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ABSTRACT 

 

A new approach is developed to upper bound integrity risk for safety-critical GNSS applications when the autocorrelation 

functions of measurement and process noise are uncertain. The algorithm is recursive and significantly expands the applicable 

range of existing methods. In Kalman filtering, models must be specified for autocorrelated measurement and process noise. 

This paper assumes that the noise processes are the output of known linear systems driven by white noise. However, the system 



parameters are only known to lie in specified intervals. Following the approach in [6], an augmented state model is first 

developed to propagate the estimate error covariance matrix when there is parameter uncertainty. It is shown that the error 

variance for a specified state is a polynomial in the unknown parameters whose order grows linearly with time. An exact upper 

bound on integrity risk is determined by maximizing the variance. Next, a recursive algorithm is derived to update the variance’s 

Taylor series expansion. This enables an approximate bound to be established by maximizing a polynomial whose order is low 

and remains fixed over time. The Taylor remainder theorem is used to introduce conservatism and provide justification that the 

approximate bound is at least as large as the exact bound. For a one-dimensional navigation problem, we show that the number 

of series terms needed to obtain a tight upper bound on integrity risk is less than 10. 

 

INTRODUCTION 

 

Safety-critical GNSS applications must ensure that the probability of the estimate error exceeding predefined bounds is 

acceptably small. This probability is referred to as integrity risk. Stochastic measurement error models play a dominant role in 

determining the estimate error probability density function. These models always have some element of uncertainty and should 

be defined so that computed integrity risk always upper bounds the true risk. In the aviation community, the concept of 

cumulative distribution function (CDF) overbounding was established as a methodology to guarantee conservative assessments 

of integrity risk if the measurement noise is independent [1], [2]. For snapshot weighted least squares estimation using 

pseudorange measurements, this assumption can be justified. However, it is becoming more common to fuse GNSS with other 

sensors (e.g., an IMU) and perform state estimation using a Kalman filter. Autonomous vehicle navigation is one application 

where multiple sensors in addition to GNSS are used to estimate the vehicle's state. When measurement errors are correlated 

over time (not uncommon in practice), the independence assumption is no longer valid and CDF overbounding cannot be used 

to establish an integrity risk bound. Without a rigorous methodology, filter designers rely on intuition to establish bounds. For 

example, it seems reasonable to suspect that the estimate error variance will increase as measurement errors become more 

correlated because the measurements contain less information. Therefore, error models with maximum correlation should be 

used to design the Kalman filter. No analysis was done to verify the hypothesis, which turns out to be wrong (we'll see an 

example later). Over the past ten years, several research papers have emerged that seek to provide a mathematically sound 

approach to integrity risk bounding in the presence of correlated errors. 

 
A theoretical approach was described in [3] and [4] for bounding the integrity risk of linear systems driven by correlated noise. 

If the input noise vectors can be linearly mapped from a spherically symmetric space, the authors showed how to transform a 

CDF overbound on any input noise component into an overbound on the state estimate error. In [5], the authors considered the 

case where measurement and process noise are Gaussian random processes whose autocorrelation functions (ACFs) are only 

known to lie between specified lower and upper bounds. The estimate error variance was expressed as a linear combination of 

all past and current ACF values and then maximized by setting the ACFs equal to their upper or lower bound based on the sign 

of the coefficient. References [3] – [5] provide batch solutions in the sense that they store the effect of all current and past input 

noise samples on the estimate error vector. This is not a limitation, but rather a consequence of not prescribing any structure 

on the input noise ACFs. The ability of these methods to provide a real-time integrity risk bound is limited to short-duration 

applications whose length is dependent on sensor sampling rates. To expand the range of applicability, structure must be 

imposed on the ACFs. 

 

This paper assumes that the noise processes are the output of linear systems driven by white noise. However, the parameters 

defining the system are only known to lie in specified intervals. Numerous articles in the robust estimation literature derive 

linear estimators that achieve specific measures of optimality in the presence of uncertainty. These approaches will not be 

considered here for two reasons. First, they are often used to design filters off-line and involve computationally intensive 

algorithms to determine the estimator gain (e.g., semi-definite programming). Second, robust linear estimators tend to be overly 

conservative and provide bounds on the covariance matrix that are very sensitive to tuning parameters chosen based on 

engineering judgement or trial and error. In [6], the Kalman filter is defined using any set of admissible parameter values chosen 

by the filter designer. Although the Kalman filter is no longer optimal in this case, new estimate error equations can be derived 

that enable one to quantify the effect of model uncertainty on the estimate error covariance matrix. Intended as an off-line 

analysis tool, the Kalman filter is run repeatedly with different values of the true parameters to assess sensitivity. Reference [7] 

considers the specific case where measurement noise is first-order Gauss Markov with an unknown time constant. In addition 

to assuming the true parameters are unknown, the authors also allow the filter parameter values to vary. The minimum upper 

bound on integrity risk is defined as a mini-max optimization problem, whose solution is determined using a bank of Kalman 

filters. 

 



An alternative approach to upper bound integrity risk is derived in this paper that represents a significant improvement over 

the methods in [6] and [7]. The paper is organized as follows. Section I introduces the problem, which is simplified to one 

measurement noise component and no process noise. The measurement noise is known to be a first order Gauss-Markov process 

with a transition parameter that is lower and upper bounded. The results obtained for the simplified problem extend naturally 

to the general case of multiple measurement and process noise components. Section II follows the approach in [6] to develop 

estimate error equations that conveniently express the covariance matrix in terms of the unknown parameter. It is shown that 

the error variance for a specified state is a polynomial in the unknown parameter whose order grows linearly with time. An 

exact upper bound on integrity risk is determined by maximizing the variance. A recursive algorithm is derived in Section III 

to update the error variance’s Taylor series expansion. This enables an approximate bound to be established by maximizing a 

polynomial whose order is low and remains fixed over time. The Taylor remainder theorem is used to introduce conservatism 

and provide justification that the approximate bound is at least as large as the exact bound. The methods are applied to a one-

dimensional GNSS navigation problem in Section IV, where it is shown that the number of terms needed to obtain a tight upper 

bound on integrity risk is low (less than 10). Concluding remarks and suggestions for future work are provided in Section V. 

 

PROBLEM STATEMENT 

 

This paper considers the simplified linear system 

 
𝒙𝑘+1 = 𝐀𝑘𝒙𝑘

𝑧𝑘 = 𝐂𝑘𝒙𝑘 + 𝜈𝑘
(1) 

 

where 𝒙𝑘 is the state vector, 𝑧𝑘 is the measurement and 𝜈𝑘 is zero-mean Gaussian measurement noise. Suppose that 𝜈𝑘 = 𝑚𝑘 +
𝑟𝑘, such that 𝑟𝑘 is zero-mean white Gaussian noise with variance 𝜎𝑟

2 and 𝑚𝑘 is a first order Gauss-Markov process with 

transition parameter 𝑎 and variance 𝜎𝑚
2 . The first order Gauss-Markov process evolves according to [6] 

 

𝑚𝑘+1 = 𝑎𝑚𝑘 + 𝜎𝑚(1 − 𝑎
2)1/2𝑤𝑘 (2) 

 

with 𝑤𝑘~𝑁(0,1). The variances 𝜎𝑟
2 and 𝜎𝑚

2  are known, but 𝑎 is only known to lie in the interval [𝑐, 𝑑]. 
 

Let 𝜀𝑦 be the error in the Kalman filter estimate of a specified state 𝑦 and let ℓ𝑦 be the maximum tolerable absolute error for 

𝜀𝑦. Determine an upper bound on the integrity risk, 𝑃(|𝜀𝑦| > ℓ𝑦) for all 𝑎 ∈ [𝑐, 𝑑]. 

 

COVARIANCE PROPAGATION WITH UNCERTAIN PARAMETERS 

 

The Kalman filter uses state augmentation to account for correlated noise. The augmented measurement and state dynamic 

models are 

 

[
𝒙𝑘+1
𝑚𝑘+1

] = [
𝐀𝑘 𝟎
𝟎 𝑎̅

] [
𝒙𝑘
𝑚𝑘
] + [

𝟎
𝜎𝑚(1 − 𝑎̅

2)1/2
] 𝑤𝑘

𝑧𝑘 = [𝐂𝑘 1] [
𝒙𝑘
𝑚𝑘
] + 𝑟𝑘

   ⇒    

[
𝒙𝑘+1
𝑚𝑘+1

] = 𝐅𝑘 [
𝒙𝑘
𝑚𝑘
] + 𝐆𝑤𝑘

𝑧𝑘 = 𝐇𝑘 [
𝒙𝑘
𝑚𝑘
] + 𝑟𝑘

(3) 

 

such that 𝑎̅ is any value in [𝑐, 𝑑] chosen by the filter designer. The Kalman filter covariance matrix accurately describes the 

estimate error statistics when 𝑎 = 𝑎̅. However, it is more common that 𝑎 ≠ 𝑎̅. In this case, new estimate error equations must 

be derived to properly determine the estimate error covariance matrix. For the linear system in Eq. (1), Appendix A shows that 

 

𝒆𝑘+1
− = 𝐅𝑘𝒆𝑘

+

𝒆𝑘
+ = (𝐈 − 𝐊𝑘𝐇𝑘)𝒆𝑘

− + 𝐊𝑘𝜈𝑘
(4) 

 

with 𝒆𝑘
𝑇 = [𝜺𝑥,𝑘

𝑇 𝑚̂𝑘] and 𝐊𝑘 being the Kalman gain matrix. Notice that 𝒆𝑘 is driven by the correlated noise sequence 𝜈𝑘. 

Therefore, 𝐸[𝒆𝑘
+𝜈𝑘] ≠ 𝟎 and the covariance of 𝒆𝑘 cannot be updated recursively. To address this difficulty, substitute 𝜈𝑘 =

𝑚𝑘 + 𝑟𝑘 into Eq. (4) and incorporate the dynamic model from Eq. (2), resulting in the augmented system 

 



[
𝒆𝑘+1
−

𝑚𝑘+1
] = [

𝐅𝑘 𝟎
𝟎 𝑎

] [
𝒆𝑘
+

𝑚𝑘
] + [

𝟎
𝜎𝑚(1 − 𝑎

2)1/2
]𝑤𝑘

[
𝒆𝑘
+

𝑚𝑘
] = [

𝐈 − 𝐊𝑘𝐇𝑘 𝐊𝑘
𝟎 1

] [
𝒆𝑘
−

𝑚𝑘
] + [

𝐊𝑘
0
] 𝑟𝑘

   ⇒    
𝝃𝑘+1
− = 𝚽𝑘𝝃𝑘

+ + 𝚪𝑤𝑘

𝝃𝑘
+ = 𝚲𝑘𝝃𝑘

− +𝚿𝑘𝑟𝑘
(5) 

 

where 𝝃𝑘
𝑇 = [𝜺𝑥,𝑘

𝑇 𝑚̂𝑘 𝑚𝑘]. This process is similar to the approach outlined in Section 7.2 of [6]. The covariance matrix of 

𝝃𝑘 propagates as 

 

𝚺𝑘+1
− = 𝚽𝑘𝚺𝑘

+𝚽𝑘
𝑇 + 𝚪𝚪𝑇

𝚺𝑘
+ = 𝚲𝑘𝚺𝑘

−𝚲𝑘
𝑇 +𝚿𝑘𝚿𝑘

𝑇𝜎𝑟
2

(6) 

 

Initialization 

 

The initial covariance matrix is formally defined as 

 

𝚺0
+ = 𝐸 {[

𝜺𝑥,0
+

𝑚̂0
+

𝑚0

] [(𝜺𝑥,0
+ )𝑇 𝑚̂0

+ 𝑚0]} (7) 

 

It is customary to set 𝑚̂0
+ = 𝐸[𝑚0]. For the first order Gauss-Markov process, 𝐸[𝑚𝑘] = 0 for all 𝑘. Thus, 𝑚̂0

+ = 0 and any 

expected values involving 𝑚̂0
+ are equal to 0. Expanding the right-hand side of Eq. (7) results in 

 

𝚺0
+ = [

𝐸[𝜺𝑥,0
+ (𝜺𝑥,0

+ )𝑇] 𝟎 𝐸[𝜺𝑥,0
+ 𝑚0]

𝟎 0 0
𝐸[𝑚0(𝜺𝑥,0

+ )𝑇] 0 𝐸[𝑚0
2]

] = [

𝐏𝑥,0
+ 𝟎 𝐸[𝜺𝑥,0

+ 𝑚0]

𝟎 0 0
𝐸[𝑚0(𝜺𝑥,0

+ )𝑇] 0 𝜎𝑚
2

] (8) 

 

During initialization, it’s possible that 𝜺𝑥,0
+  and 𝜀𝑚,0

+  are correlated. This happens for example when position states in a 

navigation Kalman filter are initialized using a least squares GPS solution. In this case, the initial estimate error 𝜺𝑥,0
+  is correlated 

with the GPS measurement errors. Notice that 𝐸[𝜺𝑥,0
+ 𝜀𝑚,0

+ ] = 𝐸[𝜺𝑥,0
+ (𝑚0 − 𝑚̂0

+)] = 𝐸[𝜺𝑥,0
+ 𝑚0]. Defining 𝐏𝑥𝑚,0

+ = 𝐸[𝜺𝑥,0
+ 𝜀𝑚,0

+ ], 
the initial covariance matrix is 

 

𝚺0
+ = [

𝐏𝑥,0
+ 𝟎 𝐏𝑥𝑚,0

+

𝟎 0 0
(𝐏𝑥𝑚,0

+ )𝑇 0 𝜎𝑚
2
] (9) 

 

𝐏𝑥,0
+  and 𝐏𝑥𝑚,0

+  are application dependent and their determination will not be considered in this paper. 

 

For Gaussian 𝜀𝑦,𝑘 (which is the case here given that 𝜈𝑘 is Gaussian and the Kalman filter is a linear estimator), an upper bound 

on the integrity risk for 𝑦 is equivalent to an upper bound on 𝜎𝑦,𝑘
2 . Matrices 𝚽𝑘  and 𝚪 are functions of 𝑎. One approach for 

maximizing 𝜎𝑦,𝑘
2  is to run multiple instantiations of Eq. (6) using different values of 𝑎. Gelb uses this philosophy in [6] to 

perform sensitivity analysis for the Kalman filter. In addition to running Eq. (6) multiple times, the authors in [7] also execute 

a bank of Kalman filters using different values of 𝑎̅. Their goal was to determine the minimum upper bound on 𝜎𝑦,𝑘
2 . These 

methods are useful for performing off-line analysis. As a method for real-time bounding of 𝜎𝑦,𝑘
2 , they are only suitable for 

problems where the unknown parameters take on discrete values in the uncertainty interval. For continuously varying 

parameters, the brute force approach only makes sense if the number of parameters is low and the width of the uncertainty 

intervals is very small. There are few if any navigation applications satisfying these criteria. Multiple satellites and sensors are 

commonly used for state estimation, each having at least one uncertain error model parameter. In addition, measurement errors 

usually have a continuous distribution and do not cluster into distinct groups. Thus, parameter uncertainty is almost always 

continuous. The remainder of the paper focuses on addressing these practical difficulties and developing a new method to 

efficiently upper bound 𝜎𝑦,𝑘
2  that’s applicable to multi-sensor navigation problems with continuously varying parameters. 

 



EXACT SOLUTION FOR VARIANCE MAXIMIZATION 

 

The estimate error covariance matrix is a polynomial function of 𝑎, which is most easily seen by propagating Eq. (4). Let 𝐒𝑘 =
𝐈 − 𝐊𝑘𝐇𝑘. Through successive substitution, 𝒆𝑘 progresses as 

 

𝒆1
− = 𝐅0𝒆0

+

𝒆1
+ = 𝐒1𝐅0𝒆0

+ + 𝐊1𝜈1

𝒆2
− = 𝐅1(𝐒1𝐅0𝒆0

+ + 𝐊1𝜈1)

𝒆2
+ = 𝐒2(𝐅1𝐒1𝐅0𝒆0

+ + 𝐅1𝐊1𝜈1) + 𝐊2𝜈2

⋮

(10) 

 

Focusing on 𝒆𝑘
+, the general expression is 

 

𝒆𝑘
+ = 𝐁0𝒆0

− + 𝒃1𝜈1 + 𝒃2𝜈2 +⋯+ 𝒃𝑘𝜈𝑘

= 𝐁0𝒆0
− + 𝐁1:𝑘𝝂1:𝑘

(11) 

 

For 𝑘 = 2, Eq. (10) shows that 𝐁0 = 𝐒2𝐅1𝐒1𝐅0, 𝐁1:2 = [𝐒2𝐅1𝐊1 𝐊2] and 𝝂1:2
𝑇 = [𝜈1 𝜈2]. Figure 1 summarizes how 𝐁0 and 

𝐁1:𝑘 are created in parallel with the Kalman filter covariance propagation.  

 

 
Figure 1. Pseudocode to generate matrices that define the exact polynomial coefficients. 

 

The variance of 𝑦𝑘 = 𝜶𝑇𝒆𝑘 is given by 

 

𝜎𝑦,𝑘
2 = 𝜶𝑇𝐁0𝐏0

+𝐁0
𝑇𝜶 + 𝜶𝑇𝐁1:𝑘𝐸[𝝂1:𝑘𝝂1:𝑘

𝑇 ]𝐁1:𝑘
𝑇 𝜶 (12) 

 



Using the same approach to defining 𝚺0
+, the initial covariance matrix 𝐏0

+ = 𝐸[𝒆0
+(𝒆0

+)𝑇] = [
𝐏𝑥,0
+ 𝟎

𝟎 0
]. Recalling that 𝜈𝑘 =

𝑚𝑘 + 𝑟𝑘 and using the fact that 𝐸[𝑚𝑖𝑚𝑗] = 𝜎𝑚
2 𝑎|𝑖−𝑗| and 𝐸[𝑟𝑖𝑟𝑗] = 𝜎𝑟

2𝛿(𝑖 − 𝑗),  

 

𝐸[𝝂1:𝑘𝝂1:𝑘
𝑇 ] = (𝜎𝑟

2 + 𝜎𝑚
2 )𝐈 + 𝜎𝑚

2

[
 
 
 
 
0 𝑎 𝑎2 ⋯ 𝑎𝑘−1

𝑎 0 𝑎 ⋱ ⋮
𝑎2 𝑎 0 ⋱ 𝑎2

⋮ ⋱ ⋱ ⋱ 𝑎
𝑎𝑘−1 ⋯ 𝑎2 𝑎 0 ]

 
 
 
 

(13) 

 

Substituting Eq. (13) into Eq. (12) and reordering results in the polynomial 

 

𝜎𝑦,𝑘
2 = 𝜶𝑇[𝐁0𝐏0

+𝐁0
𝑇 + (𝜎𝑟

2 + 𝜎𝑚
2 )𝐁1:𝑘𝐁1:𝑘

𝑇 ]𝜶 + 2𝜎𝑚
2 ∑sum[diag(𝐁1:𝑘

𝑇 𝜶𝜶𝑇𝐁1:𝑘 , 𝑖)]

𝑘−1

𝑖=1

𝑎𝑖 (14) 

 

where the notation sum[diag(𝐀, 𝑖)] denotes the sum of elements along the 𝑖th super-diagonal of 𝐀. The maximum value of 

𝜎𝑦,𝑘
2  occurs at an endpoint of the feasible interval or at a critical point where 𝑑𝜎𝑦,𝑘

2 /𝑑𝑎 = 0. 

 

This process provides an exact solution to the integrity risk bounding problem, but has two deficiencies: it requires storage of 

the matrix 𝐌 = 𝐁1:𝑘
𝑇 𝜶𝜶𝑇𝐁1:𝑘 that grows with each new measurement, and it requires finding all the roots of a polynomial 

whose order increases without bound. As a specific example, consider the scenario of running a Kalman filter with a 100 Hz 

sensor. After 5 minutes of filtering, 𝐁1:𝑘 will have 30,000 columns and 𝐌 will have 9×108 elements. Assuming double 

precision (8 bytes per matrix element), 𝐌 would occupy 7.2 gigabytes of memory. Determining the maximum value of 𝜎𝑦,𝑘
2  

requires finding all roots of a 29,999-order polynomial. This example illustrates that the exact solution only makes sense for 

short duration applications with a maximum time dependent on sensor sampling rates. 

 

APPROXIMATE VARIANCE BOUND USING TAYLOR SERIES 

  
This section derives an approximate integrity risk bound by expanding 𝜎𝑦,𝑘

2  in a Taylor series. While it’s almost trivial to form 

the series once the polynomial coefficients have been determined, we seek a better approach that does not require storing 𝐌. 

 

To begin, notice from Eq. (5) that 𝚽𝑘  is linear in 𝑎 and 𝚪𝚪𝑇  is quadratic in 𝑎. Successive derivatives of 𝚽𝑘  and 𝚪𝚪𝑇  are 

 

𝑑𝑖𝚽𝑘

𝑑𝑎𝑖
= {

[
𝟎 𝟎
𝟎 1

]    if  𝑖 = 1

[
𝟎 𝟎
𝟎 0

]    if  𝑖 ≥ 1

(15) 

 

and 

 

𝑑𝑖(𝚪𝚪𝑇)

𝑑𝑎𝑖
=

{
  
 

  
 [
𝟎 𝟎
𝟎 −2𝜎𝑚

2 𝑎
]    if  𝑖 = 1

[
𝟎 𝟎
𝟎 −2𝜎𝑚

2 ]    if  𝑖 = 2

[
𝟎 𝟎
𝟎 0

]    if  𝑖 ≥ 2

(16) 

 

The covariance matrix after a time update was shown in Eq. (6) to be 𝚺𝑘+1
− = 𝚽𝑘𝚺𝑘

+𝚽𝑘
𝑇 + 𝚪𝚪𝑇 . Let 𝒙(𝑖) be the 𝑖th derivative 

of 𝒙 with respect to 𝑎. Then for 𝑖 = 1 

 

(𝚺𝑘+1
− )(1) = (𝚽𝑘𝚺𝑘

+)(𝚽𝑘
𝑇)(1) + [𝚽𝑘(𝚺𝑘

+)(1) + (𝚽𝑘)
(1)𝚺𝑘

+]𝚽𝑘
𝑇 + (𝚪𝚪𝑇)(1) (17) 

 



With 𝑖 = 2 

 

(𝚺𝑘+1
− )(2) = 2[𝚽𝑘(𝚺𝑘

+)(1) + (𝚽𝑘)
(1)𝚺𝑘

+](𝚽𝑘
𝑇)(1)

+ [𝚽𝑘(𝚺𝑘
+)(2) + 2(𝚽𝑘)

(1)(𝚺𝑘
+)(1)]𝚽𝑘

𝑇 + (𝚪𝚪𝑇)(2)
(18) 

 

Continuing with 𝑖 = 3 

 

(𝚺𝑘+1
− )(3) = 3[𝚽𝑘(𝚺𝑘

+)(2) + 2(𝚽𝑘)
(1)(𝚺𝑘

+)(1)](𝚽𝑘
𝑇)(1)

+ [𝚽𝑘(𝚺𝑘
+)(3) + 3(𝚽𝑘)

(1)(𝚺𝑘
+)(2)]𝚽𝑘

𝑇
(19) 

 

In general, the 𝑖th derivative is 

 

(𝚺𝑘+1
− )(𝑖) = 𝑖[𝚽𝑘(𝚺𝑘

+)(𝑖−1) + (𝑖 − 1)(𝚽𝑘)
(1)(𝚺𝑘

+)(𝑖−2)](𝚽𝑘
𝑇)(1)

+ [𝚽𝑘(𝚺𝑘
+)(𝑖) + 𝑛(𝚽𝑘)

(1)(𝚺𝑘
+)(𝑖−1)]𝚽𝑘

𝑇

+ (𝚪𝚪𝑇)(1)𝛿(𝑖 − 1) + (𝚪𝚪𝑇)(2)𝛿(𝑖 − 2)

(20) 

 

where 𝛿(𝑥) is the Kronecker delta. The covariance matrix after a measurement update is 𝚺𝑘
+ = 𝚲𝑘𝚺𝑘

−𝚲𝑘
𝑇 +𝚿𝑘𝚿𝑘

𝑇𝜎𝑟
2. Given 

that 𝚲𝑘 and 𝚿𝑘 are not functions of 𝑎, the 𝑖th derivative of 𝚺𝑘
+ is 

 

(𝚺𝑘
+)(𝑖) = 𝚲𝑘(𝚺𝑘

−)(𝑖)𝚲𝑘
𝑇 (21) 

 

The 𝑖th derivative term in the Taylor series is divided by 𝑖!. The factorial can be absorbed in the series coefficients by making 

the definition 𝐃𝑖,𝑘 = (1/𝑖!)(𝚺𝑘)
(𝑖). Multiplying both sides of Eqs. (20) and (21) by 1/𝑖! and simplifying yields 

 

𝐃𝑖,𝑘+1
− = [𝚽𝑘𝐃𝑖−1,𝑘

+ + (𝚽𝑘)
(1)𝐃𝑖−2,𝑘

+ ](𝚽𝑘
𝑇)(1) + [𝚽𝑘𝐃𝑖,𝑘

+ + (𝚽𝑘)
(1)𝐃𝑖−1,𝑘

+ ]𝚽𝑘
𝑇

+
1

𝑖!
[(𝚪𝚪𝑇)(1)𝛿(𝑖 − 1) + (𝚪𝚪𝑇)(2)𝛿(𝑖 − 2)]

𝐃𝑖,𝑘
+ = 𝚲𝑘𝐃𝑖,𝑘

− 𝚲𝑘
𝑇

(22) 

 

Given an expansion point 𝑎∗, the 𝑁th order Taylor series approximation of 𝚺𝑘 is 

 

𝚺𝑘 ≈ 𝚺𝑘
∗ +∑𝐃𝑖,𝑘

∗

𝑁

𝑖=1

(𝑎 − 𝑎∗)𝑖 (23) 

 

If 𝑎∗ = 𝑎̅, then 𝚺𝑘
∗  is equivalent to the Kalman filter covariance matrix. Figure 2 summarizes the algorithm for Taylor series 

propagation. 

 

For the specified state 𝑦𝑘 = 𝜷𝑇𝝃𝑘, the Taylor polynomial for 𝜎𝑦,𝑘
2  is 

 

𝑠𝑦,𝑘
2 ≈ 𝜷𝑇𝚺𝑘

∗𝜷 +∑𝜷𝑇𝐃𝑛,𝑘
∗ 𝜷

𝑁

𝑛=1

(𝑎 − 𝑎∗)𝑛 (24) 

 

Equation (24) is a polynomial in the unknown variable 𝛿𝑎 = 𝑎 − 𝑎∗. With 𝑎 ∈ [𝑐, 𝑑], the feasible region of 𝛿𝑎 is 

[𝑐 − 𝑎∗, 𝑑 − 𝑎∗]. The maximum value of 𝑠𝑦,𝑘
2  occurs at an endpoint of the feasible region or at a critical point where 

𝑑𝑠𝑦,𝑘
2 /𝑑(𝛿𝑎) = 0. 



 

Figure 2. Pseudocode to generate matrices that define the Taylor polynomial coefficients. 

 

Comparing Eq. (24) to the expression for 𝜎𝑦,𝑘
2  (reproduced below) highlights the contribution in this paper. 

 

𝜎𝑦,𝑘
2 = 𝜶𝑇[𝐁0𝐏0

+𝐁0
𝑇 + (𝜎𝑟

2 + 𝜎𝑚
2 )𝐁1:𝑘𝐁1:𝑘

𝑇 ]𝜶 + 2𝜎𝑚
2 ∑sum[diag(𝐁1:𝑘

𝑇 𝜶𝜶𝑇𝐁1:𝑘 , 𝑖)]

𝑘−1

𝑖=1

𝑎𝑖 (15) 

 

The most notable difference between the two expressions is how polynomial coefficients are computed. For the exact 

expression, there is no way to take advantage of previous calculations. Thus, the coefficients must be recomputed from scratch 

at every time index 𝑘. The matrix 𝐁1:𝑘 (which acquires a new column as 𝑘 increases) keeps track of the entire measurement 

sequence’s effect on the estimate error covariance matrix. Using a Taylor series approximation allows the polynomial 

coefficients to be updated recursively and involves fixed size matrices. Loosely speaking, 𝐁1:𝑘 is replaced by 𝐃𝑛,𝑘
∗ . The other 

distinct difference between the two representations is the order of the polynomial, which dictates how quickly variance 

maximization can take place. The critical points are determined by finding all roots of the variance polynomial. Because the 

order of the exact polynomial grows linearly without bound, it takes progressively longer to determine critical points. The 

Taylor polynomial has a fixed order that is likely much lower than the order of the exact expression, enabling critical points to 

be computed quickly regardless of how long the Kalman filter has been running. The algorithms developed in this paper make 

it possible to compute a real-time upper bound on integrity risk for a wide range of navigation applications, something that has 

remained elusive until now. 

 



TAYLOR REMAINDER THEOREM 
 

An open question is how to determine the order of the Taylor series, 𝑛. The Taylor remainder theorem is often used to set 𝑛. 

For an arbitrary function 𝑓(𝑎), the integral form of the remainder theorem states that [8] 

 

𝑅𝑛,𝑎∗(𝑎) = 𝑓(𝑎) − 𝑇𝑛(𝑎) = ∫
𝑓(𝑛+1)(𝑢)

𝑛!

𝑎

𝑎∗

(𝑎 − 𝑢)𝑛𝑑𝑢 (25) 

 

where 𝑎∗ is the expansion point and 𝑇𝑛(𝑎) is the 𝑛th order Taylor polynomial for 𝑓(𝑎). 
 

In this paper, 𝑓(𝑎) is the estimate error variance polynomial. The last section showed that it was not practical to keep track of 

𝑓(𝑎), and instead 𝑓(𝑎) is known only by its Taylor series approximation. This presents a unique problem, because clearly the 

Taylor series cannot be used to quantify the error in the Taylor series (this would result in 𝑅𝑛,𝑎∗(𝑎) = 0, which is obviously 

not correct). One solution is to use an 𝑁th order Taylor series to quantify the error in the 𝑛th order expansion, where 𝑛 < 𝑁. 

For this approach to make sense, there must be good separation between 𝑛 and 𝑁 to ensure that 𝑓(𝑛+1)(𝑢) is adequately 

described. 

 

Additional margin is built in if the remainder is computed for an 𝑚th order Taylor series such that 𝑚 < 𝑛. As a specific 

example, suppose that a 15th order Taylor series is formed and the 10th order polynomial is used to maximize the variance (i.e., 

𝑁 = 15 and 𝑛 = 10). The 11th order derivative is needed to quantify the error in the Taylor approximation. A 4th order 

polynomial may not be sufficient to describe the 11th derivative of 𝑓(𝑎). Instead, we can assume that 𝑚 = 5, resulting in a 9th 

order approximation for the 6th derivative. A higher order expansion is preferable, and any residual error in approximating the 

derivative is likely going to be absorbed in the margin introduced from computing 𝑅5,𝑎∗(𝑎) instead of 𝑅10,𝑎∗(𝑎). See Appendix 

B for a closed form expression for 𝑅𝑛,𝑎∗(𝑎). 
 

The remainder theorem is used in this paper to introduce conservatism and provide justification that the approximate variance 

bound is larger than the exact bound. Using 𝑎̃ to denote the parameter value producing the maximum variance, the approximate 

bound is modified according to 

 

𝑠̅𝑦,𝑘
2 = 𝑠𝑦,𝑘

2 (𝑎̃) + |𝑅𝑚,𝑎∗(𝑎̃)| (26) 
 

Rather than defining 𝑁 to achieve a specified accuracy, 𝑁 is chosen to ensure that the remainder term is sufficiently resolved 

and that 𝑚 is large enough to reduce conservatism in 𝑠̅𝑦,𝑘
2 . The steps involved in forming 𝑠̅𝑦,𝑘

2  are summarized in Figure 3. 

 

 
Figure 3. Algorithm outline for computing conservative upper bound on estimate error variance. 

 

The remainder in Eq. (26) assumes that 𝑎̃ is the true location of the maximum variance. In general, this is not the case because 

maximization is done based on a Taylor approximation. Figure 4 shows that if margin is not included when computing the 

remainder, it is possible that 𝑠̅𝑦,𝑘
2  will be smaller than the true maximum variance.  

 



 
Figure 4. Maximizing the variance using the true vs. approximate function. 

 

Figure 4 is a conceptual illustration, and it is expected that the real curves will be nearly coincident. While it seems reasonable 

that the conservatism introduced from computing the remainder for a lower order approximation will account for the situation 

in Figure 4, there is no guarantee. Ideally, the maximum remainder should be used in Eq. (27), which would ensure that 𝑠̅𝑦,𝑘
2  is 

a true upper bound. This is a topic for future work. 

 

ILLUSTRATIVE EXAMPLE 

 

The methods developed earlier are applied to the one-dimensional navigation problem in Figure 5.  

 

 
Figure 5. One-dimensional navigation problem. 

 

A Kalman filter is used to estimate a vehicle’s position 𝑝 and speed 𝑣 along the x-axis using measurements of position from a 

ranging beacon at the origin. The beacon measurement interval is Δ𝑡 = 1 sec and the vehicle is known to be traveling at constant 

speed. 

 

With 𝒙𝑘
𝑇 = [𝑝𝑘 𝑣𝑘], the measurement and state dynamic models are 

 

𝒙𝑘+1 = [
1 Δ𝑡
0 1

] 𝒙𝑘

𝑧𝑘 = [1 0]𝒙𝑘 +𝑚𝑘 + 𝑟𝑘

   ⇒    
𝒙𝑘+1 = 𝐀𝒙𝑘

𝑧𝑘 = 𝐂𝒙𝑘 +𝑚𝑘 + 𝑟𝑘
(27) 

 

such that 𝑚𝑘 is a first order Gauss-Markov process with variance 𝜎𝑚
2  and 𝑟𝑘 is zero-mean white Gaussian noise with variance 

𝜎𝑟
2. 

 



Throughout the paper, the dynamic model for 𝑚𝑘 was written as 𝑚𝑘+1 = 𝑎𝑚𝑘 + 𝜎𝑚(1 − 𝑎
2)1 2⁄  𝑤𝑘. For the first order Gauss-

Markov process, it is well known that 𝑎 = exp(−Δ𝑡 𝜏⁄ ), where 𝜏 is the time constant of the process [6]. This substitution will 

be made because it’s easier to visualize results using 𝜏 and because it’s more common to specify uncertainty on 𝜏 rather than 

𝑎. Table 1 summarizes the error model parameters. 

 

Table 1. Ranging beacon error model parameters. 

White noise standard deviation (𝜎𝑟) 
 

0.5 meters 

Gauss-Markov standard deviation (𝜎𝑚) 
 

1 meter 

Gauss-Markov time constant (𝜏) 
 

Between 50 and 300 seconds 

 

The Kalman filter is a 3-state filter that uses state augmentation to estimate 𝑚𝑘 in addition to 𝑝𝑘 and 𝑣𝑘. The state-augmented 

models are 

 

[
𝒙𝑘+1
𝑚𝑘+1

] = [
𝐀 𝟎
𝟎 𝑒−Δ𝑡 𝜏̅⁄

] [
𝒙𝑘
𝑚𝑘
] + [

0

𝜎𝑚(1 − 𝑒
−2Δ𝑡 𝜏̅⁄ )

1 2⁄ ] 𝑤𝑘

𝑧𝑘 = [𝐂 1] [
𝒙𝑘
𝑚𝑘
] + 𝑟𝑘

(28) 

 

and the initial covariance matrix is 𝐏0
+ = diag[(10 m)2, (1m s⁄ )2, 𝜎𝑚

2 ]. Any value 𝜏̅ ∈ [50,300] can be used to define the filter. 

For this example, 𝜏̅ = 300 seconds is used in accordance with the notion that assuming maximum correlation should produce 

an upper bound on the estimate error variance. This hypothesis is tested by propagating Eq. (6) using multiple time constants 

over the admissible range. The results are shown in Figure 6 for the position state. 

 

 
 

Figure 6. Position estimate error variance as a function of true time constant, 𝜏. 
 

The black line is the estimate error variance predicted by the Kalman filter. All other lines depict the true estimate error variance 

when the beacon measurement noise has a time constant 𝜏, but the filter assumes the time constant is 300 seconds. The most 

striking result is that the KF variance does not always upper bound the true variance, even though it is based on an error model 



assuming maximum correlation. Another interesting observation is that the worst-case behavior changes over time. At an 

elapsed time of 25 seconds, the position estimate error variance is largest when the beacon measurement noise has the least 

amount of time correlation (𝜏 = 50 seconds). The complete opposite is true after 250 seconds of filtering; the maximum 

variance occurs when measurement noise samples are highly correlated. 

 

Figure 7 shows the results produced by the exact bounding algorithm. As expected, the variance bound is an upper envelope 

on the set of covariance propagations obtained using all time constants in the admissible interval. The time constant producing 

the variance bound transitions from the lower limit of 50 seconds to the upper limit of 300 seconds, which is consistent with 

the results in Figure 6. Notice the drop from 300 seconds to 50 seconds that occurs at the beginning of Figure 7b. This is due 

to a sharp change in the variance polynomial’s behavior. Figure 8 provides a side-by-side comparison after the third and fourth 

measurements. 

 

 
 

 
Figure 7. Output from exact bounding algorithm: (a) variance bound as the upper envelope of an ensemble of covariance 

propagations and (b) value of 𝜏 producing the maximum variance. 

 

 
 



 
Figure 8. Variance polynomial as a function of 𝜏 after (a) three beacon measurements and (b) four beacon measurements. 

 

There are many observations that beg for a physical explanation. Why does the variance polynomial suddenly change behavior 

after 3 measurements? What is significant about an elapsed time of 50 seconds, at which point the worst-case time constant in 

Figure 7b begins to rise? Is it related to the lower limit on 𝜏? What controls how quickly the time constant rises in Figure 7b? 

The stark reality is that there likely is no physical explanation for this behavior. We simply must accept that Kalman filters do 

not behave intuitively in the presence of measurement error model uncertainty. There are no simple rules to guide the design 

of a Kalman filter that guarantees an upper bound on integrity risk. The algorithms developed in this paper must therefore be 

used to ensure navigation system integrity. Thus, it is critical that they are efficient and able to operate in real-time. 

 

The behavior of the approximate bounding method is observed under the conditions in Table 2.  

  

Table 2. Error model parameters. 

Taylor polynomial order (𝑁) 
 

15 

Polynomial order for variance maximization (𝑛) 
 

5 through 8 

Polynomial order for remainder calculation (𝑚) 
 

5 

Expansion point (𝑎∗) 

 
1

2
(𝑒−

Δ𝑡
50 + 𝑒−

Δ𝑡
300) 

 

The expansion point is chosen to be the midpoint of the uncertainty interval for 𝑎 = exp(−Δ𝑡 𝜏⁄ ). Figure 9 quantifies the 

approximate bound as a percent increase in the exact bound. 

 

 
Figure 9. Approximate bound as a percent increase in the exact bound. 

 

 



The percent increase is positive for all cases considered, indicating that the approximate bound is conservative. Figure 9 also 

shows that the bound is very tight and is at most 0.5% larger than the exact bound. The fact that these results have been obtained 

using low order polynomials for variance maximization is very encouraging. It strongly suggests that the algorithms developed 

in this paper can provide a real-time, tight upper bound on integrity risk for Kalman filters with uncertain measurement error 

models. 

 

CONCLUSION 
 

In this paper, a new approach was presented to upper bound integrity risk for the Kalman filter when the measurement noise 

autocorrelation function has parametric uncertainty. Drawing on existing literature, an augmented state model was first 

developed to express the true estimate error covariance matrix in terms of the uncertain parameter. It was shown that the error 

variance for a specified state is a polynomial function of the parameter whose order grows without bound. A recursive algorithm 

was derived to propagate the Taylor series coefficients of the variance polynomial. An upper bound on integrity risk was then 

defined in terms of the maximum value of the Taylor polynomial. Using the Taylor remainder theorem, a methodology was 

established to introduce conservatism in the approximate bound. For a one-dimensional estimation problem, it was shown that 

the algorithms derived in this paper provide a tight upper bound on integrity risk and require less than 10 terms in the Taylor 

series expansion. The approach described herein represents a significant improvement over existing methods and for the first 

time provides the ability to compute a tight upper bound on integrity risk for the Kalman filter in real-time. Future topics include 

applying this new approach to representative multi-sensor navigation applications. Additional work is also warranted in 

determining the maximum value of the Taylor remainder, which would further substantiate that the approximate bound is at 

least as large as the exact bound. 
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APPENDIX A 

 

For the state-augmented system in Eq. (3), the Kalman filter produces the following estimates of [
𝒙𝑘
𝑚𝑘
] 

 

[
𝒙𝑘+1
−

𝑚̂𝑘+1
− ] = [

𝐀𝑘 𝟎
𝟎 𝑎̅

] [
𝒙𝑘
+

𝑚̂𝑘
+] (A1) 

 

[
𝒙𝑘
+

𝑚̂𝑘
+] = [

𝒙𝑘
−

𝑚̂𝑘
−] + 𝐊𝑘 (𝑧𝑘 − [𝐂𝑘 1] [

𝒙𝑘
−

𝑚̂𝑘
−]) (A2) 



The estimate error vector after a time update (Eq. (A1)) is usually derived by first subtracting [
𝒙𝑘+1
𝑚𝑘+1

] from both sides and 

incorporating the dynamic model on the right-hand side to align the time indices. That is 

 

[
𝒙𝑘+1
−

𝑚̂𝑘+1
− ] − [

𝒙𝑘+1
𝑚𝑘+1

] = [
𝐀𝑘 𝟎
𝟎 𝑎̅

] [
𝒙𝑘
+

𝑚̂𝑘
+] − {[

𝐀𝑘 𝟎
𝟎 𝑎

] [
𝒙𝑘
𝑚𝑘
] + [

𝟎
𝜎𝑚(1 − 𝑎

2)1/2
] 𝑤𝑘} (A3) 

 

For the augmented state 𝑚𝑘, Eq. (A3) indicates that 

 

𝜀𝑚,𝑘+1
− = 𝑎̅𝑚̂𝑘

+ − 𝑎𝑚𝑘 − 𝜎𝑚(1 − 𝑎
2)1/2𝑤𝑘 (A4) 

 

Equation (A4) is a proper update equation only when 𝑎 = 𝑎̅. Because this paper is interested in 𝑎 ≠ 𝑎̅, a different approach is 

adopted. Subtract [
𝒙𝑘+1
0
] from both sides of the time update and incorporate the dynamic model for 𝒙𝑘 from Eq. (1) on the 

right-hand side 

 

[
𝒙𝑘+1
−

𝑚̂𝑘+1
− ] − [

𝒙𝑘+1
0
] = [

𝐀𝑘 𝟎
𝟎 𝑎̅

] [
𝒙𝑘
+

𝑚̂𝑘
+] − [

𝐀𝑘 𝟎
𝟎 0

] [
𝒙𝑘
0
] (A5) 

 

Defining 𝒆𝑘 = [
𝒙𝑘 − 𝒙𝑘
𝑚̂𝑘

] = [
𝜺𝑥,𝑘
𝑚̂𝑘

], Eq. (A5) takes the form 

 

𝒆𝑘+1
− = 𝐅𝑘𝒆𝑘

+ (A6) 
 

Propagation of 𝒆𝑘 through the measurement update (Eq. (A2)) is obtained by substituting 𝑧𝑘 = 𝐂𝑘𝒙𝑘 + 𝜈𝑘  and subtracting [
𝒙𝑘
0
] 

from both sides 

 

[
𝒙𝑘
+

𝑚̂𝑘
+] − [

𝒙𝑘
0
] = [

𝒙𝑘
−

𝑚̂𝑘
−] − [

𝒙𝑘
0
] + 𝐊𝑘 ([𝐂𝑘 1] [

𝒙𝑘
0
] + 𝜈𝑘 − [𝐂𝑘 1] [

𝒙𝑘
−

𝑚̂𝑘
−]) (A7) 

 

Recognizing that [𝐂𝑘 1] = 𝐇𝑘, Eq. (A7) simplifies to 

 

𝒆𝑘
+ = (𝐈 − 𝐊𝑘𝐇𝑘)𝒆𝑘

− + 𝐊𝑘𝜈𝑘 (A8) 
 

Considering Eqs. (A6) and (A8) together, 𝒆𝑘 propagates through the Kalman filter according to 

 

𝒆𝑘+1
− = 𝐅𝑘𝒆𝑘

+

𝒆𝑘
+ = (𝐈 − 𝐊𝑘𝐇𝑘)𝒆𝑘

− + 𝐊𝑘𝜈𝑘
(A9) 

 

APPENDIX B 
 

This appendix provides a closed form expression for the Taylor remainder of an 𝑚th expansion of the variance polynomial. 

The variance polynomial is approximated by its 𝑁th order (𝑁 > 𝑚) Taylor series expanded about 𝑎∗, denoted as 𝑇𝑁,𝑎∗(𝑎). To 

compute the remainder, the (𝑚 + 1)st derivative of 𝑇𝑁,𝑎∗(𝑎) is needed. Let 𝑙 = 𝑁 −𝑚 − 1. Then the (𝑚 + 1)st derivative is 

the 𝑙th order polynomial 

 

𝑇𝑁,𝑎∗
(𝑚+1)(𝑎) = 𝑐𝑙(𝑎 − 𝑎

∗)𝑙 + 𝑐𝑙−1(𝑎 − 𝑎
∗)𝑙−1 +⋯+ 𝑐0 (B1) 

 

and the remainder is given by 

 

𝑅𝑚,𝑎∗(𝑎) =
1

𝑚!
∫[𝑐𝑙(𝑢 − 𝑎

∗)𝑙 + 𝑐𝑙−1(𝑢 − 𝑎
∗)𝑙−1 +⋯+ 𝑐0](𝑎 − 𝑢)

𝑚𝑑𝑢

𝑎

𝑎∗

(B2) 



Each term in the integral has the general form 

 

𝐼 = ∫(𝑢 − 𝑎∗)𝑙

𝑎

𝑎∗

(𝑎 − 𝑢)𝑚𝑑𝑢 (B3) 

 

Let 𝑢 = 𝜉 + 𝑎∗. Then Eq. (B3) becomes 

 

𝐼𝑙 = ∫ 𝜉𝑙[(𝑎 − 𝑎∗) − 𝜉]𝑚𝑑𝜉

𝑎−𝑎∗

0

(B4) 

 

From entry 8 on page 68 in [9], we have the integral 

 

∫𝑥𝑙(𝑎 + 𝑏𝑥𝑘)𝑚𝑑𝑥 =
𝑏𝑚

𝑘
∑

(−1)𝑖𝑚! 𝐽! (𝑥𝑘 +
𝑎
𝑏
)
𝑚−𝑖

𝑥𝑘(𝐽+𝑖+1)

(𝑚 − 𝑖)! (𝐽 + 𝑖 + 1)!
   ,   𝐽 =

𝑚

𝑖=0

𝑙 + 1

𝑘
− 1 (B5) 

 

Comparing Eqs. (B4) and (B5) results in the following correspondences: 𝑎 = (𝑎 − 𝑎∗), 𝑏 = −1, 𝑘 = 1 and 𝑥 = 𝜉. Then 

 

𝐼𝑙(𝜉) = (−1)
𝑚∑

(−1)𝑖𝑚! 𝑙! [𝜉 − (𝑎 − 𝑎∗)]𝑚−𝑖𝜉(𝑙+𝑖+1)

(𝑚 − 𝑖)! (𝑙 + 𝑖 + 1)!

𝑚

𝑖=0

(B6) 

 

From this expression, the remainder is given in closed form as 

 

𝑅𝑚,𝑎∗(𝑎) =
(−1)𝑚

𝑚!
[𝑐𝑙𝐼𝑙(𝜉)|0

𝑎−𝑎∗ + 𝑐𝑙−1𝐼𝑙−1(𝜉)|0
𝑎−𝑎∗ +⋯+ 𝑐0𝐼0(𝜉)|0

𝑎−𝑎∗] (B7) 

 

 

  


