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ABSTRACT

This thesis describes new methods to guarantee safety of sense and avoid

(SAA) functions for Unmanned Aircraft Systems (UAS) by evaluating integrity and

continuity risks. Previous SAA e↵orts focused on relative safety metrics, such as risk

ratios, comparing the risk of using an SAA system versus not using it. The methods in

this thesis evaluate integrity and continuity risks as absolute measures of safety, as is

the established practice in commercial aircraft terminal area navigation applications.

The main contribution of this thesis is a derivation of a new method, based on a stan-

dard intruder relative constant velocity assumption, that uses hazard state estimates

and estimate error covariances to establish (1) the integrity risk of the SAA system

not detecting imminent loss of “well clear,” which is the time and distance required to

maintain safe separation from intruder aircraft, and (2) the probability of false alert,

the continuity risk. Another contribution is applying these integrity and continuity

risk evaluation methods to set quantifiable and certifiable safety requirements on sen-

sors. A sensitivity analysis uses this methodology to evaluate the impact of sensor

errors on integrity and continuity risks. The penultimate contribution is an integrity

and continuity risk evaluation where the estimation model is refined to address re-

alistic intruder relative linear accelerations, which goes beyond the current constant

velocity standard. The final contribution is an integrity and continuity risk evalua-

tion addressing multiple intruders. This evaluation is a new innovation-based method

to determine the risk of mis-associating intruder measurements. A mis-association

occurs when the SAA system incorrectly associates a measurement to the wrong in-

truder, causing large errors in the estimated intruder trajectories. The new methods

described in this thesis can help ensure safe encounters between aircraft and enable

SAA sensor certification for UAS integration into the National Airspace System.

xi
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CHAPTER 1

INTRODUCTION

1.1 The Need for Sense and Avoid

Since the early 1990’s, unmanned aircraft systems (UAS) operations in the

National Airspace System (NAS) have been limited to mostly public functions like

military operations and border security [30]. Now UAS operations are rapidly ex-

panding to include a much wider range of civil and public applications, including

arial photography, agriculture and communications [30].

The United States Department of Defense (DoD) is the largest operator of UAS

in the world [17]. The DoD had gone from operating UAS on the order of hundreds

of flight hours in 1996 to over six hundred thousand flight hours in 2011 [17,18]. The

DoD has a requirement to operate UAS in the NAS to meet operational military

taskings, such as those from US Northern Command, but also missions that relate to

homeland defense, border and port survaillance, and disaster support [17, 18].

There has also been great UAS growth in the commercial sector. Until the

FAA establishes an airworthiness certification process for UAS to operate safely in the

NAS, the FAA provides Section 333 exemptions to UAS on a case-by-case basis [33].

As of March 16, 2016, over 4,000 FAA Section 333 exemptions have been granted for

commercial UAS operators [33]. In addition, the FAA is estimating the fleet of small

UAS (those weighing less than 55 pounds) to increase from 32,800 in 2016 to over

540,000 in 2020 [33].

With this increased interest in UAS, the United States Congress mandated

the Federal Aviation Administration (FAA), in Subtitle B of the FAA Modernization

and Reform Act of 2012, to develop requirements necessary for broader UAS access

into the NAS [81]. One of the challenges the FAA faces in meeting this mandate is
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ensuring an acceptable level of safety. To do this, a UAS requires a “sense and avoid”

(SAA) capability to provide self-separation (SS) and collision avoidance between the

UAS and other aircraft analogous to the “see and avoid” responsibility for pilots of

manned aircraft [30]. The FAA Modernization and Reform Act of 2012 defines SAA

capability as the capability of an unmanned aircraft to remain a safe distance from

and to avoid collisions with other airborne aircraft [81].

Depending on the class of controlled airspace, if an intruder aircraft is co-

operative, that is, employing an operating transponder or Automatic Dependent

Surveillance - Broadcast (ADS-B) device [34], air tra�c control (ATC) may provide

separation. Alternatively, a manned aircraft pilot could employ a Tra�c Collision

Avoidance System (TCAS) as a situational awareness aid to help the pilot detect the

intruder then initiate an avoidance maneuver. Otherwise, if the intruder aircraft is

non-cooperative, without an operating transponder or ADS-B, the manned aircraft

pilot will not have the help of ATC or TCAS. In this manned aircraft case, it is

solely the pilot’s responsibility to visually see the intruder and maneuver to maintain

separation. Anderson, et al., comprehensively detail how the US Code of Federal

Regulations (CFR) 14 CFR 91 relates to a pilot’s “see and avoid” responsibility [4].

Since UAS will not have a pilot on board, it will have to replicate the func-

tionality of pilot vision through an appropriate sensor. Non-cooperative SAA sensors

include radar, Laser/Light Detection and Ranging (LIDAR), electro-optical (EO),

acoustic, and infrared (IR) [84, 85]. The sensor must adequately inform the UAS

SAA system whether or not a separation maneuver is required.

1.2 Self-Separation and Collision Avoidance

Although self-separation (SS) is a widely recognized term by the FAA and

International Civil Aviation Organization (ICAO), it has never been fully codified
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Figure 1.1. Well Clear Threshold and NMAC (Not to Scale)

[31]. “Well clear” is a subjective term in the right-of-way rules, 14 CFR 91.113

[1,4]. In 2011, Weibel, et al., proposed well clear as an objective separation standard

[83]. In 2013, the Second FAA SAA Workshop concluded that the concept of well

clear is an airborne separation standard [31]. The most recent guidance for a well

clear threshold (WCT) is the Radio Technical Commission for Aeronautics (RTCA)

Special Committee-228 (SC-228), who in their latest draft of the Detect and Avoid

(DAA) Minimum Operational Performance Standards (MOPS), defined the well clear

threshold as a modified “tau” (⌧mod), or time to closest point of approach (CPA), of

35 seconds, a horizontal miss distance (MD) of 4000 feet, and a vertical miss distance

of ±450 feet [72].

When an intruder cannot remain well clear, a collision avoidance maneuver is

required to avoid a near mid-air collision (NMAC). NMAC boundaries are typically

500 feet laterally and 100 feet vertically from the own aircraft [31]. If the intruder

aircraft is non-cooperative, it is up to the sense and avoid system to provide the

appropriate collision avoidance maneuver. Figure 1.1 depicts the conceptual di↵erence

between the well clear threshold and near mid-air collision distance thresholds (not

to scale and not accounting for ⌧mod). For simplicity, this paper will concentrate on

self-separation and the well clear threshold. The methodology is the same for collision

avoidance and NMAC.
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1.3 Evolution of the Well Clear Threshold

As previously mentioned, “well clear” is a subjective term in the right-of-way

rules, 14 CFR 91.113 [1, 4]. In 2011, Weibel, et al., of the Massachusetts Institute of

Technology (MIT) Lincoln Laboratory (LL) was among the first to propose well clear

as an objective separation standard [83]. In 2013, the Second FAA SAA Workshop

concluded that the concept of well clear is an airborne separation standard [31]. Also

in 2013, Lee, et al., of the National Aeronautics and Space Administration (NASA)

Ames Research Center demonstrated a capability, using the NASA Airspace Concept

Evaluation System (ACES) model, to determine the rate of well clear violations for

various definitions [53]. In 2014, Munoz, et al., of NASA’s Langley Research Cen-

ter evaluated four di↵erent versions of tau, the time to horizontal closest point of

approach, and developed detection algorithms for a family of well clear boundary

models [57]. In June of 2013, the RTCA SC-228 UAS SAA Science and Research

Panel (SARP) was tasked with recommending a quantitative definition for UAS Well

Clear [14].

1.3.1 RTCA Special Committee-228. RTCA is a federal advisory commit-

tee that responds to FAA requests for technical standard recommendations. RTCA

Special Committees incorporate academic, government, and industry members of the

aviation community to generate these recommendations. In May of 2013, SC-228 was

founded and was tasked to develop Minimum Operational Performance Standards

(MOPS) for UAS DAA equipment and command and control (C2) data links [69].

Note DAA and SAA are synonymous terms.

1.3.2 SC-228 SARP Recommendation. The SC-228 SARP evaluated three

proposed well clear thresholds: one from the MIT LL, one from NASA, and one

from the Air Force Research Laboratory (AFRL). The NASA well clear threshold

used a modified tau (⌧mod), which is the time to closest point of approach modified
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with a distance modifier to account for slow closure rates, of 30 seconds, a horizontal

miss distance of 6000 feet, a vertical separation of ±475 feet, and a vertical time to

co-altitude of 20 seconds [14]. The AFRL proposal projected variable wedge-shaped

sector volumes that varied in altitude between 450 and 600 feet [14]. Ultimately,

in August 2014, the SARP recommended the MIT LL proposal, defining well clear

as having a horizontal time to closest point of approach (CPA), ⌧ , of 35 seconds, a

horizontal miss distance of 4000 feet and a vertical miss distance of ±700 feet [14].

1.3.3 Detect and Avoid Minimum Operational Performance Standards.

The Detect and Avoid Minimum Operational Performance Standards is a technical

standards document. In September 2015, SC-228 released the first version of the

draft Detect and Avoid Minimum Operational Performance Standards, expected to

be finalized in July 2016. The current draft of the Minimum Operational Performance

Standards redefined the well clear threshold by introducing the term loss of detect

and avoid well clear (DWC). The well clear threshold and the threshold defined by

a loss of detect and avoid well clear are synonymous. The Minimum Operational

Performance Standards further addressed the hazard associated with a loss of well

clear by defining what it calls a warning alert, whose threshold is essentially the same

as the loss of detect and avoid well clear [72]. The latest draft of the Detect and

Avoid Minimum Operational Performance Standards ultimately redefined the well

clear threshold as a modified tau of 35 seconds, a horizontal miss distance of 4000

feet, and a vertical miss distance of ±450 feet [72].

1.4 Problem Statement

Sense and avoid safety needs to be guaranteed. This requires methods to quan-

tify safety performance as a function of sensor uncertainty. In response, this thesis

introduces integrity risk and continuity risk as new UAS SAA safety performance

metrics. Integrity and continuity risk are absolute safety metrics [45, 71] as opposed
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to the current relative UAS safety performance metrics, such as risk ratios, the failure

rate with the SAA system divided by the failure rate without the SAA system [31].

The new methods in this work that evaluate integrity and continuity risk can be used

to establish sensor performance requirements to ensure a predefined level of safety.

These high-level requirements apply to any candidate sensor or sensor suite. This

research also maps and bounds the trade space of requirements necessary to maintain

desired integrity and continuity.

1.5 Prior Work

There have been several papers that provide overviews of the SAA problem.

Yu and Zhang present the current state of the entire SAA problem, denoting current

SAA sensors, decision algorithms, path planning, and path following with a journal

literature review [84]. Previous comprehensive reviews of the UAS integration into

the NAS problem include [15, 22, 64]. Kuchar and Yang outlined what at the time

was an overview of air tra�c conflict detection and resolution models [51]. Prior work

focusing on development of the WCT are explained in section 1.3.

Much of the previous work has tended to focus on risk ratio safety studies

that derive from the development of the ubiquitous TCAS. McLaughlin and Zeitlin

described a MITRE safety study that used encounter models to build collision avoid-

ance risk ratios to determine the safety of TCAS version 6.4 [56]. Espindle, et al.,

described an MIT LL safety study that used encounter models to build collision

avoidance risk ratios to determine the safety of TCAS version 7.1 [26]. The Second

SAA Workshop determined, using methodology described in the International Civil

Aviation Organization (ICAO) Doc 9689, that UAS SAA systems should have two

target levels of safety (TLS) based on catastrophic collision risk ratios: 10�9 midair

collisions (MAC) per flight hour (FH) for cooperative airspace (where transponders

are required) and 10�7 MAC/FH for all other airspace [31, 38].
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A concentration of prior work came from the MIT LL. Kochenderfer, et al.,

developed an aircraft encounter model used to evaluate safety of collision avoidance

systems using NMAC rate and risk ratio, which is defined as the NMAC rate with the

collision avoidance system divided by the NMAC rate without the collision avoidance

system [48–50]. Kochenderfer, Chryssanthacopoulos, and Billingsley of the MIT LL

looked at state uncertainty of a collision avoidance system, quantifying safety as prob-

ability of NMAC accounting for avoidance maneuvers, and applying Markov decision

processes for collision avoidance [10, 13]. Heisley, et al., of the MIT LL developed an

architecture with a future intent to test and certify SAA systems [37]. Owen, et al.,

of the MIT LL demonstrated and flight tested an approach to developing SAA radar

models for requirements derivations that employed a phased-array technology [60].

Edwards and Owen of the MIT LL validated a radar-based SAA concept through

modeling and flight test [24].

Also, the Air Force Research Laboratory (AFRL) and the Air Force Institute

of Technology (AFIT) have made many contributions to SAA. Shakernia, et al., of

Northrop Grumman, in conjunction with AFRL, examined passive ranging techniques

(involving benign own aircraft maneuvers) to compensate for EO SAA sensor ranging

shortfalls [75]. In late 2006, AFRL flight tested an early SAA system based on EO

cameras combined with the self-maneuvering passive ranging techniques [74]. In 2009,

AFRL conducted a flight test of their Multi-Sensor Integrated Conflict Avoidance

(MuSICA) SAA system which included sensor fusion from ADS-B, TCAS, radar

and EO [12, 36]. In addition, AFIT and AFRL researched UAS collision avoidance

trajectories that minimized the deviation from intended flight path while using a

particle filter to track multiple intruders [77–80].

Some other prior work of note include the following. Kim, et al., of the Korean

Pusan National University designed a 3D EO system for small UASs using a Kalman
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filter, Sequential Quadratic Programming, and Linear Parameter Varying approaches

for tracking and measurement error reduction [47]. Lee, et al., of NASA Langley

constructed a distributed tra�c model to enable a probabilistic approach to risk

assessment by computing collision rates based on Predator training missions in the

Grand Forks Air Force Base area [52]. Munoz, et al., of NASA Langley presented

DAIDALUS (Detect and Avoid Alerting Logic for Unmanned Systems), a reference

SAA concept implementation, which is also outlined in Appendix G of the DAA

MOPS [58,72].

This research describes a di↵erent approach than the prior work, focusing

directly on the accepted aviation navigation certification standards that quantify

integrity and continuity as safety factors [39]. Integrity risk and continuity risk are

absolute safety metrics, which can be used to set certifiable requirements on individual

system components, such as SAA sensors, to achieve and prove an overall level of

safety [45, 71]. For example, for the Local Area Augmentation System (LAAS), an

all-weather aircraft landing system, integrity requirements specify that, at near-zero

visibility, no more than one undetected hazardous navigation system failure is allowed

in a billion approaches [71]. Kelly and Davis broke down their proposed target level

of safety for required navigation performance (RNP) into accuracy, integrity, and

continuity requirements [46], which are three of the four parameters that quantify

navigation system performance (the other being availability) [46, 65]. This research

focuses on integrity and continuity because they are the most di�cult requirements

for avionics systems to achieve.

1.6 Integrity Risk

Kelly and Davis defined integrity as the trust that can be placed in the cor-

rectness of information supplied by the system [46]. Enge states that integrity fails

when position error exceeds a predefined alert limit but an alert is not sounded to
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the pilot or guidance system within a specified time [25]. Integrity risk can be quan-

tified by probability of such a missed detection [25,54,62]. More specifically, integrity

risk is quantified as the probability that the system provides Hazardously Misleading

Information (HMI) [25, 76], which is an unacceptably large error without a timely

warning that the system cannot be trusted [65]. For the SAA problem, HMI occurs

when the SAA system is not sensing a hazard (and not alerting to maneuver) but in

fact, a hazard is present and a self-separation maneuver is required.

The Second SAA Workshop Caucus concluded that the hazard severity classi-

fication is always “catastrophic” for collision avoidance and always “major” for failing

to maintain well clear [31]. According to FAA Advisory Circular (AC) 25.1309-1A,

catastrophic failure conditions must be “extremely improbable” and major failure

conditions must be “improbable” [28]. It goes on to define extremely improbable

failure conditions as having probability on the order of 10�9 or less and improbable

failure conditions as having probability between 10�5 and 10�9 [28]. Based on those

definitions, SAA integrity risk requirements can be selected for self-separation and

collision avoidance. The self-separation integrity risk should be between 10�5 and

10�9 and the collision avoidance integrity risk should be 10�9 or less.

1.7 Continuity Risk

Kelly and Davis defined continuity as the ability of the total system to perform

its function without nonscheduled interruptions [46]. Enge states that continuity

fails when an aircraft operation is aborted for any unscheduled reason [25]. The

major contributor to continuity risk is typically the probability of false alert (FA)

[25,54,62,63,65]. For the SAA system, FA’s occur when alerts to maneuver are issued

when no separation hazards are present. When FA’s occur, the potential exists for the

UAS to maneuver unexpectedly, resulting in, at best, increased workloads for ATC

and pilots of potential intruders or, at worst, an induced self-separation or collision
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avoidance hazard with a di↵erent intruder. For the purposes of this research, loss of

continuity will be classified as a minor hazard, and should occur with a probability

no greater than 10�5 [28].

1.8 Multiple Intruders and Data Association

The multiple intruder problem is treated as a data association problem, deter-

mining if each measurement is correctly associated with the right intruder. Data asso-

ciation is a field extensively covered throughout the last half century [7,8,66]. There

is uncertainty in data association when there is uncertainty in whether a sensor mea-

surement’s origin is a target of interest [7]. There are many algorithms to address data

association, including the probabilistic data association filter (with joint and mixture

reduction variants) [7], particle filter [77], multiple hypothesis tracker [61], Markov

chain Monte Carlo [59], and nearest neighbor method [7]. Many of these methods are

computationally expensive. As an example application, Smith, et al., researched UAS

collision avoidance trajectories that minimized the deviation from intended flight path

while using a particle filter to track multiple intruders [77–80]. However, since the

particle filter has an increased computational cost (due to the propagation of large

populations of particles) [77], this research will employ a Kalman filter instead of a

particle filter.

Also, for computational e�ciency, this research will employ one of the simplest

available heuristic data association methods, the nearest neighbor, which relies on the

Mahalanobis distance metric [7]. The Mahalanobis distance is the square of the norm

of the error with respect to the covariance [6, 7, 55]. The nearest neighbor method

applies the Mahalanobis distance for measurement-to-track and track-to-track asso-

ciations [6,7]. There are many di↵erent variations of the nearest neighbor algorithm,

to include local nearest neighbor, global nearest neighbor, and k-nearest neighbor

approaches, among others [3, 5, 19, 67]. The multiple intruder problem outlined in
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this work matches closest to the global nearest neighbor algorithm. However the

numerical methods required to determine the probability of incorrect association of

a global nearest neighbor are computationally expensive and can be inaccurate for

the numbers of degrees of freedom in this research [6]. Instead, this thesis develops

a new innovation-based, computationally e�cient analytical method to bound the

probability of incorrect association to determine integrity risk of multiple intruders.

1.9 Dissertation Contributions

There are five main contributions to knowledge in this thesis. These contribu-

tions are outlined in the following subsections.

1.9.1 Integrity Risk Methodology. The first contribution of this work is the

development of an integrity risk evaluation methodology to quantify SAA safety.

Previous research into SAA safety has focused on relative safety metrics, such as risk

ratios, which is a failure rate with the SAA system divided by the failure rate without

the SAA system [48]. The approach in this thesis is di↵erent, focusing directly on

the accepted aviation navigation certification standards, such as those in the LAAS

Minimum Aviation System Performance Standards for aircraft approach navigation,

that quantify integrity and continuity as safety factors [39,71]. Integrity is an absolute

safety metric, which can be used to set certifiable requirements on individual system

components, such as SAA sensors, to achieve and prove an overall level of safety

[45, 71].

1.9.2 Continuity Risk Methodology. Another contribution of this thesis is

development of a continuity risk evaluation methodology to quantify SAA safety.

Accepted aviation navigation certification standards quantify continuity, as well as

integrity, as safety factors [39]. Like integrity, continuity is an absolute safety metric,

which can be used to set certifiable requirements on individual system components,
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such as SAA sensors [45, 71].

1.9.3 Relating Integrity and Continuity Risk to Sensor Requirements.

The integrity risk methodology and the continuity risk methodology together result

in a protection volume surrounding the own aircraft that inflates the WCT. This

inflation results in a tradeo↵ between SAA safety and airspace capacity requirements.

To minimize the impact on airspace capacity, an operational limit is placed on the

protection level, resulting in restrictions on sensor performance. A sensitivity analysis

explores the sensor requirement trade space for a given operational limit.

1.9.4 Accounting for Linear Accelerations. The trajectory state estimation

model used to build the integrity and continuity risk methodology is based on a

constant velocity assumption. As outlined in the DAAMOPS, the following statement

is repeated for ownship and intruder: “it is assumed that an ownship/intruder track

prediction will initiate at the ownship’s/intruder’s current position and be produced

using the estimates of ownship/intruder states extrapolated using constant horizontal

and vertical velocities” [72]. This assumption is removed and the estimation model

accounts for constant accelerations. There is limited prior work on SAA that accounts

for uncertainties in intruder dynamics. Barreiro, et al., from NASA Ames, conducted

a preliminary investigation into a probabilistic approach for small UAS (less than 55

lbs) SAA intruder path planning, accounting for potential intruder pilot actions based

on routes, tra�c patterns, topography, airspace, weather information, and observed

communications [9].

This thesis evaluates linear intruder accelerations for large UAS, based on

sensor measurements. Only linear intruder accelerations are evaluated, leaving turn-

ing and leveling intruder trajectories for future work. A linear acceleration-specific

analysis explores the sensor trade space.



13

1.9.5 Accounting for Multiple Intruders. The final contribution of this thesis

is accounting for multiple intruders. A general nearest neighbor innovation-based

methodology is employed resulting in the development of a new methodology to an-

alytically upper bound the probability of mis-associating any number of intruders.

A mis-association means the SAA system incorrectly associates a measurement to

the wrong intruder, resulting in estimation errors that impact integrity risk if one of

the intruders violates the well clear threshold. A multiple intruder-specific analysis

explores the sensor trade space.

1.10 Dissertation Outline

After this introductory chapter, Chapter 2 uses the Detect and Avoid Mini-

mum Operational Performance Standards well clear threshold definition to develop

hazard states that define the self-separation hazard. Chapter 3 develops the method-

ology for determining and applying integrity risk. Chapter 4 describes the methodol-

ogy for determining and applying continuity risk. Chapter 5 relates the integrity and

continuity risk methodology to sensor requirements. Chapter 6 includes a sensitiv-

ity analysis depicting an example two dimensional encounter and an example three

dimensional encounter to examine trade-o↵s between integrity and continuity risk,

sensor uncertainty, intruder trajectories, and sample rates. Chapter 7 introduces the

methodology to account for intruder linear accelerations and compares the modified

tau (the modified time to closest point of approach), which does not address acceler-

ations, with an accelerating version of true tau (the actual horizontal time to closest

point of approach). Chapter 8 develops the methodology to account for multiple

intruders, adjusting integrity based on the probability of mis-association. Finally,

Chapter 9 provides conclusions and opportunities for future research.
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CHAPTER 2

HAZARD STATE ESTIMATION

This chapter uses the draft Detect and Avoid (DAA) Minimum Operational

Performance Standards (MOPS) definition for a SAA self-separation (SS) hazard to

derive the hazard states necessary for developing the SAA integrity and continuity

risk evaluation methodology introduced in the following two chapters. DAA and SAA

are synonymous terms. The DAA MOPS is a technical standards document written

by the Radio Technical Commission for Aeronautics (RTCA) Special Committee-228

(SC-228). RTCA is a federal advisory committee that responds to FAA requests for

technical standard recommendations. RTCA Special Committees incorporate aca-

demic, government, and industry members of the aviation community to generate

these recommendations. SC-228 is specifically tasked to develop MOPS for UAS.

There are two ways the DAA MOPS describes the hazard associated with a

UAS failing to self-separate. The first description of this hazard is what the DAA

MOPS calls a loss of DAAWell Clear (DWC) and the second description of the hazard

is what it calls a warning alert [72]. The thresholds that define loss of DWC and the

well clear threshold (WCT) are synonymous. The hazard states are the variables

that define the loss of DWC and the warning alert. Based on the DAA MOPS,

this thesis will use three hazard states: modified tau (or modified time to horizontal

closest point of approach), horizontal closest point of approach (CPA), and predicted

vertical separation. This chapter will define and explain the hazard states.

A detailed explanation of intruder trajectories, the constant velocity measure-

ment model, and intruder trajectory state estimation processes is in Appendix A. A

discussion of alternate hazard states is presented in Appendix B.

2.1 Intruder Trajectory Estimation
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This section provides some background as to how the sense and avoid problem

is defined in this thesis. The intent is to define some terms and provide context for

the subsequent sections.

The sense and avoid problem is presented as a three dimensional, two-body

problem. The two bodies are the own aircraft and the intruder aircraft. The coordi-

nate frame is an own-aircraft-centered body frame. Figure 2.1 is a graphical depiction

of the own aircraft and the intruder aircraft encounter looking down from the top (on

the left) and looking from the side (on the right). In the horizontal plane, the x and

y axes are oriented such that the x-axis is directly out of the nose of the own aircraft.

The azimuth, ✓, is the angle counterclockwise from the x-axis to the horizontal range

vector, r (from the origin to the intruder position on the xy-plane). In the vertical

plane, � is the elevation angle from the horizontal range vector up to the slant range

vector, ⇢:

cos� =
r

⇢
(2.1)

x

y

✓
r

z

x

⇢

�

Figure 2.1. Horizontal and Vertical Position of the Intruder Aircraft

For this thesis, the intruder trajectory states, xn, are the relative Cartesian

intruder position and constant velocity:

xn =


xn yn zn ẋ ẏ ż

�T
(2.2)

where n is the current epoch. The constant velocity assumption here is based on
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the draft DAA MOPS, where it is assumed that intruder track prediction will be

extrapolated using constant velocity [72].

SAA sensors can measure the intruder’s relative position (with error) in spher-

ical, Cartesian, or cylindrical coordinates. In the draft Detect and Avoid Minimum

Operational Performance Standards, the input intruder measurements from a sense

and avoid radar includes relative slant range (⇢), relative range rate (⇢̇), relative

bearing (✓), and elevation angle (�) [72]. As a result, this thesis will assume in-

truder measurements (zn) of range, range rate, azimuth angle and elevation angle as

expressed in equation (2.3):

zn =


⇢n ✓n �n ⇢̇n

�T
(2.3)

The estimation algorithm in this thesis will employ a Kalman filter, which

is more computationally e�cient then a batch process. A comparison of the two

estimation processes can be found in Appendix A.

2.2 DAA Well Clear and Alerting Threshold

The distance and time defining a self-separation hazard was previously de-

scribed as a well clear threshold (WCT) or well clear boundary [14, 57, 83]. In 2011,

Weibel and his colleagues at the MIT Lincoln Laboratory recommended well clear

as a separation standard and presented candidate definitions for well clear bound-

aries [83]. In 2014, Munoz and his colleagues from the NASA Langley Research

Center presented a family of well clear boundary models [57]. In 2014, Cook and his

team from the SC-228 UAS SAA Science and Research Panel (SARP), recommended

a Well Clear Threshold definition after examining three candidates: one from NASA,

one from the MIT Lincoln Laboratory, and one from the Air Force Research Labora-

tory (AFRL) [14].
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However, in the draft DAA MOPS, SC-228 expanded on the SARP recom-

mendation and adapted the term detect and avoid well clear (DWC) to describe this

self-separation standard [72]. More specifically, the Minimum Operational Perfor-

mance Standards defines a loss of DWC in the following equation:

Loss of DWC = (0  ⌧mod  ⌧SS) \ (rCPA  rMD) \ (|z|  zMD) (2.4)

This means a loss of detect and avoid well clear occurs when modified tau (⌧mod) is at

or within the tau threshold (⌧SS) and the horizontal CPA (rCPA) is at or within the

horizontal miss distance (HMD) threshold (rMD) and the current vertical separation

(z) is at or within plus/minus the vertical separation threshold (zMD).

Figure 2.2 is a top-view depiction of the CPA. For a loss of DWC, there has to

be a time n, when zn has to be at or within the vertical miss distance, ±zMD, while

the rCPA is at or within the required horizontal miss distance (MD), rMD, and ⌧mod

is at or within the self-separation threshold, ⌧SS. All must be true simultaneously. If

only zMD is violated, the intruder could be co-altitude, but hundreds of miles away.

Conversely, if only rMD is violated, the intruder could be directly above or below the

own aircraft, but o↵ altitude by several thousand feet.

xn

r
n

x
0

˙x

r C
P
A

xCPA

Figure 2.2. Overhead View of Closest Point of Approach
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The DAA MOPS also defines alerting thresholds for Preventive, Corrective,

and Warning Alerts. In each case, the intruder is considered within an alerting

threshold when at any point within the alerting look-ahead time the predicted ⌧mod 

⌧SS and the predicted rCPA  rMD and the predicted vertical separation (zp) is at or

within ±zMD. This is described in the following equation:

Alert Event = (0  ⌧mod  ⌧SS) \ (rCPA  rMD) \ (|zp|  zMD) (2.5)

The DAA MOPS terminology is confusing in relation to alerting thresholds. For

example, it describes a “predicted rCPA” as an alerting condition, however, the rCPA

itself is a predictive state based on the intruder position and velocity. The di↵erent

Alerting Thresholds are presented in Table 2.1, which is directly from the DAAMOPS

DAA Alert Summary Table 2-20 [72].

Table 2.1. DAA MOPS Alert Summary [72]

Alert Type Alert Level
Must Alert Threshold

Lookahead Time ⌧SS Dmod, rMD zMD

Preventive Caution 55s 35s 0.66 NM 700 ft

Corrective Caution 55s 35s 0.66 NM 450 ft

Warning Warning 25s 35s 0.66 NM 450 ft

Since the warning alert is the most restrictive and matches the DWC thresh-

olds, the hazard states will be defined based on the DAA Warning Alert. Therefore,

the hazard states are ⌧mod, rCPA, and zp. The corresponding thresholds are ⌧SS = 35

s, rMD = 4000 feet = 0.66 NM, and zMD = 450 feet [72]. The lookahead time of 25

seconds will be used to define zp.

For a hazard to cause a warning alert, the following three events must simul-

taneously occur:
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• The trajectory horizontal CPA, rCPA, must be within the rMD

• The intruder trajectory must vertically cross within ±zMD within 25 seconds

• ⌧mod must be less than or equal to ⌧SS within 25 seconds (⌧mod � 25s  ⌧SS)

2.3 Modified Horizontal Time to CPA

Modified tau, ⌧mod, is the actual (or true) time to horizontal closest point

of approach with an added safety factor [70]. True tau, ⌧true, is the actual time

to horizontal closest point of approach assuming unaccelerated flight by both own

aircraft and the intruder [70]. The DAA MOPS defines modified tau as follows for

closing geometries [72]:

⌧mod =
�(r2 �D2

mod)

rṙ
=

D2
mod � r2

xẋ+ yẏ
(2.6)

where r is the relative intruder horizontal range, ṙ is the relative intruder horizontal

range rate, x and y are the relative intruder Cartesian horizontal position distances

and ẋ and ẏ are the relative intruder Cartesian horizontal velocities.

Dmod is the distance modification, which is set equal to the horizontal miss

distance threshold, rMD. If Dmod 6= rMD, the DAA MOPS explains that “alerts may

oscillate on and o↵ with un-accelerating ownship and intruder, which is an undesired

behavior” [72]. The intent behind Dmod has several di↵erent explanations depending

on the source. These definitions are chronicled in Appendix C.

Since r =
p
x2 + y2, modified tau can be defined completely as a function of

the trajectory states:

⌧mod =
D2

mod � x2 � y2

xẋ+ yẏ
(2.7)

2.3.1 True Tau. To get the Actual Time to Horizontal CPA, ⌧true, in terms of
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trajectory states, the following two equations need to be solved:

2

664
xn

yn

3

775+ ⌧true

2

664
ẋ

ẏ

3

775 =

2

664
xCPA

yCPA

3

775 (2.8)

2

664
ẋ

ẏ

3

775 ·
2

664
xCPA

yCPA

3

775 = 0 (2.9)

The first equation reflects the distance from the current horizontal position to the

horizontal CPA as a sum of position and ⌧ times horizontal velocity. The second

equation, which is the dot product of horizontal Cartesian velocity vector and the

horizontal Cartesian closest point of approach vector, expresses that these two vectors

are perpendicular. Combining these equations results in three equations and three

unknowns: 2

66666664

1 0 �ẋ

0 1 �ẏ

ẋ ẏ 0

3

77777775

2

66666664

xCPA

yCPA

⌧true

3

77777775

=

2

66666664

xn

yn

0

3

77777775

(2.10)

The resulting three unknowns, xCPA, yCPA, and ⌧true can be computed using the

following equations: 2

664
xCPA

yCPA

3

775 =

2

664
xn + ⌧trueẋ

yn + ⌧trueẏ

3

775 (2.11)

⌧true =
�(ẋxn + ẏyn)

ẋ2 + ẏ2
(2.12)

2.4 Horizontal Closest Point of Approach

There are two ways to determine the Horizontal CPA, rCPA. One is the-time
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based definition in the DAA MOPS and the other is geometrically determined based

on a linear intruder trajectory. The time-based horizontal CPA from the DAA MOPS

is [72]:

rCPA =
q

x2
CPA + y2CPA =

p
(xn + ⌧trueẋ)2 + (yn + ⌧trueẏ)2 (2.13)

The geometric rCPA is derived in Appendix D. Geometric rCPA will prove useful

in Chapter 7, where the constant velocity assumption is removed, but the linear

trajectory remains. The expression for rCPA is:

rCPA =
q

x2
CPA + y2CPA =

ẏx� ẋyp
ẋ2 + ẏ2

(2.14)

when factoring out ⌧true in equation (2.13), equation (2.13) reduces to equation (2.14).

2.5 Predicted Vertical Separation

To account for the warning alert criteria in the DAA MOPS, there needs to

be a predicted vertical separation that can lookahead up to 25 seconds. This can be

accounted for in the following equation:

zp = zn + p�tż (2.15)

where p are the all the future epochs up to the 25 second lookahead time.

2.6 Hazard State Estimate and Estimate Error Variance

The trajectory state estimator in Appendix A produces a trajectory state

estimate, x̂n, from equation (A.29) and a Kalman filter estimate error covariance

matrix, P̂n, from equation (A.30). The hazard state estimate vector  ̂n at epoch n

is:

 ̂n =


⌧̂mod,n r̂CPA,n ẑp,n

�T
(2.16)
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A first order Taylor series expansion is used to obtain the linearized approximation

of the hazard state estimates in relation to the trajectory state estimates (x̂n):

 ̂n ⇡ Anx̂n (2.17)

where An are the Taylor Series partial derivative vectors (aT
⌧
n

, aT
r
n

, aT
z
n

) stacked into

one matrix:

An =

2

66666664

aT
⌧
n

aT
r
n

aT
z
n

3

77777775

(2.18)

As an example of the partial derivative vectors, aT
⌧
n

is the vector of partial derivatives

of ⌧mod with respect to the trajectory states:

aT
⌧
n

=


@⌧

mod,n

@x
n
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(2.19)

where x̄ is an a-priori estimate of the trajectory states. The partial derivative vectors

aT
r
n

and aT
z
n

are found in the same manner. The hazard state partial derivatives with

respect to the trajectory states are derived in Appendix G.

The full covariance matrix, P⌧rz
n

, of the hazard state estimate vector,  ̂n, is

determined by the following:

P⌧rz
n

= AnP̂nA
T
n (2.20)

P⌧rz
n

is fully populated so the hazard state estimates (⌧̂mod, r̂CPA, and ẑp) are corre-

lated. The hazard state estimate variances �2
⌧ , �

2
r , and �2

z are the diagonal elements

of P⌧rz
n

.

2.7 Hazard State Estimate Summary
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In this chapter, three hazard states were defined based on the DAA MOPS

definitions for a loss of DWC and warning alerts. The hazard states are modified

tau, horizontal CPA, and predicted vertical separation. These hazard states were

defined as functions of the trajectory states, intruder relative position and velocity.

Then the hazard state estimates and hazard state estimate error covariance matrix

were developed, which are used for the validation the DAA MOPS and the develop-

ment of SAA integrity and continuity risk evaluation methodologies, which occur in

subsequent chapters.
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CHAPTER 3

INTEGRITY RISK

The first contribution of this thesis is the introduction of integrity risk as an

absolute metric to quantify SAA safety, as opposed to the relative safety metrics of

the previous work. Integrity risk is quantified as the probability that the system

provides Hazardously Misleading Information (HMI) [25, 76]. In the UAS SAA ap-

plication, HMI occurs when a hazard is present, but the SAA system does not sense

the hazard. This chapter builds the SAA integrity risk evaluation methodology by

first examining integrity risk for one hazard state, then expanding the integrity risk

evaluation methodology to all three hazard states.

3.1 Integrity Risk Based Solely on Tau

HMI occurs when a hazard exists, but that hazard is not sensed. Accounting

for ⌧mod only, a hazard exists when ⌧mod  ⌧SS. The hazard is not sensed if ⌧̂mod > ⌧SS.

This HMI leads the own aircraft to not maneuver when a self-separation maneuver is

warranted.

It is assumed that measurement errors can be over-bounded in the cumulative

distribution function (CDF) sense by Gaussian distributions. Using a linear estimator

to determine trajectory states and hazard states, the hazard state estimate error

distributions are then also over-bounded by normal distributions [16, 68].

The left curve in Figure 3.1 depicts the probability density function of the

estimate, ⌧̂mod, which has uncertainty due to the imperfect SAA sensors that take the

noisy measurements that are used to estimate trajectory states and hazard states.

When actual ⌧mod = ⌧SS, which is a hazard condition, there is an unacceptable 50%

probability of estimated ⌧̂mod being above the threshold, a non-alerting HMI condition

where the hazard is not sensed. This ⌧mod = ⌧SS is the worst case condition since
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pdf(⌧̂mod)

⌧̂mod⌧mod = ⌧SS

PHMI

pdf(⌧̂mod)

⌧̂mod⌧mod = ⌧SS

k⌧�⌧

PHMI

Figure 3.1. Integrity Risk and Adjusted Threshold

when ⌧mod > ⌧SS, there is no hazard, and when ⌧mod < ⌧SS, PHMI is less than 50%.

To reduce the 50% PHMI at this worst case (⌧mod = ⌧SS), the threshold is

adjusted by adding a multiple of the ⌧̂mod standard deviation, k⌧�⌧ , to the original

threshold, ⌧SS. The integrity coe�cient, k⌧ , is determined to ensure a predefined

level of integrity, I⌧ . In the right curve of Figure 3.1, the threshold is modified to

⌧SS + k⌧�⌧ . The hazard is now not sensed if the estimated time to closest approach,

⌧̂mod, is greater than ⌧SS + k⌧�⌧ . In this case, the self-separation integrity risk is the

probability of HMI, PHMI :

PHMI = P (⌧̂mod > ⌧SS + k⌧�⌧ |⌧mod  ⌧SS) (3.1)

PHMI must meet a predefined integrity risk requirement, I⌧ , that will be spec-

ified by the air certification authority’s desired level of safety. For the shaded area in

the right curve of Figure 3.1 to be I⌧ , the multiplier k⌧ is selected such that:

Q(k⌧ ) = I⌧ (3.2)

where Q(x) is the tail probability of the standard normal distribution with zero mean
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and unit variance:

Q(x) = 1� �(x) =
1

2


1� erf

✓
xp
2

◆�
(3.3)

and �(x) is the cumulative distribution function (CDF) for the standard normal

distribution:

�(x) =
1

2


1 + erf

✓
xp
2

◆�
(3.4)

3.2 Integrity Risk for All Hazard States

In the previous section, only one hazard state was considered. Now, full self-

separation integrity risk is based on all three hazard states.

As in the ⌧mod only case, to ensure PHMI meets the integrity risk requirement

at the worst case for rCPA and zp (rCPA = rMD and zp = ±zMD), the thresholds are

adjusted by adding multiples of the standard deviations (�r and �z) to the distance

thresholds. The adjusted horizontal miss distance threshold is now rMD + kr�r, the

adjusted vertical miss distance threshold is now zMD+kz�z at the top vertical warning

alert threshold, and the adjusted vertical miss distance threshold is now �zMD�kz�z

at the bottom vertical warning alert threshold. Now, the self-separation integrity risk

is PHMI :

Sense No Hazard = [⌧̂mod > ⌧SS + k⌧�⌧ [ r̂CPA > rMD + kr�r [ |ẑp| > zMD + kz�z]

(3.5)

Hazard Exists = [⌧mod  ⌧SS \ rCPA  rMD \ |zp|  zMD] (3.6)

PHMI = P [Sense No Hazard|Hazard Exists] (3.7)

In equation (3.7), the condition reflects an imminent (at or within ⌧SS seconds) WCT

violation (or loss of DWC) at the warning alert limit. Hazard Exists describes a

condition where three events occur simultaneously :
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• Actual time to CPA, ⌧mod, is less than or equal to ⌧SS.

• And actual horizontal CPA, rCPA, is at or within rMD.

• And actual predicted vertical separation, zp, is at or within ±zMD.

In this case, the own aircraft should initiate a self-separation maneuver. Sense No

Hazard describes a case where any of the following four events is occurring:

• Estimated time to CPA, ⌧̂mod, is greater than the adjusted threshold ⌧SS+k⌧�⌧ .

• Or estimated horizontal CPA, r̂CPA, is beyond the adjusted threshold rMD +

kr�r.

• Or estimated predicted vertical separation, ẑp, is above the adjusted threshold

zMD + kz�z.

• Or estimated predicted vertical separation, ẑp, is below the adjusted threshold

�zMD � kz�z.

Any one of these misleading estimates can cause HMI that leads the own aircraft

to not maneuver when a self-separation maneuver is warranted. Figure 3.2 depicts

a 2D HMI scenario, where the actual rCPA is just within the rMD threshold but

the estimate r̂CPA is just beyond the adjusted threshold rMD + kr�r. The adjusted

threshold ensures that this case occurs with a probability less than or equal to Ir (if

Ir is allocated as an integrity requirement specifically for rCPA).

PHMI must meet a predefined integrity risk requirement for the SAA system,

ISS, that will be specified by the certification authority’s desired level of safety. This

integrity risk criterion for full self-separation is expressed as:

PHMI  ISS (3.8)
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Figure 3.2. Worst Case HMI Scenario for rCPA

The violation of the integrity limit, ISS, reflects a higher than acceptable probability

that a self-separation maneuver may be required, but the sensor estimate misleads the

SAA system into not maneuvering. There is a single overall requirement, ISS, that

needs to be satisfied in equation (3.8). The following paragraphs describe a rigorous

approach to establish an upper-bound on PHMI , and to allocate ISS to each hazard

state. The approach is also computationally e�cient.

The hazard state estimates ⌧̂mod, r̂CPA, and ẑp will be correlated in general.

PHMI is a joint trivariate normal probability over the three hazard states:

PHMI = 1p
(2⇡)3|P
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⌘ (3.9)

where  0 is the vector of hazard state integration variables (⌧ 0, r0, and z0):

 0 =

2

66666664

⌧ 0

r0

z0

3

77777775

(3.10)
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and µ is the mean vector, which are the hazard state thresholds (⌧SS, rMD, and zMD):

µ =

2

66666664

⌧SS

rMD

zMD

3

77777775

(3.11)

and P⌧rz is the hazard state estimate error covariance matrix from equation (2.20).

This trivariate normal distribution, centered at a mean vector value of the hazard

state thresholds, represents the worst case at the top vertical separation threshold

(+zMD). The worst case at the bottom vertical separation threshold (�zMD) is a

mirror image of the worst case at the top and will have the same value as the PHMI

in equation (3.9).

To apply the integrity risk evaluation methodology, the coe�cient k needs

to be determined for each hazard state. The triple integral in equation (3.9) can be

evaluated using computationally expensive numerical integration methods [21], which

may not be numerically e�cient nor computationally stable when evaluating each k

coe�cient. Also, in future work, when expanding this SAA methodology to online

avoidance maneuvers, computational e�ciency becomes paramount. Ground vehicles

are more likely to carry the payload necessary to do heavy computations quickly.

Aircraft, especially UAS, usually do not. For all these reasons, an easy-to-compute

bound on PHMI is used, which will be explained in the following paragraphs.

In 3D space, the error covariance matrix can be visualized as a trivariate

normal distribution ellipsoid. To illustrate this idea, Figure 3.3 shows constant prob-

ability density ellipses in the 2D (⌧̂mod, r̂CPA) plane. The PHMI is the joint CDF for

this distribution bounded by [k⌧�⌧ ,1] in the ⌧̂ direction and [kr�r,1] in the r̂CPA
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Figure 3.3. 2D Integrity Risk Correlation

direction. In 2D:

PHMI = 1
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where  0
⌧r is the vector of the two hazard state integration variables (⌧ 0 and r0):

 0
⌧r =

2

664
⌧ 0

r0

3

775 (3.13)

and µ⌧r is the mean vector of the two hazard state thresholds (⌧SS and rMD):

µ⌧r =

2

664
⌧SS

rMD

3

775 (3.14)

and P⌧r is the (⌧̂mod, r̂CPA) covariance matrix. This bivariate normal distribution,

centered at a mean vector value of the hazard state thresholds, represents the worst

case. The double integral in equation (3.12) can also be evaluated using numerical
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integration methods [21], requiring a computational load that may not be feasible for

the onboard Unmanned Aircraft (UA) Detect and Avoid (DAA) Processor required

by the MOPS [72]. According to the DAA MOPS, the UA DAA Processor “is lo-

cated onboard the UA and evaluates track data from the airborne active surveillance

transponder, ADS-B In and Air-to-Air radar” [72]. The current draft of the MOPS

does not yet define the computational e�ciency requirements for this processor.

In Figure 3.3, the probability of being in the shaded areas is the integrity

risk, PHMI . The probability of being in the shaded area to the right of the line

⌧mod = ⌧SS+k⌧�⌧ is Q(k⌧ ). Likewise, the probability of being in the shaded area above

the line rCPA = rMD + kr�r is Q(kr). The probability of being in the overlap region

between these two shaded areas cannot be evaluated using Q-functions. Instead, an

easy-to-compute bound on PHMI is used, which is expressed as:

PHMI  Q(k⌧ ) +Q(kr) (3.15)

The bound in equation (3.15) accounts for the probability of being in the overlapping

upper-right, shaded quadrant twice, which is conservative, hence the inequality.

Extending this bounding to the full 3D case, the integrity risk is upper bounded

by the following:

PHMI  Q(k⌧ ) +Q(kr) +Q(kz) +Q

✓
kz +

2zMD

�z

◆
(3.16)

To ensure equation (3.8) is satisfied, this integrity risk upper bound must be less than

or equal to the integrity risk requirement:

Q(k⌧ ) +Q(kr) +Q(kz) +Q

✓
kz +

2zMD

�z

◆
 ISS (3.17)
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This integrity risk upper bound includes all overlaps between Q(k⌧ ), Q(kr) and Q(kz),

resulting in the inequality. Q
⇣
kz +

2z
MD

�
z

⌘
represents the very small probability that

while the actual zp is at the upper threshold, zMD, the estimated ẑp is below the

adjusted lower vertical threshold �zMD � kz�z, which is a sense-no-hazard condition.

It is desirable to determine a kz for the entire encounter. However, kz is a function of

�z, which decreases with time. For the purposes of determining kz, it is assumed that

�z values more than twice the vertical threshold (2zMD) are too large to be useful for

SAA alerting. Therefore to determine kz, it is assumed that �z = 2zMD. With the

�z assumption, equation (3.16) is now reduced to:

PHMI  Q(k⌧ ) +Q(kr) +Q(kz) +Q(kz + 1) (3.18)

and equation (3.17) is now reduced to:

Q(k⌧ ) +Q(kr) +Q(kz) +Q(kz + 1)  ISS (3.19)

Equation (3.19) is used to determine coe�cients (k⌧ , kr, kz) that guarantee that PHMI

is less than ISS. This could be done, for example, by evenly allocating coe�cients

k⌧ = kr = kz. Equations (3.18) and (3.19) give a conservative way to satisfy equation

(3.8) while considering the three di↵erent hazard states.

This results in a tradeo↵ between safety and airspace capacity. Larger co-

e�cients (k⌧ , kr, kz) represent increased safety, but the resulting larger protected

airspace around the own aircraft leads to reduced airspace capacity. Chapter 5 will

further explore this safety versus airspace capacity tradeo↵.

3.3 Integrity Risk Evaluation Summary

This chapter introduced the new idea of using integrity, the probability of
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HMI, as an absolute safety metric for SAA systems. An integrity risk evaluation

methodology was established, adjusting the DAA MOPS WCT by a multiple of the

hazard state estimate error standard deviations. Then a computationally e�cient

upper bound on the integrity risk was developed to determine the integrity adjustment

coe�cients. The selection of coe�cients results in a tradeo↵ between safety and

airspace capacity further discussed in Chapter 5.
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CHAPTER 4

CONTINUITY RISK

Another contribution of this thesis is development of a continuity risk evalu-

ation methodology to quantify sense and avoid safety. Accepted aviation navigation

certification standards quantify continuity, as well as integrity, as safety factors [39].

Like integrity, continuity is an absolute safety metric, which can be used to set cer-

tifiable requirements on individual system components, such as sense and avoid sen-

sors [45, 71]. Continuity risk is typically quantified as the probability of false alert

(FA) [25,54,62,63,65]. In a sense and avoid system, a false alert occurs when a hazard

is sensed when no separation hazards exist. This chapter builds upon the SAA in-

tegrity risk evaluation methodology of the previous chapter to develop a methodology

to quantify SAA continuity risk.

4.1 Continuity Based Solely on Modified Tau

A false alert occurs when no hazard exists, but a hazard is falsely sensed.

Accounting for ⌧mod only, no hazard exists when ⌧mod > ⌧SS. As discussed in the

previous chapter, a hazard is sensed if the estimated hazard state is less than or equal

to the adjusted threshold. In this case, a hazard is sensed if ⌧̂mod  ⌧SS + k⌧�⌧ . As a

result, the continuity risk, or probability of false alert, PFA, is defined as:

PFA = P (⌧̂mod  ⌧SS + k⌧�⌧ |⌧mod > ⌧SS) (4.1)

A false alert leads the own aircraft to maneuver when a self-separation maneuver is

not warranted.

The left curve in Figure 4.1 depicts the normal distribution of the estimate,

⌧̂mod, when actual ⌧mod is just above the adjusted threshold ⌧SS + k⌧�⌧ , where the ↵

in the figure is positive and very small. In this false alert case, actual ⌧mod exceeds
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pdf(⌧̂mod)

⌧̂mod⌧mod = ⌧SS + k⌧�⌧ + ↵

PFA

pdf(⌧̂mod)

⌧̂mod⌧SS + k⌧�⌧

PFA

`⌧�⌧

Figure 4.1. Continuity Risk and the Continuity Bu↵er

the adjusted threshold by very small ↵. At this point there is a 50% probability of

⌧̂mod being either above or below the mean, ⌧SS + k⌧�⌧ + ↵. To ensure there is an

acceptable FA probability, a continuity bu↵er is introduced by adding a multiple of the

⌧mod standard deviation, `⌧�⌧ , to the adjusted threshold, ⌧SS + k⌧�⌧ . The continuity

coe�cient, `⌧ , is determined to ensure a predefined continuity risk requirement, C⌧ ,

that will be specified by the certification authority’s desired level of safety. In the right

curve of Figure 4.1, the continuity bu↵er, `⌧�⌧ is added to the adjusted threshold. In

this case, if actual ⌧mod is at or greater than ⌧SS+(k⌧ +`⌧ )�⌧ , then the self-separation

continuity risk, or probability of false alert, PFA, is assured to be lower than C⌧ .

Therefore, in order to ensure that PFA is smaller than or equal to C⌧ , `⌧ is defined

as:

`⌧ = ���1(C⌧ ) (4.2)

where �(x) is the CDF for the standard normal distribution in equation (3.4).

When ⌧mod is between ⌧SS + k⌧�⌧ and ⌧SS + (k⌧ + `⌧ )�⌧ , the own aircraft may

FA with a probability higher than the continuity risk requirement. As such, the term

⌧mod protection level is introduced and defined as ⌧SS + (k⌧ + `⌧ )�⌧ .

4.2 Continuity Risk for All Hazard States

As in the ⌧mod only case, to ensure there is an acceptable PFA for rCPA and zp,
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Figure 4.2. Worst Case FA Scenario for rCPA

continuity bu↵ers are added to the integrity-adjusted distance thresholds. The alert

to maneuver will still be based on the integrity-adjusted distance thresholds. The

area inside each continuity bu↵er is where false alerts can occur with a probability

higher than a given continuity requirement. The self-separation continuity risk is

PFA:

Sense Hazard = [⌧̂mod  ⌧SS+k⌧�⌧ \ r̂CPA  rMD+kr�r \ |ẑp|  zMD+kz�z] (4.3)

No Hazard Exists = [⌧mod > ⌧SS [ rCPA > rMD [ |zp| > zMD] (4.4)

PFA = P (Sense Hazard|No Hazard Exists) (4.5)

Figure 4.2 depicts a 2D FA scenario, where the actual rCPA is just beyond

the protection level (rMD + kr�r + `r�r) while the estimate, r̂CPA, is just within the

integrity-adjusted threshold (rMD + kr�r). The continuity bu↵er ensures this case

occurs with a probability less than or equal to Cr (if Cr is allocated as a continuity

requirement specifically for rCPA).

PFA must meet an overall predefined continuity requirement, CSS. The conti-
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nuity risk criterion is expressed as:

PFA  CSS (4.6)

The following paragraphs describe a rigorous approach to establish an upper-

bound on PFA, and to allocate CSS to each hazard state. The approach is also

computationally e�cient.

The hazard state estimates ⌧̂mod, r̂CPA, and ẑp will be correlated in general.

PFA is a joint trivariate normal probability over the three hazard states:

PFA =
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(4.7)

where  0 is the vector of hazard state integration variables:

 0 =

2

66666664

⌧ 0

r0

z0

3

77777775

(4.8)

and µ is the mean vector, which are now the protection levels:

µ =

2

66666664

⌧SS + k⌧�⌧ + `⌧�⌧

rMD + kr�r + `r�r

zMD + kz�z + `z�z

3

77777775

(4.9)

and P⌧rz is the hazard state estimate error covariance matrix from equation (2.20).

As was done for integrity to determine the k coe�cients, an easy-to-compute bound
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Figure 4.3. 2D Continuity Risk Correlation

on PFA is used to determine ` coe�cients, which will be explained in the following

paragraphs.

For illustrative purposes, Figure 4.3, depicts the 2D FA probability ellipse

between ⌧̂mod and r̂CPA. The ellipse is centered at the protection levels (⌧SS + k⌧�⌧ +

`⌧�⌧ , rMD + kr�r + `r�r). PFA is the dark shaded area of the lower left corner. The

probability of being in the shaded areas to the left of the line ⌧̂ = ⌧SS + k⌧�⌧ is given

by the � function, �(�`⌧ ). Likewise, the probability of being in the shaded areas

below line r̂CPA = rMD + kr�r is given by the � function, �(�`r). The probability of

the overlap between these two shaded areas cannot be evaluated analytically. Instead,

an upper bound on PFA is used, which is expressed as:

PFA  �(�`⌧ ) + �(�`r)

2
(4.10)

The conservative upper bound in equation (4.10) accounts for the probability of being

in the overlapping lower-left, shaded quadrant and the excess probabilities in the

lighter shaded areas.
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Extending this bounding to the full 3D case, the continuity risk is upper

bounded by the following:

PFA  �(�`⌧ ) + �(�`r) + �(�`z)

3
(4.11)

To ensure equation (4.6) is satisfied, this continuity risk upper bound must be less

than or equal to the continuity risk requirement:

�(�`⌧ ) + �(�`r) + �(�`z)

3
 CSS (4.12)

This continuity risk upper bound accounts for the overlaps and excesses between

�(�`⌧ ), �(�`r), and �(�`z). This bound also includes an excess in the extreme case,

which would not be a false alert, where actual zp is at the upper vertical continuity

bu↵er, but the estimated ẑp is below the lower vertical continuity bu↵er, �zMD �

kz�z � `z�z.

Equation (4.12) is used to determine coe�cients (`⌧ , `r, `z) that guarantee that

the continuity risk is less than the continuity risk requirement. This could be done,

for example, by evenly allocating CSS to the three hazard states. Equations (4.11)

and (4.12) give a conservative way to satisfy equation (4.6) while considering the

three di↵erent hazard states. As discussed in the previous chapter for the integrity

coe�cients (k’s), the selection of continuity coe�cients (`’s) results in a tradeo↵

between safety and airspace capacity further discussed in Chapter 5.

4.3 Continuity Risk Evaluation Summary

This chapter introduced the new idea of using continuity, the probability of

false alert, in conjunction with integrity, as absolute safety metrics for SAA systems.

A continuity risk evaluation methodology was established, recognizing a continuity
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bu↵er beyond the integrity-adjusted warning alert thresholds of the previous chap-

ter. The continuity bu↵er is a multiple of each hazard state estimate error standard

deviation. Then a computationally e�cient upper bound on the continuity risk was

developed to determine the continuity bu↵er coe�cients. As in the previous chapter,

the selection of coe�cients results in a tradeo↵ between safety and airspace capacity

further discussed in Chapter 5.



41

CHAPTER 5

OPERATIONAL LIMITS AND SENSOR REQUIREMENTS

The previous two chapters introduced new methods for evaluating integrity risk

and continuity risk for sense and avoid by surrounding the well clear threshold with

a protection level comprised of multiples of the hazard state estimate error standard

deviations. This first part of this chapter will introduce the concept of an operational

limit on the protection level to minimize the impact on surrounding airspace. The

tradeo↵ on limiting the protection level is the need for better sensor performance.

The last part of this chapter will outline how applying the integrity and continuity

risk evaluation methodology with operational limits leads to certifiable requirements

on sense and avoid sensors.

5.1 Operational Limits

In the previous two chapters, the integrity-adjusted threshold and the continu-

ity bu↵er together formed a protection level that surrounds the well clear threshold.

This protection level must be reasonably close to the original WCT before a hazard

test can be executed. Otherwise, the resulting protected separation distances can be

very large, leading to airspace capacity issues. To mitigate this, a certification au-

thority will need to determine an acceptable fractional margin, ✏, on all three original

hazard thresholds (⌧SS, rMD, and zMD) to limit how big the protection level around

the well clear threshold can get. This is expressed mathematically as:

✏⌧ =
(k⌧ + `⌧ )�⌧

⌧SS
(5.1)

✏r =
(kr + `r)�r

rMD

(5.2)

✏z =
(kz + `z)�z

zMD

(5.3)
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Obviously, to limit the impact on the surrounding airspace, it is desirable that

✏ is small. However, smaller ✏ requires better sensor performance. Achieving ✏ = 0 is

impossible because it would require perfect sensors such that �⌧ = �r = �z = 0. The

fractional margin, ✏, is used to define practical operational limits (denoted by a tilde)

on hazard state estimate error standard deviations, �̃. The hazard state estimate

error standard deviation operational limits are:

�̃⌧ , ✏⌧SS
k⌧ + `⌧

(5.4)

�̃r ,
✏rMD

kr + `r
(5.5)

�̃z ,
✏zMD

kz + `z
(5.6)

At the aircraft, the SAA hazard detection test described in equation (3.7) can

be carried out with required integrity and continuity when �⌧ , �r, and �z all reach

below their respective operational limits (�̃⌧ , �̃r, and �̃z).

However, the intruder aircraft is approaching the own aircraft while the hazard

state estimate error standard deviations are decreasing. Not all sensors or sensor-

suites have the necessary performance to be ready to perform a hazard detection

test before a maneuver is warranted. In other words, the hazard detection test must

be performed with required integrity and continuity before a hazard actually occurs.

To identify sensors that can meet this additional requirement, operational limits on

hazard states are set as follows:

⌧̃⌧ , (1 + ✏)⌧SS

r̃ , (1 + ✏)rMD

z̃ , (1 + ✏)zMD

(5.7)
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Horizontal Range (r) vs Time to CPA

Figure 5.1. Horizontal Operational Limits

From this point on, a reference to ⌧ without a subscript refers to true tau,

the actual time to CPA. This methodology compares hazard state estimate error

standard deviations to a precise actual time to CPA, true tau. Modified tau is an

approximation that lacks this precision. Modified tau will retain its subscript and is

still a hazard state.

The distance-based hazard state operational limits (r̃ and z̃) can be trans-

lated to temporal operational limits on the actual time to closest point of approach

(true tau) because there is an associated time when these distance limits are reached.

Assuming intruder constant velocity, the corresponding times to closest point of ap-

proach can be determined when the horizontal range, r, and the vertical position,

z, cross their respective operational limits (r̃, z̃). Figure 5.1 depicts an example of

this for the intruder horizontal range, r, where the x-axis is actual time to closest

point of approach. The horizontal temporal operational limit (⌧̃r) is the time when

the horizontal range crosses the horizontal range operational limit, r̃.

Because the detection test is simultaneously performed on all three hazard

states, the operational limit on true tau for all three hazard states, labeled as ⌧̃ , can
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be taken as the maximum of the three hazard state ⌧̃ ’s:

⌧̃ = max(⌧̃⌧ , ⌧̃r, ⌧̃z) (5.8)

For realistic well clear thresholds and aircraft velocities, ⌧̃r and ⌧̃z will typically

be much lower than ⌧̃⌧ . Therefore, ⌧̃ will usually be determined by ⌧̃⌧ . However, for

very slow intruder-aircraft-to-own-aircraft closure rates, ⌧̃r and ⌧̃z may need to be

considered.

5.2 Relating Operational Limits to Sensor Requirements

Figure 5.2 depicts an illustrative example of how the operational limit relates

to sensor requirements for one hazard state estimate error standard deviation, in

this case �⌧ . Within the plot are three curves representing three di↵erent sensors.

The plot is the ⌧mod hazard state estimate error standard deviation, �⌧ , versus the

actual time to CPA, true tau. On the x-axis, time starts on the right at the time

to closest point of approach at initial intruder detection, ⌧0, and decreases until it

reaches the time at the CPA, where tau is zero (⌧CPA = 0). Additional labels on the

x-axis are the tau threshold, ⌧SS, and the tau operational limit, ⌧̃ . For a sensor to

meet ⌧mod integrity and continuity requirements, the ⌧mod standard deviation curve

must cross the ⌧mod standard deviation operational limit, �̃⌧ , at an actual time to

CPA, ⌧ , greater than the time to CPA operational limit, ⌧̃ . If a sensor’s hazard state

estimate error standard deviation curve crosses its operational limit at a ⌧ less than

⌧̃ , it will cross into the gray shaded area, which indicates a sensor that will false

alert at a probability higher than the continuity risk requirement and a sensor that

might produce hazardously misleading information at a rate higher than the integrity

risk requirement. In Figure 5.2, Sensors 2 and 3 meet the ⌧mod continuity risk and

integrity risk requirements.
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Figure 5.2. ⌧mod Operational Limits and Sensor Requirements

Figure 5.3 extends this illustrative example to all three hazard states. Each

hazard state has its own plot and within each plot there are three curves representing

three di↵erent sensors. For a sensor to meet the full system integrity and continuity

requirements, each hazard state estimate error standard deviation curve must cross

its respective operational limit at a ⌧ greater than ⌧̃ . If any of the sensor’s � curves

cross its respective �̃ at a ⌧ less than ⌧̃ (and penetrates the gray shaded area), that

sensor will not meet continuity and integrity risk requirements. In the figure, only the

bottom sensor, Sensor 3, meets the continuity risk and integrity risk requirements.

5.3 Applying Self-Separation Tests

To meet self-separation requirements, a sensor must have characteristics (mea-

surement uncertainty, sensor range, and sample interval) to reduce each hazard state

estimate error standard deviation below its operational limit �̃ prior to its ⌧ opera-

tional limit, ⌧̃ , as depicted for Sensor 3 in Figure 5.3. If a given sensor is not good

enough, sensor uncertainty must be improved, sensor range must be extended, and/or
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the intervals between independent samples must be reduced.

In order to maintain continuity, a minimal number of self-separation tests must

be accomplished. For a constant velocity model, once all three hazard state estimate

error standard deviations are reduced below their operational limits, �̃’s, there only

needs to be one test for a warning alert. From there, an alerted UAS can maneuver

based on timing: when ⌧̂mod < ⌧̃ .

5.4 Summary of Operational Limits and Sensor Requirements

This chapter introduced the concept of an operational limit on the protection

level to minimize the impact on surrounding airspace. The tradeo↵ on limiting the

protection level was the need for better sensor performance. A methodology was intro-

duced to evaluate integrity and continuity risks with operational limits to determine

certifiable requirements on SAA sensors.



48

CHAPTER 6

ANALYSIS OF 2D AND 3D ENCOUNTERS

The previous four chapters established a hazard state estimation process based

on the DAA MOPS SAA hazard definition, developed an integrity risk evaluation

methodology for SAA, developed a complementary continuity risk evaluation method-

ology for SAA, and related integrity and continuity risks to SAA sensor requirements.

This chapter illustrates these contributions through simulated performance analyses.

The first analysis looks at two dimensional, co-altitude encounters to explore how the

entire SAA sensor characteristic trade space can impact integrity and continuity risk

requirements. The second analysis expands the two dimensional work and focuses on

three dimensional trajectories requiring a SAA sensor characteristic adjustment to

meet integrity and continuity risk requirements.

6.1 Nominal Composite Sensor

The same nominal composite sensor is used for all analyses in this chapter. In

the draft DAA MOPS, the input intruder measurements from an SAA radar includes

relative slant range (⇢), relative range rate (⇢̇), relative bearing (✓), and elevation

angle (�) [72]. The nominal sensor will be assumed to measure ⇢, ⇢̇, ✓, and �. Chen,

et al., described nominal characteristics for SAA sensors, reproduced in Table 6.1 [12].

This table includes cooperative and non-cooperative sensors. The cooperative sen-

sors are the Tra�c Collision Avoidance System (TCAS) and Automatic Dependent

Surveillance-Broadcast (ADS-B). The non-cooperative sensors in this table are radar

and electro-optical (EO). This research is concerned with non-cooperative sensors.

The radar accuracy is defined in terms of range, range rate, azimuth angle and eleva-

tion angle. The electro-optical accuracy is defined in terms of azimuth and elevation

angles. Chen does not define a range accuracy for electro-optical sensors explain-

ing that “EO (monoscopic) does not inherently generate range information and the



49

detection range is typically poor” [12].

Table 6.1. SAA Sensor Characteristics [12]

TCAS ADS-B Radar Electro-optical

Accuracy

⇢: 175 - 300 ft

✓: 9 - 15 deg

z: 50 - 100 ft

x, y: 25 - 250 ft

z: 50 - 100 ft

✓: 0.5 - 2�

�: 0.5 - 2�

⇢: 10 - 200 ft

⇢̇: 1 - 10 ft
s

✓: 0.1 - 0.5�

�: 0.1 - 0.5�

Update rate 1 Hz 1 Hz 0.2 - 5 Hz 20 Hz

Detection range � 14 NM � 20 NM 5 - 10 NM 2 - 5 NM

Given the inputs from Table 6.1 for non-cooperative SAA sensor measure-

ments, and assuming 2-� accuracy, the composite nominal sensor will have the fol-

lowing characteristics: �⇢ = 5 feet, �✓ = 0.05�, �� = 0.05�, and �⇢̇ = 5 ft/s. The

sensor detection range, ⇢0, is 8 nautical miles (NM), derived from [23, 24, 73] and is

within the radar range from Table 6.1. The nominal sample rate, �t, is 1 Hz, taken

directly from the DAA MOPS [72,73]. In aviation, distance is typically measured in

nautical miles, airspeed is typically measured in knots (nautical miles per hour), and

altitude is measured in feet. Given the aviation application of this research, these

units will be used instead of the International System of Units (SI).

The well clear threshold used is based on the warning alert thresholds from

the DAA MOPS: ⌧SS of 35 seconds, rMD of 4000 feet, and zMD of 450 feet, and

a lookahead time of 25 seconds [72]. All operational limit fractional margins are

arbitrarily selected to be 10% (✏⌧ = ✏r = ✏z = 10%) leading to ⌧̃ = 38.5 seconds, r̃ =

4400 feet, and z̃ = 495 feet. The desired integrity requirement, ISS = 10�6, and the

continuity requirement, CSS = 10�3, are based on the FAA’s definition of major and

minor failure conditions [28].

6.2 Two Dimensional Analysis
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Table 6.2. Nominal Sensor for Analyses

Characteristic Value

Range Uncertainty, �⇢ 5 feet

Azimuth Uncertainty, �✓ 0.05�

Elevation Uncertainty, �� 0.05�

Range Rate Uncertainty, �⇢̇ 5 ft/s

Detection Range, ⇢0 8 NM

Sample Rate, �t 1 Hz

Fractional Margin, ✏ 10%

Integrity Requirement, ISS 10�6

Continuity Requirement, CSS 10�3

Based on the DAA MOPS, the maximum relative closure velocity is 370 knots

for non-cooperative intruders [72]. Also, for simplicity, the integrity and continuity

risk probability multipliers are set to be equal: k⌧ = kr = 4.89 and `⌧ = `r = 3.09.

Applying these integrity and continuity coe�cients to equations (5.4) - (5.8), the

corresponding operational limits are ⌧̃ = 38.5 seconds, �̃⌧ = 0.44 seconds, and �̃r =

50.1 feet. Based on the prior work from the initial iterations of this research, the

most restrictive 2D intruder trajectories are either head-on to the intruder or tangent

to the horizontal miss distance (rCPA) circle [41, 43]. As a result, the 2D encounters

in this analysis will use intruder head-on and tangent trajectories. These trajectories

are depicted in Figure 6.1.

The intent of this 2D analysis is to explore the full sensor requirement trade

space, investigating sensor performance sensitivities to adjustments of all possible

sensor characteristic parameters. The most restrictive trajectory is identified in each

case, to be used as the representative trajectory for that parameter at the end of the

analysis, when all parameter adjustments are compared simultaneously.

6.2.1 Nominal Sensor Results. The results from the nominal case are in Fig-
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ure 6.2. Following the methodology described in Section 5.2, integrity and continuity

are met if the � vs ⌧ curves stay out of the upper left quadrant (the gray shaded

region) of the figure. The horizontal cyan line is the �̃ operational limit and the

vertical magenta line is the ⌧̃ operational limit.
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Figure 6.2. Results of a Nominal Sensor

For this nominal sensor, both trajectories meet both �⌧ and �r requirements for

integrity and continuity. In the �⌧ curve, performance is similar for both trajectories

and the curve falls below the �̃⌧ operational limit (cyan line) within the first few

epochs. In the �r curve, performance is also similar for both trajectories and the

curve falls below the �̃r operational limit (cyan line) about 12 seconds prior to the ⌧̃

operational limit (magenta line).

The di↵erence in performance between each trajectory for both �⌧ and �r is

small, as depicted in Figure 6.3. Here, the normalized hazard state standard deviation

di↵erence (��) between the head-on and tangent trajectories are below 10% before

both curves reach the ⌧̃ magenta line from the right. It turns out that the tangent

trajectory is slightly more restrictive than the others. Since this is the case, the
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tangent trajectory will represent the nominal sensor for comparison with each of the

following sensor adjustments until the final comparison of all sensor adjustments in

section 6.2.5.
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Figure 6.3. Nominal Normalized �� Between Trajectories

The sensor characteristic trade space is explored in the following subsections,

where adjustments are made one parameter at a time. Since the nominal sensor met

requirements, the adjustments will loosen the sensor characteristics.

6.2.2 Sensor Slant Range Uncertainty Adjustment. The first adjustment is

to relax sensor slant range uncertainty to �⇢ = 100 feet, representing the loosest radar

slant range accuracy in Table 6.1. The results in Figure 6.4 depict this ⇢-adjusted

sensor meeting both �⌧ and �r requirements. The adjustment does bring the �⌧

curve closer to the integrity and continuity requirement (the upper left quadrant), a

sensitivity resulting from ⌧mod being a function of horizontal range in equation (2.6).
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Figure 6.4. Results of a ⇢-Adjusted Sensor: �⇢ = 100 feet

However, the slant range adjustment has negligible impact on the �r curve.

Both head-on and tangent trajectories have similar performance for each �

curve. To determine which one is most restrictive, the ⇢-adjusted sensor results are

cataloged in Table 6.3 noting where the curves cross each �̃ operational limit. In

both cases the most restrictive trajectory is the tangent trajectory (with the lower ⌧

at �̃) and these trajectories will represent the slant range adjusted sensor in the final

comparison.

Table 6.3. Results of a ⇢-Adjusted Sensor

Trajectory ⌧ at �̃⌧ ⌧ at �̃r

Nominal 76.8 s 50.5 s

Head-on 76.7 s 50.6 s

Tangent 76.4 s 50.3 s

6.2.3 Sensor Azimuth Uncertainty Adjustment. The next adjustment is to

loosen sensor azimuth uncertainty to �✓ = 0.1�. The sensor slant range uncertainty is

returned to the nominal �⇢ = 5 feet. The results in Figure 6.5 depict the ✓-adjusted
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sensor meeting both �⌧ and �r requirements. The adjustment has negligible impact
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Figure 6.5. Results of a ✓-Adjusted Sensor: �✓ = 0.1�

on the �⌧ curve, but it brings the �r curve very close to the integrity and continuity

limit. This �r sensitivity to azimuth results from small variations in azimuth leading

to significant variations in rCPA. As an example, the change in azimuth at the 8 NM

detection range that would result in a 400 foot variation in rCPA is less than a half

degree:

�✓ = sin�1

✓
4400ft

8NM

◆
� sin�1

✓
4000ft

8NM

◆
= 0.47� (6.1)

This represents an ✏ of 10%, where the di↵erence from the edge of the 4400 foot

protection level to the 4000 foot horizontal miss distance threshold is 400 feet.

Both head-on and tangent trajectories have similar performance for each �

curve. To determine which one is most restrictive, the azimuth-adjusted sensor results

are cataloged in Table 6.4. For the �⌧ curve, the most restrictive trajectory is the

tangent trajectory while for the �r curve, the head-on trajectory is most restrictive.

These trajectories will represent the azimuth-adjusted sensor in the final comparison

of all sensor adjustments in section 6.2.5.
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Table 6.4. Results of a ✓-Adjusted Sensor

Trajectory ⌧ at �̃⌧ ⌧ at �̃r

Nominal 76.78 s 50.5 s

Head-on 77.05 s 40.1 s

Tangent 76.77 s 40.4 s

6.2.4 Sensor Range Rate Uncertainty Adjustment. The next adjustment is to

relax sensor ⇢̇ uncertainty to �⇢̇ = 100 ft/s, representing a wide loosening. The sensor

azimuth uncertainty is returned to the nominal �✓ = 0.05�. The results in Figure 6.6

depict this ⇢̇-adjusted sensor meeting both �⌧ and �r requirements. The adjustment

10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Range Rate Adjusted m
o
 vs o

Time to CPA, o (sec)

o m
od

 S
ta

nd
ar

d 
D

ev
ia

tio
n,

 m
o (s

ec
)

 

 

Head−on
Tangent
Nominal

Integrity/Continuity not met

0 10 20 30 40 50 60 70
0

100

200

300

400

500

600

700

800

900

1000

Range Rate Adjusted mr vs o

Time to CPA, o (sec)

r C
PA

 S
ta

nd
ar

d 
D

ev
ia

tio
n,

 m
r (f

ee
t)

 

 

Head−on
Tangent
Nominal

Integrity/Continuity not met

Figure 6.6. Results of a ⇢̇-Adjusted Sensor: �⇢̇ = 100 ft/s

only has minimal impact on the first few epochs of the �⌧ curve, presumably since

those epochs are estimating constant velocity. This adjustment has negligible impact

on the �r curve. Both head-on and tangent trajectories have similar performance for

each � curve and the ⇢̇-adjusted sensor results are cataloged in Table 6.5, where the

tangent is the most restrictive trajectory for both curves.

6.2.5 All Sensor Adjustments. The analysis is repeated for sample rate and
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Table 6.5. Results of a ⇢̇-Adjusted Sensor

Trajectory ⌧ at �̃⌧ ⌧ at �̃r

Nominal 76.8 s 50.499 s

Head-on 75.8 s 50.602 s

Tangent 75.6 s 50.498 s

detection range in Appendix E. The results of the nominal and all five parameter

adjustments are compiled in Figure 6.7, where the most restrictive trajectories are

applied.

All �⌧ curves reflect sensitivities to detection range and the slant range uncer-

tainty (�⇢). All �r curves reflect sensitivities to detection range, azimuth uncertainty

(�✓), and sample rate. This would suggest that to influence �⌧ , adjust detection range

and slant range uncertainty and to influence �r, adjust detection range, azimuth un-

certainty, and sample rate. Both curves are sensitive to detection range due to the

reduction in the initial detection distance between the own aircraft and intruder as

well as the reduction in corresponding time available for the SAA system to take

measurements. The sensitivities associated with decreasing the sample rate can also

be explained by reduction in the number of measurements available to inform the

estimator. Sensitivities to azimuth and slant range uncertainties were explained in

the preceding subsections.

A summary of the sensor parameter adjustments are in Table 6.6, where the

values are the adjustments that put the curve right at the integrity and continuity

limit (where the �̃ and ⌧̃ operational limits meet). The range rate uncertainty could

not get to the integrity and continuity limit. Its performance only varied during the

initial epochs, when the constant trajectory state velocity is initially estimated. The

slant range uncertainty could be loosened to 1150 feet, which is much greater than the

200 foot accuracy in Table 6.1. The minimal impact of slant range uncertainty and
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Figure 6.7. Results of All Sensor Parameter Adjustments

no impact of range rate uncertainty suggests the importance of azimuth uncertainty,

explained in section 6.2.3, which can be loosened to 0.11�. The sample rate (which can

be reduced to 0.32 Hz), as explained in the previous paragraph, produces sensitivities

due to the reduction of measurements. Finally, the detection range (which can be

reduced to 6.4 NM) produces sensitivities due to the reduction in measurements

resulting from the shorter time between detection and when an alert is warranted.

It is worth noting that all sensor adjustments in Table 6.6 were applied individually.

Combining all of these adjustments simultaneously would lead to a sensor that is

unable to meet integrity and continuity risk requirements.

Table 6.6. Summary of Sensor Adjustments

Sensor Characteristic Adjustment at Integrity/Continuity Limit

Slant Range, �⇢ 1150 feet

Azimuth, �✓ 0.11�

Range Rate, �⇢̇ N/A

Sample Rate, �t 0.32 Hz

Detection Range, ⇢0 6.4 NM
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6.2.6 Allocating Integrity and Continuity. Another sensitivity parameter

is the allocation of integrity and continuity between hazard states. The nominal

allocation is arbitrarily even across hazard states. However, in this example, �r is

more restrictive than �⌧ . It is possible to maximize the risk allocation on rCPA by

reducing kr and `r to increase �̃r. The trade-o↵ is, following equations (3.15) and

(4.10), a corresponding increase of k⌧ and `⌧ and a decrease of �̃⌧ in equation (5.4).

Following equations (3.15) and (4.10) again, there is a limit to how much risk can be

allocated to rCPA based on ISS and CSS. In this example case, the minimum kr of

4.76 and `r of 2.88 leads to a maximum �̃r of 52.36 feet. This leads to k⌧ = 5.41,

`⌧ = 3.70 and �̃⌧ = 0.38 seconds. In this case, the �̃r increase of 52.36 feet does not

provide significant improvement as compared to the nominal case of 50.1 feet.

6.2.7 Increasing Fractional Margin, ✏. Another option to meet integrity and

continuity, if acceptable to the certification authority, is increasing ✏, which relaxes

the operational limits (⌧̃ ’s and �̃’s). As an illustrative example, increasing ✏ to 25%

increases �̃⌧ to 1.10 seconds, increases �̃r to 125.3 feet, and increases ⌧̃ to approxi-

mately 43.75 seconds. The problem with increasing ✏ is that it increases the protection

levels. This, in turn, reduces airspace capacity to the extent that air tra�c control

now has to account for the amount of protected airspace around the own aircraft. For

example, the increase in fractional margin to 25%, increases the horizontal protection

level by 600 feet (from 4400 feet to 5000 feet).

6.2.8 Summary of 2D Analysis. Every parameter of the sensor requirement trade

space was examined. The nominal sensor met UAS SAA integrity and continuity risk

requirements, so the trade space of sensor performance characteristics was loosened

to determine impacts of sensor adjustments on integrity and continuity risks. This

analysis suggests that detection range and �⇢ have the most influence on �⌧ and

detection range, �✓, and sample rate have the most influence on �r. Adjustments to
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the fractional margin, ✏, and reallocating integrity and continuity unevenly between

the hazard states can also be applied to help meet requirements.

6.3 Three Dimensional Analysis

This section will expand the two dimensional analysis in the previous section.

The intent of the 2D analysis was to explore the entire sensor characteristic trade

space. The intent of the 3D analysis is to now apply sensor characteristic improve-

ments not only in 3D, but to adjust a sensor that cannot meet integrity and continuity

requirements to get acceptable performance. The 3D analysis focuses on seven tra-

jectories, which were originally analyzed in [40] for previous iterations of the hazard

states and WCT. These seven trajectories are:

• Head-on, direct collision course descending.

• Head-on, level at zMD.

• Tangent to the rMD circle, level at zMD.

• Head-on, descending, intercepting the top WCT border at the back.

• Tangent to the rMD circle, descending, intercepting the top WCT border.

• Head-on, descending, intercepting the bottom WCT border at the front.

• Tangent to the rMD circle, descending, intercepting the bottom WCT border.

A side view of the head-on trajectories are depicted in the left side of Figure 6.8 and

a top down view of the head-on and tangent trajectories are depicted on the right

side of Figure 6.8.

These trajectories were selected based on the worst case trajectories in 2D

(from the previous section) being head-on and tangent and the vertical profiles were
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WCT

Figure 6.8. Three Dimensional Trajectories

based on level and descending border cases around the WCT cylinder. Based on the

DAA MOPS, the maximum relative descent rate is 5000 feet per minute (fpm) and

the maximum relative closure velocity is still limited to 370 knots for non-cooperative

intruders [72]. Also, for simplicity, the integrity and continuity risk coe�cients are

set to be equal: k⌧ = kr = kz = 4.98 and `⌧ = `r = `z = 3.09. From these integrity

and continuity multipliers, the corresponding operational limits are ⌧̃ = 38.5 seconds,

�̃⌧ = 0.43 seconds, �̃r = 49.57 feet, and �̃z = 5.58 feet.

6.3.1 Nominal Sensor Results. The results from the nominal case are in

Figure 6.9. In these plots, the curve for the most restrictive trajectory is illustrated.

Integrity and continuity are met if each � vs ⌧ curve stays out of the gray shaded,

upper left quadrant of the plots. The cyan horizontal line is the �̃ operational limit

and the vertical magenta line is the ⌧̃ operational limit. Note that time goes from

right (representing the initial tau at the detection range, ⌧0) to left (representing the

final tau at the CPA, ⌧CPA = 0).

For this nominal sensor, all trajectories meet both �⌧ and �r requirements for

integrity and continuity, but none of the trajectories meet requirements for �z. In the

�⌧ curve, performance is similar for all trajectories and the curve falls below the �̃⌧

operational limit (cyan line) within the first few time-epochs. In the �r curve, perfor-

mance is also similar for all trajectories and the curve falls below the �̃r operational
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limit (cyan line) about 12 seconds prior to the ⌧̃ operational limit (magenta line). In

the �z curve, performance is also similar for all trajectories, but the curve falls below

the �̃z cyan line well to the left of the ⌧̃ operational limit (magenta line), suggesting

a sensor with better performance is required.

One of the issues with �z is that the fractional margin, ✏ has a larger impact

on adjusting zMD. A 10% inflation on a 450 ft vertical miss distance is a mere 45 feet,

as compared to the 400 foot inflation on the 4000 foot horizontal miss distance and

the 3.5 second inflation (representing over 2000 feet at 370 knots) of the 35 second

tau threshold. All of the �z curves for the nominal trajectory reach ⌧̃ , the vertical

magenta line, below 18 feet. Therefore increasing ✏ from 10% to 33% will move �̃z (the

horizontal cyan line on the �z curve) from 5.6 feet to 18.4 feet. This also inflates the

zMD threshold from 450 feet to a protection level of 600 feet. Since the RTCA SC-228

Science and Research Panel WCT recommendation had a vertical miss distance of

700 feet [14], a 600 foot vertical protection level is reasonable.

As in the 2D case, performance for all trajectories were similar. The di↵erence

in performance between each trajectory for �⌧ , �r, and �z is small, as depicted in

Figure 6.10. Here, the normalized hazard state estimate error standard deviation

di↵erences between the seven trajectories are below 30% before all three curves reach

the ⌧̃ magenta line from the right. That normalized �� is less than 10% for the

horizontal and vertical ��’s. For the �⌧ curve, the tangent descending trajectory

that crosses the well clear threshold cylinder at the top is slightly more restrictive

than the others. For the �r and �z curves, the tangent level trajectory at the top of

the well clear threshold cylinder is slightly more restrictive. As a result, these are the

trajectories represented in Figure 6.9 and these trajectories will represent the nominal

sensor for comparison purposes in the next subsection.

6.3.2 Adjusted Sensor Results. Since the nominal sensor did not meet �z
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Figure 6.10. Nominal Normalized �� Between 3D Trajectories

requirements, an adjustment is made to the sensor elevation uncertainty. Sensor

� uncertainty is improved to �� = 0.01�, representing the improvement that now

meets integrity and continuity requirements. The results in Figure 6.11 depict this

�-adjusted sensor meeting all requirements. The adjustment had minimal impact on

the �⌧ curve, negligible impact on the �r curve, but it brings the �z curve within the

integrity and continuity limits. The �z sensitivity to �� is due to small variations

in elevation resulting in large changes in vertical distance. As an example of the

sensitivity of vertical distance to small variations of elevation, for a level trajectory

at the top zMD and at the 8 NM detection range, the change in elevation that would

result in a 45 foot variation above the zMD threshold (representing an ✏ of 10%) is

less than a tenth of a degree:

�� = tan�1

✓
495ft

8NM

◆
� tan�1

✓
450ft

8NM

◆
= 0.053� (6.2)
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All trajectories had similar performance. For completeness, the �-adjusted

sensor results are cataloged in Table 6.7 noting where the curves cross each �̃ opera-

tional limit. For the �⌧ and �r curves, the most restrictive trajectories did not change

(still tangent-descending-top and tangent-level-top respectively). However, for the �z

curve, the tangent-descending-top trajectory is now most restrictive.

Table 6.7. Results of a �-Adjusted Sensor

Trajectory ⌧ at �̃⌧ ⌧ at �̃r ⌧ at �̃z

Nominal 74.8 s 50.34 s 11.16 s

Head-on Direct 76.8 s 50.58 s 49.29 s

Head-on Level Top 76.8 s 50.45 s 49.21 s

Head-on Descending Top 76.5 s 50.45 s 49.08 s

Head-on Descending Bottom 77.0 s 50.68 s 49.46 s

Tangent Level Top 76.6 s 50.34 s 48.91 s

Tangent Descending Top 76.4 s 50.41 s 48.89 s

Tangent Descending Bottom 76.7 s 50.52 s 49.07 s

6.3.3 Summary of 3D Analysis. For this 3D example, the nominal sensor did not

meet UAS SAA integrity and continuity risk requirements for the vertical separation

hazard. This can be attributed to the nature of the ✏’s increased influence over the

vertical hazard state, as compared to the other hazard states. An ✏ increase from

10% to 33% puts the nominal sensor within integrity and continuity requirements.

Without this ✏ boost, a sensor elevation uncertainty adjustment was made to bring the

performance within integrity and continuity risk limits. This analysis suggests that ✏

and �� have significant influence on �z due to the smaller (in relation to horizontal

and tau) vertical miss distance threshold and the large impact that small variations

in elevation have on vertical position.

6.4 Summary of 2D and 3D Sensitivity Analyses

The analyses in this chapter depicted 2D co-altitude encounters and 3D de-
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scending and level encounters. The nominal sensor did not require adjustment in

the 2D scenario and the entire sensor characteristic trade space was explored, one

parameter at a time. Certain hazard states had more sensitivity to certain sensor

parameters than others. This 2D analysis was then expanded to 3D, where the nom-

inal sensor did not meet integrity and continuity requirements for the vertical hazard

state. An improvement in sensor elevation uncertainty or a relaxing of ✏ was required

to meet integrity and continuity requirements. This was an example of how the in-

tegrity and continuity risk evaluation methodology could be used to set SAA sensor

requirements.
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CHAPTER 7

INTRUDER LINEAR ACCELERATIONS

The trajectory state estimation model used to build the integrity and continu-

ity risk methodology is based on a constant velocity assumption outlined in the DAA

MOPS [72]. In this chapter, to provide more accurate intruder trajectory estimations,

constant velocity is no longer assumed and an estimation model is introduced that

can account for constant intruder linear accelerations. An analysis will explore the

sensor trade space.

In addition, the performance of a true tau updated with accelerations, is com-

pared to modified tau. According to the TCAS II MOPS, the distance modifier in

⌧mod is a “safety factor incorporated in range measurements to account for possible

accelerations by the intruder” [70]. The true tau and modified tau performance com-

parison will lead to a recommendation on which tau should be used as a hazard state

for linear accelerations.

7.1 Constant Acceleration Kalman Filter

The trajectory state estimation model used to build the integrity and continu-

ity risk methodology is based on a constant velocity assumption outlined in the DAA

MOPS [72]. To refine this e↵ort for constant accelerations, the trajectory state vec-

tor, xn, now includes time variant intruder position and velocity, as well as constant

acceleration:

xn =


xn yn zn ẋn ẏn żn ẍ ÿ z̈

�T
(7.1)

The discrete-time process-noise-free state-transition equation in the form of
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equation (A.22) is used. However, the constant state-transition matrix F is now:

F =

2

66666664

I3⇥3 �tI3⇥3
�t2

2 I3⇥3

03⇥3 I3⇥3 �tI3⇥3

03⇥3 03⇥3 I3⇥3

3

77777775

(7.2)

The measurement equation, in the form of equation (A.25) is used, with the

exception of the linearized observation matrix, Hn. This observation matrix, Hn, is

now 4⇥ 9 to account for the acceleration trajectory states in equation (7.1).

The Kalman filter initial conditions are modified. Now, the distribution of the

error associated with the initial estimation, x̂0, is:

x0 � x̂0 ⇠ N

0

BBB@

2

6664

06⇥1

03⇥1

3

7775
,

2

6664

P̄0 06⇥3

03⇥6 ⌃a

3

7775

1

CCCA
(7.3)

where P̄0 is the initial position and velocity estimate error covariance (no prior knowl-

edge is assumed on these states), and ⌃a is based on an expected distribution of pilot

action. For example, a maximum 3-� intruder acceleration of 1 knot/s can be derived

from the intruder aircraft behavior distribution of the MIT Lincoln Lab Uncorrelated

Encounter Model for the NAS [50,72].

This research only looks at changes in the magnitude of the velocity vector,

which is assumed aligned with the direction of intruder aircraft velocity. The standard

deviation of the specific force of the pilot action is noted �a and is in the head-on

direction of the intruder body frame. This is converted into the own aircraft frame
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using the following equation:

⌃a = B

2

66666664

�2
a 0 0

0 0 0

0 0 0

3

77777775

BT (7.4)

where B is the transformation matrix from the intruder body frame to the own body

frame.

The Kalman filter (equations (A.27) - (A.31)) is used to estimate trajectory

states and their estimate error covariance matrix, P̂n, at each epoch n.

7.2 Hazard States for Linear Accelerations

Removing the constant velocity assumption adds another level of complexity

to the SAA problem. Because the acceleration is linear, the trajectory geometry does

not change relative to the constant velocity case, and the geometric horizontal CPA

in equation (2.13) is still valid. However, the modified tau in equation (2.7) and the

predicted vertical separation in equation (2.15), must be refined. This thesis proposes

an adjusted true tau and an adjusted predicted vertical separation to refine or replace

the constant velocity versions of ⌧mod and zp.

7.2.1 True Tau Adjusted for Accelerations. The expressions for xCPA and

yCPA are as follows:

xCPA = x+ ẋ⌧ +
1

2
ẍ⌧ 2 (7.5)

yCPA = y + ẏ⌧ +
1

2
ÿ⌧ 2 (7.6)

Because the direction of the velocity does not change and remains perpendicular to
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rCPA, the vector from the own aircraft to the CPA, the following dot product holds:

rCPA·ẋ = xCPAẋ+ yCPAẏ = 0 (7.7)

This results in the following quadratic:

ẋ(x+ ẋ⌧ +
1

2
ẍ⌧ 2) + ẏ(y + ẏ⌧ +

1

2
ÿ⌧ 2) = 0 (7.8)

Written another way:

(
ẋẍ+ ẏÿ

2
)⌧ 2 + (ẋ2 + ẏ2)⌧ + (xẋ+ yẏ) = 0 (7.9)

Solving for ⌧ , the new true tau becomes:

⌧true =
�(ẋ2 + ẏ2) +

p
(ẋ2 + ẏ2)2 � 2(ẋẍ+ ẏÿ)(xẋ+ yẏ)

ẋẍ+ ẏÿ
(7.10)

7.2.2 Predicted Vertical Separation Adjusted for Accelerations. The

predicted vertical separation equation (2.15) now needs to be adjusted for constant

accelerations resulting in the following equation:

zp = zn + p�tż +
(p�t)2

2
z̈ (7.11)

where p are the all the future epochs up to the 25 second lookahead time.

7.3 Intruder Linear Acceleration Sensitivity Analysis

This sensitivity analysis assumes constant straight line relative intruder ac-

celerations, reflecting potential intruder pilot thrust inputs. The composite nominal

sensor of Chapter 6 is applied: �⇢ is 5 feet, �✓ is 0.05�, �� is 0.05�, �⇢̇ is 5 ft/s,

and detection range is 8 NM. The DAA MOPS well clear threshold is also used: ⌧SS
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of 35 seconds, rMD of 4000 feet, and zMD of 450 feet, and a lookahead time of 25

seconds [72]. All operational limit fractional margins are 10% (✏⌧ = ✏r = ✏z = 10%)

leading to ⌧̃ = 38.5 seconds, r̃ = 4400 feet, and z̃ = 495 feet. The desired integrity

requirement, ISS = 10�6, and the continuity requirement, CSS = 10�3, are based on

the FAA’s definition of major and minor failure conditions [28]. For simplicity, the

integrity and continuity risk coe�cients are set to be equal: k⌧ = kr = kz = 4.98 and

`⌧ = `r = `z = 3.09.

Based on the DAA MOPS, the nominal update rate is selected to be 1 Hz,

the worst-case relative closure velocity is limited to 370 knots for non-cooperative

intruders, and the worst case relative vertical velocity for non-cooperative intruders is

5000 feet per minute [72]. The predicted standard deviation on intruder acceleration,

�a, is selected to be 0.33 knots/sec, based on a maximum 3-� intruder acceleration

of 1 knot/s taken from the intruder aircraft behavior distribution of the MIT Lincoln

Lab Uncorrelated Encounter Model for the NAS [50, 72]. Each trajectory with this

�a = 0.33 knots/sec will be compared to the case with assumed perfect knowledge of

the intruder pilot acceleration, where �a = 0.

For the trajectories, there are the same seven trajectories from the previous

chapter: tangent even at the top zMD threshold, tangent descending at the top zMD

threshold, tangent descending at the bottom �zMD threshold, head-on even at the

top zMD threshold, head-on descending at the top zMD threshold, head-on descending

at the bottom �zMD threshold, and head-on direct collision course. There were three

cases for each trajectories: one starting at the maximum 370 knots and decelerating

at 1 knot/s until the CPA, one accelerating at 1 knot/s until reaching the maximum

370 knots at the CPA, and one constant velocity at the maximum 370 knots.

7.3.1 Results. The results of the nominal sensor is in Figure 7.1. As in the constant

velocity case of the previous chapter, the nominal sensor meets ⌧ (in this section, ⌧
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without a subscript is the true tau from equation (7.10)) and rCPA requirements for

all trajectories and accelerations. Also, in a similar manner to the constant velocity

case, the nominal sensor does not meet predicted vertical separation requirements.

The only di↵erence of note is that the accelerated trajectories result in longer times

(and more measurements) within the sensor range than the constant velocity case,

because the latter is always at maximum velocity. As for the impact of accounting for

an unknown intruder thrust action, it is minimal with respect to �r, mostly because

rCPA is a function of position and velocity only, and is minimal with respect to �z,

because the linear acceleration results in a maximum vertical acceleration of only

z̈ = 0.23 ft
s2
.
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Figure 7.2. Nominal Sensor Tau Comparison

What is notable is the di↵erence between ⌧mod and the true tau that accounts

for accelerations, depicted in Figure 7.2. Here, there is a significant di↵erence between

the curves. Since the expression for ⌧true includes the constant acceleration states, it

is more accurate than ⌧mod which is an approximation that only includes position and

velocity states. The TCAS II MOPS described the Dmod term in ⌧mod as a “safety

factor incorporated in range measurements to account for possible accelerations by the
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intruder” [70]. The ⌧true curve separated from the constant velocity case much earlier

into a more restrictive position (closer to the upper left quadrant whose boundary

signifies the integrity and continuity risk requirement) than the ⌧mod curve.
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Figure 7.3. Results of an Adjusted Sensor, �� = 0.01�

As in the constant velocity case, the sensor can be adjusted to meet integrity

and continuity requirements. An example of this is in Figure 7.3. Here, the sensor

elevation uncertainty was improved to �� = 0.01�. Now, as in the constant velocity

case, the sensor does meet integrity and continuity requirements. This is an example

of exploring the sensor requirement trade space.

7.4 Summary of Intruder Linear Accelerations

This analysis shows it is possible to account for uncertainties in straight line

intruder dynamics while finding sensor uncertainty characteristics that meet integrity

and continuity requirements. However, the uncertainties in straight line intruder

dynamics impact ⌧ more than the other hazard states. Also, the constant acceleration

⌧true was more restrictive and accurate than the ⌧mod. This version of ⌧true may be a

more appropriate ⌧ hazard state when addressing SAA accelerations. Opportunities
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for future work include accounting for intruder turning trajectories and wind gusts.
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CHAPTER 8

MULTIPLE INTRUDERS

The last significant contribution of this thesis is developing a methodology

to evaluate integrity and continuity risks of multiple intruders. The first iteration

of this multiple intruder research was published in [42]. Integrity risk is addressed

though determination of the probability of data mis-associations for multiple intrud-

ers. A mis-association occurs when the system incorrectly associates one intruder’s

measurement with another intruder’s trajectory. If an intruder is threatening the

well clear threshold, then an incorrect intruder association is hazardously misleading

information impacting integrity.

The methodology in this research for determining a mis-association is based

on the nearest neighbor method, commonly found in tracking and data association

literature [6–8]. The nearest neighbor method involves determining the correct as-

sociation based on a minimization of the Mahalanobis distance of the innovation

vector [6–8, 45, 55]. Based on this data association criterion, a new methodology is

developed to determine an analytic upper bound of the probability of incorrect as-

sociation for the encounter, which is the integrity risk. This analytic upper bound

is a departure from previous work, which used computationally expensive numerical

methods to determine probability of incorrect associations [6]. A sensitivity analysis

is then performed based on two two-intruder encounters. The resulting impact of

mis-associations between multiple intruders on integrity and continuity is quantified

for a nominal composite SAA sensor. The sensor characteristic trade space is then

explored.

8.1 Multiple Intruder Integrity Risk

The following is an innovation domain methodology for determining the im-
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pact, or integrity risk, of mis-associating m number of intruders. Figure 8.1 depicts

a correctly associated two-intruder encounter. Here, the blue intruder is associated

with the blue measurements and the orange intruder is associated with the orange

measurements.

1zn�1
1zn

2zn�1

2zn

Figure 8.1. Correctly Associated Measurements of Two Intruders

Figure 8.2 depicts a mis-associated two-intruder encounter. The current blue

measurement is incorrectly associated with the orange intruder and the current orange

measurement is incorrectly associated with the blue intruder. This leads to the system

incorrectly estimating the orange and blue trajectories (denoted by the orange and

blue dotted lines) with large errors. The estimation error in position is represented

by the black dotted line. If either the orange or blue intruder violates the well clear

threshold, this incorrect association is hazardously misleading information, impacting

integrity risk. The position and velocity of each intruder are depicted as follows:

• ix = position of intruder i.
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1zn�1

2zn�1

1zn

2zn

Figure 8.2. Measurement Incorrectly Associated for Two Intruders

• iẋ = velocity of intruder i.

The discrete-time process-noise-free state-transition equation is:

xn = Fmx(n�1)
(8.1)

where Fm represents the constant state-transition matrix for a constant relative ve-

locity encounter for m intruders. For two intruders, F2 is:

F2 =

2

666666666664

I3⇥3 �tI3⇥3

03⇥3 I3⇥3

06⇥6

06⇥6

I3⇥3 �tI3⇥3

03⇥3 I3⇥3

3

777777777775

(8.2)

and the two-intruder trajectory state vector, x, is based on intruder position and



80

constant velocity:

x =


1x 1ẋ 2x 2ẋ

�T
(8.3)

For m intruders:

Fm =

2

666666666664

F2 · · ·

...
. . .

0(6m�6)⇥6

06⇥(6m�6)

I3⇥3 �tI3⇥3

03⇥3 I3⇥3

3

777777777775

(8.4)

and

x =


1x 1ẋ 2x 2ẋ · · · mx mẋ

�T
(8.5)

8.1.1 Measurement Model. The own aircraft senses intruders, as in Figure 8.1, in

spherical coordinates and range rate. The ordering of the measurements is arbitrary.

The intruder i measurement iz, is:

iz =


i⇢ i✓ i� i⇢̇

�T

= h(ix, iẋ) + iv, iv ⇠ N(0, iR)

(8.6)

N(a,B) represents a normal distribution with mean, a, and covariance, B. iv is the

measurement error, which is assumed to be over-bounded in the cumulative distribu-

tion function (CDF) sense by a Gaussian function with covariance matrix iR [16,68].

The nonlinear function, h, is the transformation of any intruder from Cartesian tra-
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jectory states,

2

664

ix

iẋ

3

775, to the spherical measurements:

h(ix, iẋ) =

2

666666666664

p
ix2 + iy2 + iz2

tan�1 iy
ix

sin�1 izp
ix2+iy2+iz2

iẋ· i

x

kixk

3

777777777775

(8.7)

This leads to the form:

z = h(x) + v (8.8)

where the stacked measurements are for m intruders:

z =


1z 2z · · · mz

�T
(8.9)

and the nonlinear observation, h(x), is:

h(x) =

2

666666666664

h(1x, 1ẋ)

h(2x, 2ẋ)

...

h(mx,mẋ)

3

777777777775

(8.10)
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The stacked measurement error is:

v =

2

666666666664

1v

2v

...

mv

3

777777777775

⇠ N(0,V),V =

2

666666666664

1R 0 · · · 0

0 2R · · · 0

...
...

. . .
...

0 0 · · · mR

3

777777777775

(8.11)

The same sensor performance characteristics are assumed for all measurements, so

the measurement error covariance for each measurement is R. It is also assumed that

a sample interval, �t, is selected large enough to ensure independence of sequential

sensor measurement errors.

8.1.2 Prediction Estimate and Covariance. The following equations show

the implementation of the state transition equation (8.1) and measurement equation

(8.8) into the Kalman filter [35] for a correct association (CA). No prior knowledge

is assumed on the trajectory states. The state estimate prediction is:

x̄n = Fx̂(n�1) (8.12)

and the estimate error prediction covariance:

P̄n = FP̂(n�1)F
T (8.13)

8.1.3 Measurement Association. Considering m intruders, there are m! possible

measurement associations. An arbitrary ordering of z for the measurement vector is

chosen. Then the observation function, hj, is varied to match the correct observation,
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h⇤. For the measurement, z, the innovation vector, �j, is:

�j = z� hj(x̄), j = 1, . . . ,m! (8.14)

where

z = h⇤(x) + v, v ⇠ N(0,V) (8.15)

therefore

�j = h⇤(x) + v � hj(x̄)

⇡ h⇤(x) + v � hj(x)�Hj "̄

(8.16)

Here, a first order Taylor series approximation is applied to the nonlinear observation

hj(x) about a state estimate, x̄:

hj(x) ⇡ hj(x̄)�Hj(x̄� x) (8.17)

the approximate observation matrix, Hj, is:

Hj ,
@hj

@x

����
x̄

(8.18)

and "̄ is the state estimate error.

A fault term, yj, is defined representing the error between the correct obser-

vation, h⇤(x), and the observation in question, hj(x):

yj , h⇤(x)� hj(x) (8.19)

therefore, the innovation vector is:

�j ⇡ yj �Hj "̄+ v (8.20)
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with a mean of yj and a covariance, ⇤j:

�j ⇠ N(yj,⇤j) (8.21)

where

⇤j , HjP̄HT
j +V (8.22)

8.1.4 Criterion for Measurement Assignment. A nearest neighbor test based

on minimizing the Mahalanobis distance of the normalized innovation vector is em-

ployed to determine the observation function with the correct measurement assign-

ment [6–8, 55]. This data association rule is to associate the correct observation to

the measurement, hj⇤(x) ! z if:

j⇤ = argmin
j

k�jk
⇤

�1
j

(8.23)

where k�jk
⇤

�1
j

is:

k�jk
⇤

�1
j

=
q
�T
j ⇤

�1
j �j (8.24)

8.1.5 Estimate Update and Estimate Error Covariance. With an observa-

tion, j⇤, associated with the measurement, the state estimate update is:

x̂n = x̄n +Kn�j⇤ (8.25)

and the estimate error covariance is:

P̂n = (I�KnHj⇤)P̄n (8.26)
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where the Kalman gain matrix is:

Kn = P̄nH
T
j⇤(Hj⇤P̄nH

T
j⇤ +Vn)

�1 (8.27)

8.1.6 Bounds on Probability of Correct and Incorrect Associations. The

following is a methodology to place analytic bounds on the probability of correct as-

sociation, P (CA), and the probability of incorrect association, P (IA). Bar-Shalom,

et al., provides a detailed derivation of the probability of correct association given

measurements [7]. However, a risk prediction capability, desired for safety critical

applications such as SAA, is lacking in this Bayesian approach. Another disadvan-

tage of this approach and the approach in [11] is the the problem of bounding the

posterior probability of association. Areta’s approach to determining the probability

of incorrect association makes approximations that would not guarantee safe opera-

tion [6]. In addition, Areta presents an exact solution that could only be evaluated

using computationally expensive numerical integration methods [6]. In response, this

research presents a di↵erent methodology, placing an analytic bound on the prob-

ability of incorrect association in o✏ine analysis for sensor certification, with the

intention of expanding this methodology to the future application of online analysis

for the avoidance maneuver function of SAA.

O✏ine, the correct ordering of hj(x) is known. Correct association is indicated

with a subscript 0. The remaining incorrect observation functions are renumbered

from h1(x) to hm!�1(x). Also, the correct normalized innovation vector is zero mean,

since y0 = 0.

P (IA) can be found by summing the probabilities that the normalized correct
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innovation is larger than each of the other normalized innovations:

P (IA) = P

 
m!�1[

j=1

k�jk
⇤

�1
j

 k�0k
⇤

�1
0

!
(8.28)

The innovation vector in equation (8.20) is rewritten:

�j = yj +


�Hj I

�
2

664
"̄

v

3

775 = yj +MT
j w (8.29)

where

M =


�Hj I

�T
(8.30)

w =

2

664
"̄

v

3

775 , w ⇠ N (0,W) (8.31)

W =

2

664
P̄ 0

0 V

3

775 (8.32)

Now the incorrect association inequality per pair, k�jk
⇤

�1
j

 k�0k
⇤

�1
0
, be-

comes:

kyj +MT
j wk

⇤

�1
j

 kMT
0wk

⇤

�1
0

(8.33)

The left hand side can be bounded:

kyjk
⇤

�1
j

� kMT
j wk

⇤

�1
j

 kyj +MT
j wk

⇤

�1
j

(8.34)
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The incorrect association per pair inequality is now:

kyjk
⇤

�1
j

� kMT
j wk

⇤

�1
j

 kMT
0wk

⇤

�1
0

(8.35)

This is equivalent to:

kyjk
⇤

�1
j

 kMT
0wk

⇤

�1
0

+ kMT
j wk

⇤

�1
j

(8.36)

�2
j is defined as the maximum eigenvalue of W

1
2 (Mj⇤

�1
j MT

j )W
1
2 and �2

0 is

defined as the maximum eigenvalue of W
1
2 (M0⇤

�1
0 MT

0 )W
1
2 . Defining vector q =

W� 1
2w and q2 = qTq, the incorrect association inequality becomes:

kyjk2
⇤

�1
j

 q2 (�j + �0)
2 , q2 ⇠ �2(nw) (8.37)

where q2 is chi-squared distributed with nw degrees of freedom. nw is the length of

w, which is the number of measurements plus the number of states.

Defining y2j = kyjk2
⇤

�1
j

, the probability of incorrect association per epoch in

equation (8.28) is now rewritten as an upper bound:

P (IAn)  P

 
m!�1[

j=1

y2j,n  q2 (�j,n + �0,n)
2

!
(8.38)

Placing the test statistic on one side, the upper bound on the probability of incorrect

association per epoch is now:

P (IAn)  P

 
q2 � min

j

 
y2j,n

(�j,n + �0,n)
2

!!
(8.39)

The probability of correct association per epoch is 1 � P (IAn), which is now lower
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bounded:

P (CAn) � 1� P

 
q2 � min

j

 
y2j,n

(�j,n + �0,n)
2

!!
(8.40)

8.1.7 Integrity Risk. At any epoch, n, the probability of correct association for

the entire encounter up to that point is:

P (CAN) =
nY

`=1

P (CA`|CAL�1), L , 1, . . . , ` (8.41)

where N is a notation to designate all time increments: {1, . . . , n}. Event CAN is a

correct association from 1 to n, or the intersection of CA1, . . . , CAn. CAN�1 assumes

that correct associations from 1, . . . , n � 1. Note, at the initial epoch (n = 0), the

assignment of intruders is arbitrary, so the probability of correct association is one

(P (CA0) = 1) and the probability of incorrect association is zero (P (IA0) = 0).

If at any time in the past, there was an incorrect association, the resulting

integrity risk at the current time, n, is assumed to be one. Computing the integrity

risk at time n due to previous potential incorrect associations is not practical, because

of the number of possible cases. The probability of being in this state at time n is

1�P (CAN) because state CAN requires correct associations all the way to the current

time n.

Therefore the integrity risk at time n is upper bounded as:

P (HMIn)  1� [1� P (HMIn|CAN)]P (CAN) (8.42)

where P (HMIn|CAN) is the integrity risk for a single threatening intruder based on

the hazard states, as described in Chapter 3, as well as the previous work [40,43,44].

This upper bound needs to be less than, ISS, the full integrity risk requirement for
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self-separaiton:

1� [1� P (HMIn|CAN)]P (CAN)  ISS (8.43)

or written another way:

P (HMIn|CAN)  1 +
ISS � 1

P (CAN)
(8.44)

This expression is another way to write equation (3.8), with the right hand side of

equation (8.44) replacing the right hand side of equation (3.8).

8.2 Continuity Risk

Continuity risk is indirectly impacted by the data association’s influence on

integrity. As described in Chapter 4, and the previous work [40, 43, 44], integrity

and continuity requirements together are used to select coe�cients of integrity and

continuity that when summed together, result in a protection level around the own air-

craft. Since the integrity risk in equation (8.44) is now influenced by data association,

the resulting selection of integrity risk coe�cients used to determine P (HMIn|CAN)

could change to ensure the ISS requirement is met. This has a second order e↵ect

on continuity and the selection of a continuity risk coe�cient. For example, if the

certification authority desires to keep a strict fractional margin, ✏, on the protection

level around the well clear threshold, an increase in the integrity adjusted thresholds

(k�’s) would require a corresponding decrease in the continuity bu↵ers (`�’s). This

would have to be done by either lowering the continuity requirement (decreasing `’s)

or improving sensor performance (decreasing �’s).

8.3 Analysis

This analysis looks at two two-intruder encounters. The composite nominal

sensor of Chapter 6 is applied: �⇢ is 5 feet, �✓ is 0.05�, �� is 0.05�, �⇢̇ is 5 ft/s, and
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detection range is 8 NM. The DAAMOPSWCT is also used: ⌧SS of 35 seconds, rMD of

4000 feet, and zMD of 450 feet, and a lookahead time of 25 seconds [72]. All operational

limit fractional margins are 10% (✏⌧ = ✏r = ✏z = 10%) leading to ⌧̃ = 38.5 seconds,

r̃ = 4400 feet, and z̃ = 495 feet. The desired integrity requirement, ISS = 10�6, and

the continuity requirement, CSS = 10�3, are based on the FAA’s definition of major

and minor failure conditions [28]. For simplicity, the integrity and continuity risk

coe�cients are set to be equal: k⌧ = kr = kz = 4.98 and `⌧ = `r = `z = 3.09. Based

on the DAA MOPS, the nominal update rate is selected to be 1 Hz and the worst-case

relative closure velocity is limited to 370 knots for non-cooperative intruders [72].

For the encounters, the first encounter is where the intruder trajectories are

co-altitude, but relatively far within the detection range, and the other encounter is

where both intruders are on parallel trajectories, head-on to the own aircraft at ±500

feet. The intent is to show an encounter with what should be a large fault term, yj,

and to show another encounter with as small of a fault term, yj, as can be reasonably

expected, with 1000 feet of altitude separation, but the same velocities and horizontal

positions.
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In the first encounter, reflected in Figure 8.3, there is one co-altitude intruder

initiating directly in front of the own aircraft at the detection range then continues

toward the own aircraft at 370 knots on course with a CPA that is tangent to the 4000

foot horizontal miss distance circle, which would require a warning alert. The other

intruder starts at the the detection range at a relative azimuth of -30� and at 370

knots crosses in front of the own aircraft at a perpendicular trajectory (not requiring

a warning alert).
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Figure 8.4. Second Intruder Encounter

In the second encounter, reflected in Figure 8.4, a situation is assumed where

both intruders are flying under visual flight rules (VFR) and o↵set from the own

aircraft’s altitude by ±500 feet. According to 14 CFR 91.159, any VFR level cruising

aircraft higher than 3000 feet above ground level will maintain the following altitudes

below 18,000 feet mean sea level: if on a magnetic course 0 - 179 degrees, any odd

thousand plus 500 feet (3500, 5500, etc...) or if on a magnetic course 180 - 359 degrees,

any even thousand plus 500 feet (4500, 6500, etc...) [2]. The VFR intruders will be

assumed to fly in the same boundary heading (either 179.5 degrees or 359.5 degrees)

and have a separation of 1000 feet, otherwise, the intruders would normally either
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be flying in opposite directions or be separated by 2000 feet. The instrument flight

rules (IFR) own aircraft will be assumed to fly on an even 1000 foot IFR altitude

in the exact opposite direction, resulting in a 500 foot separation between the own

aircraft and the intruders. According to FAA Order JO 7110.65W Section 5-2-17 and

Eurocontrol, air tra�c controllers consider altitude readouts within ±300 feet to be

valid [27, 32]. This margin for error is greater the ±50 feet required for a well clear

violation if either intruder falls within the own aircraft vertical miss distance, zMD,

of ±450 [72]. Both intruders are assumed to fly at the maximum 370 knots.

8.3.1 Results. To determine the integrity and continuity risks, P (CAN) and

P (IAN) must be determined. Both of these probabilities are functions of y2j and

(�j + �0)2. Since there are only two intruders (m = 2), j = 1 so the j subscript will

be removed for the remainder of this subsection. The nature of the probabilities of

correct association and incorrect association can be visualized by the y2 vs ⌧ curve

in Figure 8.5. The value of �j and �0 are both approximately one throughout the

encounter, so any di↵erences in probabilities of correct association and incorrect asso-

ciation come from y2. The normalized fault term is large throughout the encounter.
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Figure 8.5. Fault Term During the First Encounter
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This combination of large y2 and near constant �’s lead to a probability of incor-

rect association of zero during the encounter. This is reflected in Figure 8.6. The

0 20 40 60 800

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
P(IA) for Nominal Sensor

o (seconds)

Pr
ob

ab
ili

ty
 o

f I
A

Figure 8.6. First Encounter Probability of Incorrect Association

corresponding P (CA) is one throughout the encounter. This makes sense, since the

intruders are so far apart.

For the second encounter, the value of �j and �0 are both also approximately

one throughout the encounter, so again any di↵erence in probabilities of correct as-

sociation and incorrect association come from y2. The result on the upper bound of

P (IA), reflected in Figure 8.7, is a spike at the second epoch of over 99.97%, before

returning to zero. The resulting lower bound on P (CA) is about 0.03% for the en-

counter, which includes the 50-50 case, is not acceptable. The normalized fault term

in Figure 8.8, which is focused on the initial epochs (⌧ = 72� 78s), can help explain

why this spike in the P (IA) bound occurred. Here, the fault term is small at n = 2,

or ⌧ = 77s. This reflects a need for better sensors for velocity, since velocity requires

two epochs to estimate.

To improve the P (IA) bound, the sensor range rate uncertainty, �⇢̇, was ad-
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justed from 5 ft/s to 0.95 ft/s. This adjustment is reflected in Figure 8.9. Here, it is

clear that the improved sensor increased the y2 value at the second epoch, leading to

improved integrity. This is an example of how the sensor requirement trade space can

be explored to meet data association integrity requirements. The corresponding y2
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for this improved P (IA) upper bound at the early epochs is depicted in Figure 8.10.
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At a range rate uncertainty of 0.95 ft/s, the P (IA) upper bound is an ac-

ceptable 9.82 ⇥ 10�7, leading to a P (CA) lower bound near one. If the original ISS

requirement was 10�5, this adjustment would lead to an individual intruder integrity

requirement of 0.9⇥10�5 to be applied to equation (3.8) for any intruder threatening

to violate the well clear threshold.

8.4 Summary of Multiple Intruders

The integrity risk was determined for mis-associating multiple intruders. This

multiple intruder methodology is general and can be used for any number of intruders.

Two two-intruder encounters were analyzed to illustrate the methodology. The sensor

trade space was explored to meet integrity risk requirements. Suggestions for future

work include analysis on greater than two intruders and determining reasonable in-

truder trajectories, based on encounter models, for all multiple intruder encounters,

including for two intruders. This methodology can be used by a certification authority

to certify potential SAA sensors.



97

CHAPTER 9

CONCLUSION

There is currently high interest in providing greater UAS access into the Na-

tional Airspace System. The FAA will require UAS to employ SAA systems. To

ensure an acceptable level of safety, UAS SAA systems must sense intruders to initi-

ate avoidance maneuvers. This dissertation has directly addressed the need to quan-

tify SAA safety through development of new integrity and continuity risk evaluation

methods. These methods can ensure safety and lead to certifiable SAA sensor re-

quirements. This dissertation has also explored integrity and continuity for intruder

linear accelerations and developed a general method for determining integrity risk of

multiple intruders.

9.1 SAA Integrity and Continuity

SAA safety must be guaranteed. This requires methods to quantify safety

performance as a function of sensor uncertainty. In response, this dissertation intro-

duced integrity risk and continuity risk as new UAS SAA safety performance metrics.

Integrity and continuity risk are absolute safety metrics [45, 71], as opposed to the

current relative UAS safety performance metrics, such as risk ratios [31]. This thesis

demonstrated that these new methods to evaluate integrity and continuity risk can

be used to establish sensor performance requirements to ensure a predefined level of

safety.

9.2 Summary of Achievements

This dissertation directly addressed the need to quantify SAA safety through

development of new integrity and continuity risk evaluation methods, which can lead

to certifiable SAA sensor requirements. This dissertation has also explored integrity

and continuity for intruder linear accelerations and developed a general method for



98

determining integrity risk of multiple intruders.

9.2.1 Integrity Risk Methodology. This dissertation developed an integrity risk

evaluation methodology to quantify SAA safety. Previous research into SAA safety

focused on relative safety metrics, such as risk ratios, which is a failure rate with the

SAA system divided by the failure rate without the SAA system [48]. The methods

developed in this thesis focused directly on the established aviation navigation cer-

tification standards that quantify integrity and continuity as absolute safety factors

in aircraft approach applications [39,71]. The methodology ensured an integrity risk

requirement was met by surrounding the original WCT by a volume, defined as the

integrity-adjusted threshold.

9.2.2 Continuity Risk Methodology. This dissertation also developed a conti-

nuity risk evaluation methodology to further quantify SAA safety. As a complement

to integrity, continuity is also an absolute safety metric [45,71]. The methodology en-

sured a continuity risk requirement was met by accounting for a continuity bu↵er

beyond the integrity-adjusted thresholds. This combination of integrity-adjusted

thresholds and continuity bu↵ers result in a protection level that further surrounds

the WCT.

9.2.3 Relating Integrity and Continuity Risk to Sensor Requirements. The

integrity-adjusted threshold and the continuity bu↵er together formed a protection

level that surrounds the WCT. This protection level resulted in a tradeo↵ between

SAA safety and airspace capacity requirements. To minimize the impact on airspace

capacity, an operational limit, based on a fractional margin, was placed on the pro-

tection level, resulting in restrictions on sensor performance. A sensitivity analysis

explored the sensor requirement trade space for a given operational limit.

9.2.4 Accounting for Linear Accelerations. The trajectory state estimation
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model used to build the integrity and continuity risk methodology is based on a con-

stant velocity assumption outlined in the DAA MOPS [72]. Constant velocity was no

longer assumed and the estimation model accounted for constant accelerations. Only

linear constant intruder accelerations were evaluated, leaving turning and leveling

intruder trajectories for future work. An analysis explored the sensor trade space as

well as compared modified tau, which does not address accelerations, with a version

of true tau, the actual horizontal time to CPA, that included acceleration trajectory

states.

9.2.5 Accounting for Multiple Intruders. The final contribution of this dis-

sertation accounted for multiple intruders. A general innovation-based methodology

was developed, bounding the probability of mis-associating any number of intruders,

which bounded the integrity risk. An analysis explored the sensor requirement trade

space for the multiple intruder methodology.

9.3 Future Work

A number of recommendations for future work are given in the following sub-

sections to include expanding the intruder acceleration research to account for all

intruder accelerations, further exploring likely intruder trajectories, addressing sensor

fault detection, and testing the methods presented in this dissertation on hardware.

9.3.1 Intruder Turning Accelerations. In the draft DAA MOPS, it is assumed

that intruder track prediction will be extrapolated using constant velocity [72]. How-

ever, it is more realistic to consider intruder trajectories with accelerations. Chapter

7 of this thesis addressed constant linear accelerations. That assumes the intruder

will maintain a straight line trajectory. To complete the work on intruder accelera-

tions, intruder trajectories that turn and/or change climb and descent rates will need

to be addressed. This will involve hazard state definitions that take the full relative
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intruder dynamics into account. The impact of wind gusts on intruder dynamics can

also be considered.

9.3.2 Exploring Likely Intruder Trajectories. The intruder trajectories an-

alyzed in Chapters 6, 7, and 8 were based on inspection, flying regulations, and the

author’s aviation experience. More detailed research on intruder trajectories can be

found in the MIT LL’s correlated and uncorrelated encounter models, which can also

be found in Appendix A of the DAA MOPS [49,50].

9.3.3 Sensor Fault Detection. Sensors can be noisy and this thesis developed an

integrity and continuity risk methodology based on the standard deviations associated

with sensor uncertainty. At the same time, sensors can be faulty and these faults need

to be detected. Then these undetected faults need to be evaluated for their impact

on integrity and continuity risk.

9.3.4 Hardware Testing. The Illinois Institute of Technology’s Navigation Lab-

oratory has procured an octocopter and a LIDAR sensor with the intent of flight

testing the methods presented in this dissertation. The intent of the flight test would

be to determine if the integrity and continuity risk evaluation methodology can be ap-

plied online and determine if there are any shortfalls resulting from the linearizations

and bounds used within the methodology. Figure 9.1 shows the DJI Spreading Wings

S1000 Octocopter. It has a center frame diameter of 33.7 cm, a frame arm length of

38.6 cm and a propeller size of 15 in x 5.2 in [20]. Figure 9.2 shows the Velodyne

VLP-16 LIDAR PUCK™. It has a target range of 150-200 m, power consumption of

less than 10 Watts, a weight of 830 grams, a size of 10 cm x 6.5 cm, a vertical field

of view of ±15�, and a horizontal field of view of 360� [82].

9.4 Closing

Integrity and continuity risk are absolute measures of safety that can be used
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Figure 9.1. DJI Spreading Wings S1000

Figure 9.2. Velodyne VLP-16 LIDAR PUCK™
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to set requirements on UAS SAA sensors for integration into the NAS.
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APPENDIX A

INTRUDER TRAJECTORY STATE ESTIMATION
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The SAA problem is presented as a three dimensional, two-body problem.

The two bodies are the own aircraft and the intruder aircraft. The coordinate frame

is an own-aircraft-centered body frame. The intruder aircraft is assumed to have a

constant relative velocity. The case of straight-line constant intruder accelerations is

addressed in Chapter 7.

Figure 2.1 is a graphical depiction of the own aircraft and the intruder aircraft

in the horizontal and vertical planes. In the horizontal plane, the x and y axes are

oriented such that the x-axis is directly out of the nose of the own aircraft. The

azimuth, ✓ is the angle counterclockwise from the x-axis to the horizontal range

vector, r (from the origin to the intruder position on the xy-plane). In the vertical

plane, � is the angle from the r vector up to the slant range vector, ⇢.

A.1 Intruder Spherical Measurements

SAA sensors can measure the intruder’s relative position (with error) in spher-

ical, Cartesian, or cylindrical coordinates. In Table 2-8 of the draft DAA MOPS, the

input intruder measurements from an SAA radar includes relative slant range (⇢),

relative range rate (⇢̇), relative bearing (✓), and elevation angle (�) [72]. As a result,

this measurement model will assume intruder measurements of range, range rate,

azimuth angle and elevation angle as expressed in equation (A.1):

z =


⇢ ✓ � ⇢̇

�T
(A.1)

This development assumes spherical measurement vectors. However, the relative

intruder trajectory states, intruder position and velocity, are in Cartesian coordinates.

Therefore, the spherical measurements will need to be converted to Cartesian states.

A.2 Measurement Model
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The own aircraft makes a scan at time n measuring the the intruder position:

zn = h(xn) + vn vn ⇠ N(0,Vn) (A.2)

zn is the measurement at time n:

zn =


⇢n ✓n �n ⇢̇n

�T
(A.3)

The measurement vector (zn) is a nonlinear function ( h(xn) ) of the trajectory states

(xn) which are intruder Cartesian position and velocity. vn is the measurement error,

which is assumed to be over-bounded in the cumulative distribution function (CDF)

sense by Gaussian distributions [16, 68]. The measurement error covariance matrix

at each time is Vn. In equation (A.2), N(a,B) represents a normal distribution with

mean a and covariance B. It is assumed that the sample interval, �t, is selected large

enough to ensure independence of sequential sensor measurement errors.

The measurement equation (A.2) can be linearized. Using a first order Taylor

series:

h(x) ⇡ h(x̄) +H�x (A.4)

where H is the observation matrix:

H =
@h

@x
(A.5)

The partial derivatives of h with respect to x are derived in Appendix F.

x̄ is an estimate of the trajectory states, and �x is the estimate error x̄ � x.

Substituting into equation (A.2), zn becomes:

zn ⇡ h(x̄n) +H�xn + vn (A.6)
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Then expanding �x and putting all known quantities on the left hand side, zn becomes:

zn � h(x̄n) +Hx̄n ⇡ +Hxn + vn (A.7)

Defining the left hand side of the equation to be z0 , z � h(x̄) + Hx̄, a linear

measurement model is obtained:

z0n = Hxn + vn (A.8)

A.3 Constant Velocity Batch Model

This research uses two di↵erent methods to evaluate trajectory state estimates,

x̂, and their estimate error covariance matrix, P̂. The first is the batch model pre-

sented in this section. The other is a Kalman filter presented in the next section. The

first iteration of this research employed a batch model [43]. In this batch model, the

trajectory states (x) are constant:

x =


x0 ẋ

�T
(A.9)

The trajectory states are broken down into initial Cartesian relative intruder

position, x0 =


x0 y0 z0

�T
, and intruder relative velocity, ẋ =


ẋ ẏ ż

�T
. In

this case,�t is between time t0 and time t1 such that


x1 y1 z1

�T
=


x0 y0 z0

�T
+

�tẋ. The first measurement z1 is:

z1 = h1(x) + v1 v1 ⇠ N(0,V1) (A.10)

For the batch model, the nonlinear observation h is a time-variant function of the
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constant trajectory states:

hn(x) =

2

666666666664

p
(x0 + n�tẋ)2 + (y0 + n�tẏ)2 + (z0 + n�tż)2

tan�1 y0+n�tẏ
x0+n�tẋ

sin�1 z0+n�tżp
(x0+n�tẋ)2+(y0+n�tẏ)2

x0ẋ+y0ẏ+z0ż+n�t(ẋ2+ẏ2+ż2)p
(x0+n�tẋ)2+(y0+n�tẏ)2+(z0+n�tż)2

3

777777777775

(A.11)

Once linearlzed, the first measurement becomes:

z01 = H1x+ v1 (A.12)

Stacking the linearized measurements after each epoch into the standard z =

Hx+ v measurement equation form:

z0N = HNx+ vN (A.13)

where the batch measurement vector, z0N , the batch observation matrix, HN , the

trajectory state vector, x, and batch measurement error vector, vN , are:

z0N =


z0T0 z0T1 . . . z0Tn

�T
(A.14)

HN =

2

666666666664

H0

H1

...

Hn

3

777777777775

(A.15)
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x =

2

664
x0

ẋ

3

775 =


x0 y0 z0 ẋ ẏ ż

�T
(A.16)

vN =


vT
0 vT

1 . . . vT
n

�T
⇠ N(0,VN) (A.17)

The batch measurement error covariance, VN , for all time steps is a block

diagonal matrix of the individual time step measurement error covariance matrices

(Vi for i = 1, . . . , n) which are not necessarily diagonal themselves:

VN =

2

666666666664

V0 0 · · · 0

0 V1 · · · 0

...
...

. . .
...

0 0 · · · Vn

3

777777777775

(A.18)

A weighted least squares estimator is used to get the trajectory state estimate

vector, x̂n:

x̂n = (HT
NV

�1
N HN)

�1HT
NV

�1
N z0N (A.19)

In addition, the corresponding trajectory state estimate error covariance, P̂N , is then:

P̂N = (HT
NV

�1
N HN)

�1 (A.20)

A.4 Kalman Filter Estimation Model

This section presents a Kalman filter model to get the trajectory state esti-

mates, x̂, and estimate error covariance, P̂. A batch model can become extremely

computationally expensive as the number of epochs increases. A Kalman filter, on
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the other hand, is more computationally e�cient. In this Kalman filter model, the

trajectory state vector, xn, is time variant, based on current intruder position and

velocity:

xn =


xn yn zn ẋn ẏn żn

�T
(A.21)

The following equations are based on the Kalman filter equations in Gelb’s

Table 4.2-1 [35]. The discrete-time process-noise-free state-transition equation is:

xn = Fx(n�1) (A.22)

where F represents the constant state-transition matrix:

F =

2

664
I3x3 �t I3x3

03x3 I3x3

3

775 (A.23)

The measurement model in equation (A.2) and the measurement vector in

equation (A.3) remains the same. However, the nonlinear observation h for the batch

was a time variant function of constant trajectory states and current epoch (n). The

Kalman filter nonlinear observation is only a function of the current trajectory states:

h(xn) =

2

666666666664

p
x2
n + y2n + z2n

tan�1 y
n

x
n

sin�1 z
np

x2
n

+y2
n

+z2
n

x
n

ẋ
n

+y
n

ẏ
n

+z
n

ż
np

x2
n

+y2
n

+z2
n

3

777777777775

(A.24)

The linearized approximate observation matrix, H is found by applying equation
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(A.5), leading to the linearized measurement model at each epoch:

z0n = Hnxn + vn, vn ⇠ N(0,Vn) (A.25)

To apply the Kalman filter, the initial (n = 0) conditions are:

x̄0 = 0

K0 = P̄0HT
0 (H0P̄0HT

0 +V0)�1

P̂0 = (I�K0H0)P̄0

(A.26)

where P̄0 is the initial a-priori position and velocity estimate error covariance and no

prior knowledge is assumed on these states.

For n > 0, state estimate extrapolation is:

x̄n = Fx̂(n�1) (A.27)

and the error covariance extrapolation matrix is:

P̄n = FP̂(n�1)F
T (A.28)

The state estimate update is:

x̂n = x̄n +Kn(zn �Hnx̄n) (A.29)

and the error covariance update matrix is:

P̂n = (I�KnHn)P̄n (A.30)
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where the Kalman gain matrix is:

Kn = P̄nH
T
n (HnP̄nH

T
n +Vn)

�1 (A.31)
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APPENDIX B

ALTERNATE HAZARD STATES
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With the current hazard states dictated by the DAA MOPS, there other de-

rived hazard states, based on previous definitions and assumptions about the WCT,

that are discarded. Given the fluid nature of SAA hazard threshold definitions and

the draft state of the DAA MOPS, these hazard states could prove useful again if the

SAA hazards are changed again.

B.1 Simplified Tau

Simplified tau, ⌧simp, is the range divided by the range rate [31]:

⌧simp =
⇢

⇢̇
(B.1)

B.2 Time to Well Clear Threshold Entry

NASA Langley did a comparison of four di↵erent tau’s: ⌧simp, ⌧mod, ⌧true, and

⌧ep [57]. ⌧ep is the time to the horizontal threshold entry point, which is the point

where the intruder is expected to cross the rMD circle.

To get ⌧ep, where rCPA = rMD, equation (2.13) is converted into a quadratic:

r2MD = (x+ ẋ⌧±)
2 + (y + ẏ⌧±)

2 (B.2)

where ⌧± is the multiple solution to the quadratic equation and represents both the

time to entry point and time to exit point. The corresponding quadratic is:

(ẋ2
n + ẏ2n)⌧

2
± + (2xnẋn + 2ynẏn)⌧± + (x2

n + y2n � r2MD) = 0 (B.3)

Solving this quadratic for ⌧±, the time to entry, ⌧ep, is the smaller solution:

⌧ep = ⌧true �
p

(xẋ+ yẏ)2 � (ẋ2 + ẏ2)(x2 + y2 � r2MD)

ẋ2 + ẏ2
(B.4)
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Figure B.1. Vertical Position at Horizontal Entry and Exit

Note, the larger solution for ⌧± is ⌧ex , the time to well clear exit:

⌧ex = ⌧true +

p
(xẋ+ yẏ)2 � (ẋ2 + ẏ2)(x2 + y2 � r2MD)

ẋ2 + ẏ2
(B.5)

B.3 Vertical Position at Well Clear Threshold Entry and Exit

Previous versions of the WCT were represented as cylinders, as in Figure B.1

[14]. An iteration of this research was based on hazards defined by the threshold

cylinder [40]. The left part of Figure B.1 is an overhead depiction of the horizontal

CPA. For a well clear violation, the intruder must be within the cylinder. That means

rCPA is smaller than or equal to the horizontal miss distance (MD), rMD.

For 3D, the SAA system must project intruder trajectories to determine if

there is an impending well clear violation. However, determining the z at the CPA

is not su�cient. There are some trajectories where either the vertical distance at the

3D CPA or the vertical distance at the 2D horizontal CPA are outside the well clear

distance cylinder, but the intruder still penetrates the well clear distance cylinder.

For example, consider the head-on trajectories depicted in Figure B.2. Because the

distance thresholds define a cylinder and not a sphere, the trajectory intercepting the

cylinder at the top-back has a 3D CPA, labeled xCPA1, which is outside the cylinder

occurring prior to cylinder entry. Also, the trajectory that intercepts the bottom-
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Figure B.2. Head-on Trajectories with 3D Closest Points of Approach

front edge of the cylinder has a 3D CPA, labeled xCPA2, which is outside the cylinder

occurring after the well clear violation.

To account for this, there are two vertical hazard states, z+ and z�, depicted in

Figure B.1. Given that an intruder trajectory penetrates the horizontal miss distance

circle, z+ is the vertical distance when the intruder trajectory enters the 2D horizontal

miss distance circle and z� is the vertical distance when the intruder trajectory exits

the 2D horizontal miss distance circle. Figure B.3 shows all nine ways an intruder

trajectory can approach the cylinder, based on its z+ and z�. In the upper-right

section, the intruder passes completely above the cylinder (z+ > zMD \ z� > zMD).

In the lower-left section, the intruder passes completely below the cylinder (z+ <

�zMD \ z� < �zMD). In all other cases, the intruder violates the cylinder.

B.3.1 Deriving Vertical Position at Well Clear Entry and Exit. Since only

straight line trajectories apply, the slope of the trajectory does not change:

ż

ẋ
=

z � z±
x� x±

(B.6)

ż

ẏ
=

z � z±
y � y±

(B.7)
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Figure B.3. Possible Intruder Trajectories in (ẑ+; ẑ�) Plane

This can be rewritten to:

ż(x� x±) = ẋ(z � z±) (B.8)

ż(y � y±) = ẏ(z � z±) (B.9)

Solving for x± and y±

x± = x+
ẋ

ż
(z± � z) (B.10)

y± = y +
ẏ

ż
(z± � z) (B.11)

Applying the following equation:

rMD =
q

x2
± + y2± =

r
(x+

ẋ

ż
(z± � z))2 + (y +

ẏ

ż
(z± � z))2 (B.12)

Leads to the following quadratic:

( ẋ
2+ẏ2

ż2
)z2± + (2(xẋ+yẏ)

ż
� 2z(ẋ2+ẏ2)

ż2
)z±

+( z
2(ẋ2+ẏ2)

ż2
� 2z(xẋ+yẏ)

ż
+ x2 + y2 � r2MD) = 0

(B.13)
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Solving this quadratic for z± leads to expressions for z+ and z�:

z+ = z + ż
ẋ2+ẏ2

(�xẋ� yẏ �
p
(xẋ+ yẏ)2 � (ẋ2 + ẏ2)(x2 + y2 � r2MD))

z� = z + ż
ẋ2+ẏ2

(�xẋ� yẏ +
p
(xẋ+ yẏ)2 � (ẋ2 + ẏ2)(x2 + y2 � r2MD))

(B.14)
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APPENDIX C

THE DISTANCE MODIFICATION
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There are several similar but di↵erent definitions for the Distance Modification,

Dmod, depending on the reference. This appendix will catalog each definition. Note

the DAA MOPS does not define the distance modification beyond being the “distance

modification of modified tau” [72].

From the TCAS II MOPS [70]: “Distance Modification (DMOD) - Safety

factor incorporated in range measurements to account for possible accelerations by

the intruder. The value of distance modification varies with the sensitivity level for

this own intruder set. The value is chosen such that a sustained acceleration of g/3

will produce this displacement in range threshold time.”

From the FAA Second SAA Workshop [31]: “To provide protection in en-

counters with a low rate of closure, the tau boundaries may need to have a distance

modification (DMOD), similar to that used in TCAS.”

From the Introduction to TCAS II 7.1 [29]: “...at close ranges and at slower

closure rates the modified tau boundaries converge to a non-zero range called DMOD.

This modification allows TCAS to issue TAs and RAs at or before the fixed DMOD

range threshold in these slow-closure-rate encounters.”
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APPENDIX D

DERIVATION OF GEOMETRIC HORIZONTAL CPA
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The geometric rCPA derived here will prove useful in Chapter 7, where the

constant velocity assumption is removed, but the linear trajectory remains.

Since only straight line trajectories apply, the slope of the trajectory does not

change:

ẏ

ẋ
=

dy

dx
=

y � yCPA

x� xCPA

(D.1)

This can be rewritten to:

ẏ(x� xCPA) = ẋ(y � yCPA) (D.2)

and

ẏxCPA � ẋyCPA = ẏx� ẋy (D.3)

Coupled with equation (2.9), the following system of equations arise:

2

664
ẋ ẏ

ẏ �ẋ

3

775

2

664
xCPA

yCPA

3

775 =

2

664
0

ẏx� ẋy

3

775 (D.4)

Solving for this system of equations:

xCPA =
ẏ(ẏx� ẋy)

ẋ2 + ẏ2
(D.5)

yCPA =
�ẋ(ẏx� ẋy)

ẋ2 + ẏ2
(D.6)

The expression for rCPA is:

rCPA =
q

x2
CPA + y2CPA =

ẏx� ẋyp
ẋ2 + ẏ2

(D.7)
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APPENDIX E

2D ANALYSIS SENSOR ADJUSTMENTS
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This appendix includes the analysis of sample rate and detection range ad-

justments from the nominal sensor to support section 6.2.

E.1 Sensor Sample Rate Uncertainty Adjustment

Lowering the sensor sample rate to �t = 0.35 Hz, represents a relaxation that

can still meet integrity and continuity requirements. The results in Figure E.1 depict

this �t-adjusted sensor meeting both �⌧ and �r requirements. The adjustment has
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Figure E.1. Results of a �t-Adjusted Sensor: �t = 0.35 Hz

minimal impact on the �⌧ curve, but it brings the �r curve very close to the integrity

and continuity limit. This sensitivity arises from having less measurements to inform

the estimator. Both trajectories have similar performance, as cataloged in Table E.1.

Here, for both curves, the most restrictive trajectory is the tangent trajectory.

Table E.1. Results of a �t-Adjusted Sensor

Trajectory ⌧ at �̃⌧ ⌧ at �̃r

Nominal 76.8 s 50.5 s

Head-on 76.4 s 39.4 s

Tangent 76.2 s 39.3 s
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E.2 Sensor Detection Range Adjustment

The next adjustment is to reduce sensor detection range to 6.5 NM, repre-

senting the tightest detection range that can still meet integrity and continuity re-

quirements. The sensor sample rate is returned to the nominal 1 Hz. The results

in Figure E.2 depict this detection range adjusted sensor meeting both �⌧ and �r

requirements. Both curves are sensitive to detection range since the tighter detection
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Figure E.2. Results of a ⇢0-Adjusted Sensor: ⇢0 = 6.5 NM

range results in less time to the CPA (and thus a smaller initial tau) as well as less

measurements. Both trajectories have similar performance, as cataloged in Table E.2.

Here, for both curves, the most restrictive trajectory is the tangent trajectory.

Table E.2. Results of a ⇢0-Adjusted Sensor

Trajectory ⌧ at �̃⌧ ⌧ at �̃r

Nominal 76.8 s 50.5 s

Head-on 62.9 s 39.4 s

Tangent 62.6 s 39.2 s
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APPENDIX F

CARTESIAN TO SPHERICAL PARTIAL DERIVATIVES
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The following is the nonlinear transformation of the cartesian position and

velocity states to the spherical position and range rate measurements:

2

666666666664

⇢

✓

�

⇢̇

3

777777777775

= h(x) =

2

666666666664

p
x2 + y2 + z2

tan�1 y
x

sin�1 zp
x2+y2+z2

xẋ+yẏ+zżp
x2+y2+z2

3

777777777775

(F.1)

for x =


x y z ẋ ẏ ż

�T
.

The following are the partials of the spherical position and range rate with

respect to x. For slant range, ⇢:

@⇢

@x
=

x

⇢
(F.2)

@⇢

@y
=

y

⇢
(F.3)

@⇢

@z
=

z

⇢
(F.4)

@⇢

@ẋ
=

@⇢

@ẏ
=

@⇢

@ż
= 0 (F.5)

where ⇢ =
p

x2 + y2 + z2.

For azimuth, ✓:

@✓

@x
=

�y

x2 + y2
(F.6)

@✓

@y
=

x

x2 + y2
(F.7)

@✓

@z
=

@✓

@ẋ
=

@⇢

@ẏ
=

@⇢

@ż
= 0 (F.8)
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For elevation, �:

@�

@x
=

�xz

r⇢2
(F.9)

@�

@y
=

�yz

r⇢2
(F.10)

@�

@z
=

r

⇢2
(F.11)

@�

@ẋ
=

@⇢

@ẏ
=

@⇢

@ż
= 0 (F.12)

where r =
p

x2 + y2.

For range rate, ⇢̇:

@⇢̇

@x
=

ẋ(y2 + z2)

⇢3
(F.13)

@⇢̇

@y
=

ẏ(x2 + z2)

⇢3
(F.14)

@⇢̇

@z
=

ż(x2 + y2)

⇢3
(F.15)

@⇢̇

@ẋ
=

x

⇢
(F.16)

@⇢̇

@ẏ
=

y

⇢
(F.17)

@⇢̇

@ż
=

z

⇢
(F.18)

The resulting matrix of h partials is as follows:

@h

@x
=

2

666666666664

x
⇢

y
⇢

z
⇢

0 0 0

�y
x2+y2

x
x2+y2

0 0 0 0

�xz
r⇢2

�yz
r⇢2

r
⇢2

0 0 0

ẋ(y2+z2)
⇢3

ẏ(x2+z2)
⇢3

ż(x2+y2)
⇢3

x
⇢

y
⇢

z
⇢

3

777777777775

(F.19)
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APPENDIX G

HAZARD STATE PARTIAL DERIVATIVES
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A first order Taylor series expansion is used to obtain the linearized approxi-

mation of the hazard state estimates in relation to the trajectory state estimates in

equation (2.17). This requires the partial derivatives of the hazard states in relation

to the trajectory states.

G.1 Modified Tau

The modified tau equation does not use z or ż:

⌧mod =
D2

mod � x2 � y2

xẋ+ yẏ
(G.1)

Using the quotient rule, the resulting partial derivatives of ⌧mod with respect

to the horizontal position states x and y are:

@⌧mod

@x
=

�2x� ẋ⌧mod

xẋ+ yẏ
(G.2)

@⌧mod

@y
=

�2y � ẏ⌧mod

xẋ+ yẏ
(G.3)

The quotient rule is used again to find the resulting partial derivatives of ⌧mod with

respect to the horizontal velocity states ẋ and ẏ:

@⌧mod

@ẋ
=

�x⌧mod

xẋ+ yẏ
(G.4)

@⌧mod

@ẏ
=

�y⌧mod

xẋ+ yẏ
(G.5)
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All four partials of ⌧mod together are as follows:

@⌧
mod

@x
= �2x�ẋ⌧

mod

xẋ+yẏ

@⌧
mod

@y
= �2y�ẏ⌧

mod

xẋ+yẏ

@⌧
mod

@ẋ
= �x⌧

mod

xẋ+yẏ

@⌧
mod

@ẏ
= �y⌧

mod

xẋ+yẏ

(G.6)

G.2 True Tau

True tau is not a function of z or ż. The true tau equation is:

⌧true =
�(ẋx+ ẏy)

ẋ2 + ẏ2
(G.7)

The resulting partial derivatives of ⌧true with respect to the states x and y are

easy to calculate:

@⌧
true

@x
= � ẋ

ẋ2+ẏ2

@⌧
true

@y
= � ẏ

ẋ2+ẏ2

(G.8)

The partials with respect to the rates, ẋ and ẏ, are a bit more complicated. For @⌧
true

@ẋ
,

this can be written as:

@⌧true
@ẋ

=
@(↵

�
)

@ẋ
(G.9)

where ↵ = �(ẋx+ ẏy) and � = ẋ2+ ẏ2. Using the quotient rule, the partial becomes:

@⌧true
@ẋ

=
� @↵

@ẋ
� ↵@�

@ẋ

�2
=

(ẋ2 + ẏ2)(�x) + (ẋx+ ẏy)2ẋ

(ẋ2 + ẏ2)2
(G.10)

Reducing terms:

@⌧true
@ẋ

= � x

ẋ2 + ẏ2
+

2ẋ(ẋx+ ẏy)

(ẋ2 + ẏ2)2
(G.11)
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Since true tau is:

⌧ =
�(ẋx+ ẏy)

ẋ2 + ẏ2
(G.12)

The partial becomes:

@⌧true
@ẋ

=
�(x+ 2ẋ⌧)

ẋ2 + ẏ2
(G.13)

Applying the same procedure to the partial with respect to ẏ:

@⌧true
@ẏ

=
�(y + 2ẏ⌧)

ẋ2 + ẏ2
(G.14)

All four partials of ⌧true together are as follows:

@⌧
true

@x
= � ẋ

ẋ2+ẏ2

@⌧
true

@y
= � ẏ

ẋ2+ẏ2

@⌧
true

@ẋ
= �(x+2ẋ⌧)

ẋ2+ẏ2

@⌧
true

@ẏ
= �(y+2ẏ⌧)

ẋ2+ẏ2

(G.15)

G.3 Horizontal CPA

In the horizontal plane, the relative altitude, z, and altitude rate, ż, are both

zero. The horizontal CPA, rCPA, equation is:

rCPA =
q

x2
CPA + y2CPA =

p
x2 + y2 + 2⌧(ẋx+ ẏy) + ⌧ 2(ẋ2 + ẏ2) (G.16)

where xCPA, yCPA and true tau, ⌧ , are:

xCPA = x+ ⌧ ẋ (G.17)

yCPA = y + ⌧ ẏ (G.18)
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⌧ =
�(ẋx+ ẏy)

ẋ2 + ẏ2
(G.19)

Starting with the partial about x, @r
CPA

@x
can be solved using the chain rule:

@rCPA

@x
=

@rCPA

@↵

@↵

@x
(G.20)

where ↵ = x2+ y2+2⌧(ẋx+ ẏy)+ ⌧ 2(ẋ2+ ẏ2). Since rCPA =
p
↵, the partial of rCPA

with respect to ↵ is:

@rCPA

@↵
=

1

2rCPA

=
1

2
p
↵

(G.21)

The partial of ↵ with respect to x is:

@↵

@x
= 2x+ 2

@[⌧(ẋx+ ẏy)]

@x
+ (ẋ2 + ẏ2)

@⌧ 2

@x
(G.22)

where

@[⌧(ẋx+ ẏy)]

@x
= ⌧

@(ẋx+ ẏy)

@x
+ (ẋx+ ẏy)

@⌧

@x
= ẋ⌧ +

�ẋ(ẋx+ ẏy)

ẋ2 + ẏ2
= 2ẋ⌧ (G.23)

@⌧ 2

@x
=

2ẋ(ẋx+ ẏy)(ẋ2 + ẏ2)2

(ẋ2 + ẏ2)4
=

�2ẋ⌧

ẋ2 + ẏ2
(G.24)

Substituting into equation (G.22):

@↵

@x
= 2x+2(2ẋ⌧)+ (ẋ2+ ẏ2)

�2ẋ⌧

ẋ2 + ẏ2
= 2x+4ẋ⌧ � 2ẋ⌧ = 2x+2ẋ⌧ = 2xCPA (G.25)

Substituting into equation (G.20):

@rCPA

@x
=

xCPA

rCPA

(G.26)
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Following the same procedure for @r
CPA

@y
:

@rCPA

@y
=

yCPA

rCPA

(G.27)

The partial about ẋ, @r
CPA

@ẋ
can be solved using the chain rule:

@rCPA

@ẋ
=

@rCPA

@↵

@↵

@ẋ
=

1

2rCPA

@↵

@ẋ
(G.28)

The partial of ↵ with respect to ẋ is:

@↵

@ẋ
= 2

@[⌧(ẋx+ ẏy)]

@ẋ
+

@[⌧ 2(ẋ2 + ẏ2)]

@ẋ
(G.29)

where partial of the first term is broken down using the product rule:

@[⌧(ẋx+ ẏy)]

@ẋ
= ⌧

@(ẋx+ ẏy)

@ẋ
+ (ẋx+ ẏy)

@⌧

@ẋ
= x⌧ + (ẋx+ ẏy)

@⌧

@ẋ
(G.30)

and the partial of ⌧ with respect to ẋ is broken down using the quotient rule:

@⌧

@ẋ
=

�x(ẋ2 + ẏ2)� (�ẋx� ẏy)2ẋ

(ẋ2 + ẏ2)2
=

�x� 2ẋ⌧

ẋ2 + ẏ2
(G.31)

Substituting back into equation (G.30):

@[⌧(ẋx+ ẏy)]

@ẋ
= x⌧ + (ẋx+ ẏy)

�x� 2ẋ⌧

ẋ2 + ẏ2
= 2x⌧ + 2ẋ⌧ 2 (G.32)

The partial of the second term of equation (G.29) is broken down using the product

rule:

@[⌧ 2(ẋ2 + ẏ2)]

@ẋ
= ⌧ 2

@(ẋ2 + ẏ2)

@ẋ
+ (ẋ2 + ẏ2)

@⌧ 2

@ẋ
= 2ẋ⌧ 2 + (ẋ2 + ẏ2)

@⌧ 2

@ẋ
(G.33)
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and the partial of ⌧ 2 with respect to ẋ is broken down using the quotient rule:

@⌧ 2

@ẋ
=

2x(ẋx+ ẏy)(ẋ2 + ẏ2)2 � 4ẋ(ẋ2 + ẏ2)(ẋx+ ẏy)2

(ẋ2 + ẏ2)4
=

�2x⌧ � 4ẋ⌧ 2

ẋ2 + ẏ2
(G.34)

Substituting back into equation (G.33):

@[⌧ 2(ẋ2 + ẏ2)]

@ẋ
= 2ẋ⌧ 2 � 2x⌧ � 4ẋ⌧ 2 = �2x⌧ � 2ẋ⌧ 2 (G.35)

Substituting into equation (G.28):

@rCPA

@ẋ
=

1

2rCPA

[(2[2x⌧ + 2ẋ⌧ 2]) + (�2x⌧ � 2ẋ⌧ 2)] =
x⌧ + ẋ⌧ 2

rCPA

(G.36)

This reduces to:

@rCPA

@ẋ
=

⌧xCPA

rCPA

=
⌧(x+ ẋ⌧)

rCPA

(G.37)

Following the same procedure for @r
CPA

@ẏ
:

@rCPA

@ẏ
=

⌧yCPA

rCPA

=
⌧(y + ẏ⌧)

rCPA

(G.38)

All four partials of rCPA together are as follows:

@r
CPA

@x
= x

CPA

r
CPA

@r
CPA

@y
= y

CPA

r
CPA

@r
CPA

@ẋ
= ⌧x

CPA

r
CPA

@r
CPA

@ẏ
= ⌧y

CPA

r
CPA

(G.39)

G.4 Predicted Vertical Separation
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To account for the warning alert criteria in the DAA MOPS, there needs to be

a predicted vertical separation that can lookahead up to 25 seconds. This is accounted

for in the following equation:

zp = z + p�tż (G.40)

where p are the all the future epochs up to the 25 second lookahead time.

The partial derivative with respect to z is:

@zp
@z

= 1 (G.41)

The partial derivative with respect to ż is:

@zp
@ż

= p�t (G.42)
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