the figure, is very close to those obtained when used with different
quality inertial sensors. The integrity risk resulting from the dummy inertial simulation is still zero, which explicitly
suggests that the real value of inertial sensors in the proposed monitor is primarily to preserve navigation integrity
through a temporary poor satellite visibility condition.

To investigate the worst-case FMS characteristic in the existence of no satellite redundancy, where baseline
ARAIM is disabled, we simulated scenarios in Fig 4, where the monitor’s resistance to faults are quantified for use
of different quality inertial sensors. In the figure, one can clearly notice that the inertial quality affects the worst-case
FMS and the associated integrity risks drastically. For example, the integrity risk immediately reaches to 1 when

Fig. 3: The effect of inertial quality on the worst-case FMS in the existing of satellite redundancy

2449



* w/ infinite process noise

Fig. 4: The effect of inertial quality when satellite redundancy is unavailable.

the proposed monitor is used without an inertial sensor (dummy inertial case) whereas it reaches to 1 only after 3
min when it is used with a navigation-grade inertial sensor.

D. Integrity Performance in Aircraft En Route, Approach, and Landing Operations

The analyses in Sections VI-B and VI-C suggest that the proposed monitor provides high integrity in the existence
of satellite redundancy, as well as depending on the inertial quality, has a potential of preserving integrity for limited
time periods in the existence of low satellite visibility. This section demonstrates the feasibility of the monitor for
the use on aircraft equipped with navigation-grade inertials, against worst-case single satellite faults during en route
and approach operations, requirements of which are listed in Table III. The table contains both the vertical and
horizontal alert limits and the associated navigation integrity and continuity requirements per operation. For each
operation, the test statistic threshold (T ) is computed using the continuity risk requirements in the table.

TABLE III: Aircraft en route and approach navigation continuity and integrity requirements
Operation Type Vertical ` Horizontal ` Integrity Risk Continuity Risk

LPV 200 Approach 35 m 40 m 10−7/ 150s 10−6/ 150s
CAT I Precision Approach 10 m 40 m 2× 10−7/ 150s 10−6/ 150s

CAT II-III Precision Approach 5.3 m 17 m 10−9/ 150s 10−6/ 150s
RNP 0.1 En Route Terminal − 185 m 10−7/ hr 10−8/ hr
RNP 0.3 En Route Oceanic − 556 m 10−7/ hr 10−8/ hr

The covariance analyses with n ≥ 5, yield zero integrity risks for all of the operations including the most stringent
CAT-II/III vertical precision approach and RNP 0.1 terminal en route. This is remarkable because the snapshot A-
RAIM techniques achieve meeting only the LPV200 approach requirement. Under poor visibility (n = 4), where
baseline ARAIM is unavailable, the proposed monitor with the aid of inertial, meets integrity requirements of
all operations except CAT-II/III vertical precision approach, RNP 0.1 and RNP 0.3 en route missions. For these
categories, we quantified how long the proposed monitor can maintain navigation integrity through a potential poor
visibility condition without exceeding the requirements. Fig. 5 shows the horizontal integrity risk during 60 min
RNP 0.1 and RNP 0.3 en route operations whereas Fig. 6 presents vertical integrity risk during a 150 s CAT-II/III
precision approach. For fixed satellite geometry scenario, the integrity risk curves (blue) remain within the required
region (below the dashed lines) for approximately 23 min for RNP 0.1, 37 min for RNP 0.3, and 136 s for CAT-II/III.

Recall that unlike snapshot A-RAIM, the proposed monitor exploits changes in satellite geometry. From the
perspective of a user on earth, the satellite motion is small over less-than-ten-minute-long time intervals [6], however
the accumulated geometry variations over longer time can be substantial especially in en route aircraft operations.
To quantify the leveraging effect of satellite motion, two scenario results one with frozen satellite geometry (time
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Fig. 5: The worst-case FMS and associated integrity risk with RNP 0.1 en route terminal and RNP 0.3 en route
oceanic operation requirements in the absence of satellite redundancy.

invariant–blue curves) another with satellite motion (time variant–green curves), are compared. As seen in Fig 5,
satellite motion appears as a fluctuation in the worst-case FMS, which causes a reasonable delay in its convergence
to high slopes, thereby a time shift in the integrity risk curves to the right. For example, by means of satellite
motion the time period of guaranteed horizontal positioning integrity is extended by approximately 6 min for RNP

Fig. 6: The worst-case FMS and associated integrity risk with CAT II/III (vertical) precision approach requirements
in the absence of satellite redundancy.
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0.1 and 10 min for RNP 0.3, which is approximately 27% improvement in the integrity. Its effect is negligible for
CAT II/III precision approaches, approximately a 1 s extension in the preserved integrity window (Fig. 6), which is
expected because satellite geometry variations are small over a standard approach time (150 s).

VII. CONCLUSION

This paper derives, analyzes, and evaluates a novel time-sequential integrity monitoring technique that is capable
of detecting and excluding faults using a single Kalman filter. Its performance against worst-case single satellite faults
is verified on tightly-coupled INS/GNSS navigation systems used during safety-critical aircraft en route and approach
operations. It is demonstrated that its integrity performance is superior to conventional snapshot ARAIM techniques,
providing guaranteed integrity even for the most stringent operation requirements (e.g., CAT II/III precision approach
and RNP 0.1 terminal en route). It is also shown that for temporary poor satellite visibility conditions, when baseline
A-RAIM is unavailable, the proposed monitor with the aid of inertial sensor measurements, still preserves protection
levels for reasonable time periods.

APPENDIX A
FAILURE MODE SLOPE TIME UPDATE

This section presents the derivation of Eq. (25) used in the FMS time update equation derivations in Sect. V.
Using (23) and (24), the recursive form of B

ᵀ
1:kS−11:kB1:k will be

B
ᵀ
1:kS−11:kB1:k =

[
B

ᵀ
1:k−1 −Aᵀ

1:k−1Φ
ᵀ
kHᵀ

k

0 Tᵀ
k

] [
S−11:k−1 0

0 S−1k

] [
B1:k−1 0

−HkΦkA1:k−1 Tk

]

=

[
B

ᵀ
1:k−1S

−1
1:k−1B1:k−1 + Aᵀ

1:k−1Φ
ᵀ
kHᵀ

kS−1k HkΦkA1:k−1 −Aᵀ
1:k−1Φ

ᵀ
kHᵀ

kS−1k Tk

−Tᵀ
kS−1k HkΦkA1:k−1 Tᵀ

kS−1k Tk

]
(36)

To invert (36), one can use block matrix inversion lemma [3]:[
∆ Γ
Θ Λ

]−1
=

[
(∆− ΓΛ−1Θ)−1 −(∆− ΓΛ−1Θ)−1ΓΛ−1

−Λ−1Θ(∆− ΓΛ−1Θ)−1 Λ−1 + Λ−1Θ(∆− ΓΛ−1Θ)−1ΓΛ−1

]
(37)

Comparing the terms in (36) and (37), one can obtain:

Λ−1 = (Tᵀ
kS−1k Tk)

−1 (38)

Θ = −Tᵀ
kS−1k HkΦkA1:k−1 (39)

Γ = −Aᵀ
1:k−1Φ

ᵀ
kHᵀ

kS−1k Tk (40)

Using (38), (39), and (40):

(∆− ΓΛ−1Θ)−1 , M−1
k−1 =

[
B

ᵀ
1:k−1S

−1
1:k−1B1:k−1 + Aᵀ

1:k−1Φ
ᵀ
kHᵀ

kS−1k HkΦkA1:k−1

−Aᵀ
1:k−1Φ

ᵀ
kHᵀ

kS−1k Tk(T
ᵀ
kS−1k Tk)

−1Tᵀ
kS−1k HkΦkA1:k−1

]−1 (41)

or

M−1
k−1 =

[
B

ᵀ
1:k−1S

−1
1:k−1B1:k−1 + Aᵀ

1:k−1Φ
ᵀ
kHᵀ

kS−1k {I−Tk(T
ᵀ
kS−1k Tk)

−1Tᵀ
kS−1k }HkΦkA1:k−1

]−1
(42)

Recall that the second term inside the inverse parenthesis in (42) has a rank of n − r and represents the effect
of fault-free satellites on the FMS. The more fault-free measurement the less FMS will be because of the inverse
relation. Notice that for full-set measurement faults, Tk = I, therefore the highlighted term (or the second term) will
cancel out, which would yield a direct recursive relation between (B

ᵀ
1:kS−11:kB1:k)

−1 and (B
ᵀ
1:k−1S

−1
1:k−1B1:k−1)

−1

because M−1
k−1 = (B

ᵀ
1:k−1S

−1
1:k−1B1:k−1)

−1.
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Similarly,

−(∆− ΓΛ−1Θ)−1ΓΛ−1 = M−1
k−1A

ᵀ
1:k−1Φ

ᵀ
kHᵀ

kTk (43)

−Λ−1Θ(∆− ΓΛ−1Θ)−1 = Tᵀ
kHkΦkA1:k−1M

−1
k−1 (44)

Λ−1 + Λ−1Θ(∆− ΓΛ−1Θ)−1ΓΛ−1 = (Tᵀ
kS−1k Tk)

−1 + Tᵀ
kHkΦkA1:k−1M

−1
k−1A

ᵀ
1:k−1H

ᵀ
kΦᵀ

kTk (45)

Substituting (43), (44), (45), and (42) into (37) gives

(B
ᵀ
1:kS−11:kB1:k)

−1 =

[
M−1

k−1 M−1
k−1A

ᵀ
1:k−1Φ

ᵀ
kHᵀ

kTk

Tᵀ
kHkΦkA1:k−1M

−1
k−1 (Tᵀ

kS−1k Tk)
−1 + Tᵀ

kHkΦkA1:k−1M
−1
k−1A

ᵀ
1:k−1Φ

ᵀ
kHᵀ

kTk

]
(46)

where M−1
k−1 is r(k − 1)× r(k − 1), Ak−1 is m× r(k − 1), and B

ᵀ
1:kS−11:kB1:k is rk × rk.

To obtain worst-case slope expression, substitute (22) and (46) into (21):

A1:k(B
ᵀ
1:kS−11:kB1:k)

−1Aᵀ
1:k =

[
(I− LkHk)ΦkA1:k−1 LkTk

]
×

[
M−1

k−1 M−1
k−1A

ᵀ
1:k−1Φ

ᵀ
kHᵀ

kTk

Tᵀ
kHkΦkA1:k−1M

−1
k−1 (Tᵀ

kS−1k Tk)
−1 + Tᵀ

kHkΦkA1:k−1M
−1
k−1A

ᵀ
1:k−1Φ

ᵀ
kHᵀ

kTk

]

×

[
Aᵀ

1:k−1Φ
ᵀ
k(I−Hᵀ

kLᵀ
k)

Tᵀ
kLᵀ

k

]
=

(
I− LkHk + LkTkTᵀ

kHk

)
ΦkA1:k−1M

−1
k−1A

ᵀ
1:k−1Φ

ᵀ
k

(
I− LkHk + LkTkTᵀ

kHk

)ᵀ
+LkTk(T

ᵀ
kS−1k Tk)

−1Tᵀ
kLᵀ

k

(47)

Recall M−1
k−1 was previously found as

M−1
k−1 =

[
B

ᵀ
1:k−1S

−1
1:k−1B1:k−1 + Aᵀ

1:k−1Φ
ᵀ
kHᵀ

kS−1k {I−Tk(T
ᵀ
kS−1k Tk)

−1Tᵀ
kS−1k }HkΦkA1:k−1

]−1
(48)

For the simplicity let us define an (m×m) matrices

Jk , Φᵀ
kHᵀ

kS−1k

[
I−Tk(T

ᵀ
kS−1k Tk)

−1Tᵀ
kS−1k

]
HkΦk, (49)

Rk ,
(
I− LkHk + LkTkTᵀ

kHk

)
Φk, (50)

Kk , LkTk(T
ᵀ
kS−1k Tk)

−1Tᵀ
kLᵀ

k, (51)

then (48) and (47) can be re-written as

M−1
k−1 =

(
B

ᵀ
1:k−1S

−1
1:k−1B1:k−1 + Aᵀ

1:k−1JkA1:k−1
)−1

(52)

A1:k(B
ᵀ
1:kS−11:kB1:k)

−1Aᵀ
1:k = RkA1:k−1M

−1
k−1A

ᵀ
1:k−1R

ᵀ
k + Kk (53)

Substituting (52) into (53) yields:

A1:k(B
ᵀ
1:kS−11:kB1:k)

−1Aᵀ
1:k = RkA1:k−1

(
B

ᵀ
1:k−1S

−1
1:k−1B1:k−1 + Aᵀ

1:k−1JkA1:k−1
)−1

Aᵀ
1:k−1R

ᵀ
k + Kk (54)

(55)

Note that the inverse parenthesis term, (Tᵀ
kS−1k Tk)

−1, in (49) will be one dimensional simple inversion for a
single measurement fault hypothesis, i.e. r = 1.
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APPENDIX B
FAILURE MODE SLOPE FAULT DOWNDATE

This section presents the fault downdate derivation steps between (28) and (30) in Sect V.
Recall (56) and (28):

N
(i)
k ,

{
B

ᵀ
1:kS−11:kB1:k +

∑i
j=1 Aᵀ

1:kJ
(j)
k+1A1:k if i > 0

B
ᵀ
1:kS−11:kB1:k if i = 0

(56)

A1:kN
(0)−1

k Aᵀ
1:k = RkA1:k−1N

(n−r)−1

k−1 Aᵀ
1:k−1R

ᵀ
k + Kk (57)

where N
(j)
k is rank-1 update of N

(j−1)
k where 0 ≤ j ≤ n− r. Therefore, the relation between their inverses will be

[2]:

N
(j)−1

k =
(
N

(j−1)
k + Aᵀ

1:kJ
(j)
k+1A1:k

)−1
= N

(j−1)−1

k −
N

(j−1)−1

k Aᵀ
1:kJ

(j)
k+1A1:kN

(j−1)−1

k

1 + tr
(
Aᵀ

1:kJ
(j)
k+1A1:kN

(j−1)−1

k

) (58)

where using switching property of the trace operator, (58) can be re-written as:

N
(j)−1

k = N
(j−1)−1

k −
N

(j−1)−1

k Aᵀ
1:kJ

(j)
k+1A1:kN

(j−1)−1

k

1 + tr
(
A1:kN

(j−1)−1

k Aᵀ
1:kJ

(j)
k+1

) . (59)

Post- and pre-multiplying (59) with A1:k and Aᵀ
1:k, respectively, gives:

A1:kN
(j)−1

k Aᵀ
1:k = A1:kN

(j−1)−1

k Aᵀ
1:k −

A1:kN
(j−1)−1

k Aᵀ
1:kJ

(j)
k+1A1:kN

(j−1)−1

k Aᵀ
1:k

1 + tr
(
A1:kN

(j−1)−1

k Aᵀ
1:kJ

(j)
k+1

) (60)

Recall the previous definition in Sect. V: Ψ
(j)
k , A1:kN

(j)−1

k Aᵀ
1:k, of which size is bounded by (m×m) over time.

Then re-expressing (53) yields time update recursive equation as

Ψ
(0)
k = RkΨ

(n−r)
k−1 Rᵀ

k + Kk (61)

and similarly re-expressing (60) gives measurement fault downdate recursive equation as:

Ψ
(j)
k = Ψ

(j−1)
k −

Ψ
(j−1)
k J

(j)
k+1Ψ

(j−1)
k

1 + tr
(
Ψ

(j−1)
k J

(j)
k+1

) (62)

where recall that subscript k and superscript (j) represent time update and fault downdate recursions, respectively.
One can notice that (61) and (62) will be trivial for full-set measurement faults, that is Tk = I, for example

GNSS spoofing attack where all the receiver channels are spoofed. In that case, the second term on the right hand
side of (62) will be zero, therefore the only recursion will be through (61). Furthermore, substituting Tk = I into
(49) and (51) gives:

Kk = LkSkLᵀ
k (63)

and

Rk = Ck + LkHkΦk = (I− LkHk)Φk + LkHkΦk = Φk. (64)

Substituting these into (61) yields the recursive slope equation for full-set measurement faults as

Ψk = ΦkΨk−1Φ
ᵀ
k + LkSkLᵀ

k (65)
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APPENDIX C
OBTAINING SOLUTION SEPARATIONS FROM FULL-SET SOLUTION

Let x̂
(0)
k be the state estimate at epoch k using full-set measurements, using sequential measurement update

method it is related to the state estimate x̂
(i)
k obtained from a subset measurements (measurement i excluded) as

x̂
(0)
k = x̂

(i)
k + L

(i)
k

(
z
(i)
k −H

(i)
k x̂

(i)
k

)
=
(
I− L

(i)
k H

(i)
k

)
x̂
(i)
k + L

(i)
k z

(i)
k

(66)

where assuming single measurement fault hypothesis, L
(i)
k (m×1), H

(i)
k (1×m) are the Kalman gain and observation

matrices corresponding to the ith measurement update, and z(i)k (1× 1) is the ith measurement. Rearranging (66)

x̂
(i)
k =

(
I− L

(i)
k H

(i)
k

)−1(
x̂
(0)
k − L

(i)
k z

(i)
k

)
(67)

where using matrix inversion lemma, (I + uvᵀ)−1 = I − uvᵀ/(1 + vᵀu), the (m×m) inversion term in (68) can
be reduced to form that only contains one-dimensional inversion as

x̂
(i)
k =

(
I +

L
(i)
k H

(i)
k

1−H
(i)
k L

(i)
k

)(
x̂
(0)
k − L

(i)
k z

(i)
k

)
(68)

where L
(i)
k is a function of solution separation covariance P̂

(i)
k as

L
(i)
k =

P̂
(i)
k H

(i)ᵀ

k

σ
(i)2

k

=

(
P̂

(0)
k + Ψk

)
H

(i)ᵀ

k

σ
(i)2

k

(69)

where σ(i)
k is the standard deviation of z(i)k .

Let us define a scalar α2
k = H(i)

(
P̂

(0)
k + Ψk

)
H

(i)ᵀ

k , then using (69) and (68) one can obtain solution separation
as:

x̂
(i)
k = x̂

(0)
k −

(
P̂

(0)
k + Ψk

)
H

(i)ᵀ

k (z
(i)
k −H

(i)
k x̂

(0)
k )

σ
(i)2

k − α2
k

(70)

or by replacing innovation γ(i)k = z
(i)
k −H

(i)
k x̂

(0)
k :

x̂
(i)
k = x̂

(0)
k −

(
P̂

(0)
k + Ψk

)
H

(i)ᵀ

k γ
(i)
k

σ
(i)2

k − α2
k

. (71)
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