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ABSTRACT  

 

Future dual-frequency, multi-constellation advanced receiver autonomous integrity monitoring (ARAIM) is expected to bring 

significant navigation performance improvement to civil aviation.  The ARAIM user algorithm, which includes fault detection and 

exclusion (FDE) functions, is autonomously executed at the airborne receiver.  To achieve specific integrity and continuity 

requirements, the real-time FDE process requires assertions on the signal-in-space (SIS) performance, and this information is 

carried in the integrity support message (ISM).  This paper describes the design, analysis, and evaluation of the offline ground 

monitor, which aims at validating the ISM broadcast to users.  To achieve this, GNSS satellite orbits and clocks must be estimated.  

There are many sophisticated orbit determination processes such as the one used by the international GNSS service (IGS), whose 

performance is specified in terms of accuracy.  In contrast, the proposed offline ARAIM architecture is mainly intended for safety-

critical aviation applications, in which integrity is of the primary concern.  This monitor employs a straightforward approach to 

estimate satellite orbit/clock, which aims at facilitating ISM generation and validation.  It takes advantage of the existing satellite 

based augmentation system (SBAS) ground infrastructure.  In this paper, a worldwide network of sparsely distributed reference 

stations is considered, and parametric satellite orbital models are employed in the estimators, whose derivation and implementation 

are described step by step.  Two separate analyses, covariance analysis and model fidelity evaluation, are carried out to 

respectively assess the impact of measurement errors and of residual model errors on the monitor’s estimated orbit/clock.  We have 

investigated different orbit models (GPS legacy versus CNAV orbital model) and reference station clock models (quadratic model 

versus no model).  The results indicate the standard deviation of the monitor’s orbit/clock estimation error is on the order of 30 cm, 

which is adequate for SIS performance validation.  

 

INTRODUCTION 

 

The main challenge when using global navigation satellite systems (GNSS) in safety-critical civil aviation applications is to 

mitigate the integrity threats caused by measurement faults, including satellite and constellation failures [1].  For the single 

constellation case, using the global positioning system (GPS) only, fault detection (FD) can be implemented using receiver 

autonomous integrity monitoring (RAIM).  RAIM has been implemented since the mid-1990s as a backup navigation tool to 

support aircraft en-route flight using GPS only [2-4].  The core principle of RAIM is to exploit redundant measurements to achieve 

self-contained FD at the user receiver [5].  

 

After decades of worldwide development, two key elements have been foreseen in future GNSS.  First, nominal measurement 

errors will be significantly reduced using dual-frequency signals, which will remove the largest source of error—ionospheric delay.  

Second, four constellations including GPS (U.S.), GLONASS (Russia), Galileo (European Union) and Beidou (China) are 

expected to finish their modernizations and/or full deployments in the near term [6], which will provide many more satellites in 

view than we have available today using GPS alone.  These revolutionary developments in GNSS, together with important 

advancements in the RAIM concept, will open the possibility to independently support aircraft navigation using GNSS, from en-

route flight towards final approach to landing, with minimal investment in ground infrastructure.  Therefore, considerable effort 

has recently been expended, especially in the European Union and in the United States [7, 8], to develop new dual-frequency, 

multi-constellation advanced RAIM (ARAIM) fault detection and exclusion (FDE) methods.   

 

The performance of RAIM/ARAIM is measured either in terms of integrity risk or in terms of protection level (PL).  It is highly 

dependent on the assumed GNSS nominal signal-in-space (SIS) error models and on the a-priori fault probabilities.  In current 

conventional RAIM implementations, this information is defined by the GPS constellation service provider (CSP) commitments, 

and is hardcoded in the receiver.  As an evolution of RAIM, ARAIM will (a) additionally use constellations that are not as mature 

as GPS, and (b) seek to provide assured navigation for vertical guidance.  To provide flexibility in the evolution of RAIM to multi-

constellation ARAIM, and to minimize invasiveness into the avionics, ARAIM will include an integrity support message (ISM).  

The ISM will carry information defining SIS error and fault statistics, including nominal measurement biases, standard deviations 

of the ephemeris and clock errors, prior probabilities of satellite faults, and prior probabilities of constellation-wide faults [7].  The 

ISM parameters will be generated and validated at the ground, and updated to users as needed.  Various methods of ISM 

dissemination are presently being considered, including on-aircraft databases and data broadcast through geosynchronous satellites 

or one or more of the GNSS core constellations.  The methods and result described are applicable regardless of method of 

dissemination. 

 



To validate the ISM, ‘online’ and ‘offline’ ARAIM architectures have been under investigated [9, 10].  Offline architectures have 

generally been perceived as preferable because they do not require a real-time communication link between users and ground 

segment, and therefore eliminates the connectivity risk [9].  An offline ARAIM monitor would rely on post-processed GNSS 

measurements to bound errors in CSP broadcast navigation message on a long-term basis [9].  To do this, prior research has taken 

truth satellite positions and clock biases from the international GNSS service (IGS) network [11-13].  However, given that ARAIM 

is intended to operate over several decades, monitor dependence on external systems or organizations with little or no stake in civil 

aviation must be carefully considered, and ideally, avoided.  Most importantly, ARAIM will serve safety critical applications, any 

potential safety risks must be properly accounted for and quantified.  The IGS, the national geospatial intelligence agency (NGA), 

and others currently provide high-accuracy satellite orbit/clock products.  But none of these agencies make specific commitments 

on the reliability of their products, or on the processes used to obtain those products.  Further, data gaps exist in those products, 

especially during satellite fault events, which are crucial to ARAIM.  In response, this paper develops a new approach to define and 

validate ISM parameters by designing a dedicated ARAIM offline ground monitor architecture. 

 

This new monitor employs a simple and transparent orbit determination process to estimate satellite orbits/clocks.  Measurements 

are collected from a worldwide network of sparsely distributed reference stations (RS).  A parametric orbit model is used to fit data 

over time.  Because most satellite faults are caused by clock anomalies, the standard quadratic clock model is not applied for 

satellite clocks.  In contrast, an RS can be equipped with redundant atomic clocks, so any receiver clock faults can be detected 

removed in post-processing.  Therefore, as an alternative to directly estimating instantaneous RS clocks states at each time-epoch, 

we also investigate the benefit of using quadratic RS receiver clock models.  Two estimators will be considered: a batch least-

squares method, and a Kalman Filter (KF).  In both cases, satellite orbit, satellite clocks, and RS clocks will be simultaneously 

estimated over a four-hour fit interval supported by both the GPS legacy and GPS CNAV orbit models.  

 

Satellite orbit and clock errors are determined by differencing the positioning and timing solution derived from the GNSS-

broadcast navigation message and the estimates generated by the offline monitor.  This data will provide the means to evaluate the 

ISM parameters.  On the one hand, we desire that these parameters include enough margin to bound the actual constellation 

performance over the specified period of ISM validity (e.g., one month).  On the other hand, the ISM parameters should not be set 

too conservatively or ARAIM availability will degrade.  Therefore, it is essential that the ground monitor be capable of producing 

accurate satellite position and clock estimates.  In this work, a two-step evaluation of the monitor’s orbit and clock estimate 

accuracy is carried out: first, the impact of measurement errors at RS receivers is quantified by covariance analysis, and second, the 

fidelity of the orbit model is validated by computing the residual errors relative to known satellite positions. 

 

Four scenarios are considered in performance evaluations: (a) GPS legacy versus CNAV orbit models, and (b) quadratic model 

versus no model for RS receiver clocks.  In regard to (a), using the more sophisticated CNAV model can reduce residual fitting 

errors, but it may also increase the standard deviations of the estimated satellite positions (because more parameters need to be 

estimated) [14].  In regard to (b), direct estimation of instantaneous RS clocks eliminates clock model fidelity errors and provides 

robustness against RS clock faults, but standard deviations of estimation errors may increase because each clock estimate is 

instantaneous in time (earlier measurements can’t be used).  In the analysis, the worst-case SIS ranging error (SISRE) is derived to 

conservatively quantify the resulting estimate errors in the along-track, cross-track, radial and clock components.   

 

REQUIRED OFFLINE MONITOR PERFORMANCE 

 

Using an offline monitor, the update rate of the ISM may vary from a month to year depending on the need [9].  A large amount of 

data will be processed at the ground to obtain the ISM, which is expected to bound the SIS performance until the next update.  To 

achieve this, differences between broadcast ephemeris and the monitor’s estimated satellite orbit/clock will be first evaluated over 

time, and then these will be used to validate (or modify, if needed) the ISM parameter values.  In this paper, we focus mainly on 

producing satellite orbit and clock estimates to validate 𝑏𝑛𝑜𝑚 and 𝜎𝑈𝑅𝐴, which specify a Gaussian bound on the SIS performance 

under nominal conditions, (i.e., no faults).  Since the monitor’s orbit/clock estimation errors will directly contribute to our ability 

validate ISM, it is necessary to first define the required accuracy of the monitor’s orbit/clock estimator.  

 

Equation (1) shows the relationship among the actual standard deviation of broadcast satellite orbit/clock error 𝜎𝐴𝐶𝑇𝑈𝐴𝐿  (actual 

𝜎𝑈𝑅𝐴), the standard deviation of the monitor’s estimated orbit/clock error 𝜎𝑀𝑂𝑁𝐼𝑇𝑂𝑅 , and the validated standard deviation of the 

satellite orbit/clock error 𝜎𝑉𝐴𝐿𝐼𝐷𝐴𝑇𝐸  (validated 𝜎𝑈𝑅𝐴).   
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Figure 1 plots 𝜎𝑉𝐴𝐿𝐼𝐷𝐴𝑇𝐸  versus 𝜎𝑀𝑂𝑁𝐼𝑇𝑂𝑅  over different 𝜎𝐴𝐶𝑇𝑈𝐴𝐿  values.   For example, the figure shows that for 𝜎𝑈𝑅𝐴 = 2.4 m, 

which is the current minimum value that the GPS CSP is willing to commit to, having 𝜎𝑀𝑂𝑁𝐼𝑇𝑂𝑅 is less than 1.73 m is sufficient for 

validation.  According to the most recent study on GPS SIS performance to support ARAIM, the maximum actual 𝜎𝑈𝑅𝐴 is observed 

on space vehicle number (SVN) 61, where 𝜎𝐴𝐶𝑇𝑈𝐴𝐿  is 1.65 m, and for most satellites it is much smaller [13].  The red curve is of 

most interest because it is expected future performance of the GPS constellation will provide 𝜎𝐴𝐶𝑇𝑈𝐴𝐿  of 1 m, or less.  And dual-

constellation ARAIM availability simulations have revealed localizer performance with vertical guidance (LPV)-200 approach can 

only be supported when 𝜎𝐴𝐶𝑇𝑈𝐴𝐿  of both constellations are approximately 1 m [9].  The figure shows slow growth of 𝜎𝑉𝐴𝐿𝐼𝐷𝐴𝑇𝐸  as 

𝜎𝑀𝑂𝑁𝐼𝑇𝑂𝑅  increases.  Even when 𝜎𝑀𝑂𝑁𝐼𝑇𝑂𝑅  reaches half of 𝜎𝐴𝐶𝑇𝑈𝐴𝐿  at the end of the curve, the achievable validated 𝜎𝑈𝑅𝐴 is still 

around 1.1 m.  

 

 
Fig. 1 𝝈𝑽𝑨𝑳𝑰𝑫𝑨𝑻𝑬 vs. 𝝈𝑴𝑶𝑵𝑰𝑻𝑶𝑹 over Varying 𝝈𝑨𝑪𝑻𝑼𝑨𝑳 Values 

 

In addition to 𝜎𝑀𝑂𝑁𝐼𝑇𝑂𝑅 , the estimated satellite orbit/clock error may have a non-zero mean, denoted by 𝑏𝑀𝑂𝑁𝐼𝑇𝑂𝑅.  This term is 

accounted as one component of the validated ISM parameter, 𝑏𝑛𝑜𝑚.  However, using baseline solution separation ARAIM user 

algorithm [7], the absolute value of 𝑏𝑛𝑜𝑚 is additive for each measurement.  This causes the integrity risk bound to become loose 

as the number of measurements increases, thereby degrading availability performance [7].  Therefore, it is desirable to mitigate any 

contributions of 𝑏𝑀𝑂𝑁𝐼𝑇𝑂𝑅 to the validated 𝑏𝑛𝑜𝑚.   

 

From the analysis and discussion above, it can be seen that the required accuracy of the offline monitor is significantly lower than 

the precise satellite orbit/clock products by IGS or NGA.  Instead, it is the reliability of the monitor’s estimator output that is key.  

In other words, even though the monitor’s satellite orbit/clock estimates may have larger errors, their stable performance and 

consistent availability enables validate ISMs without missing data gaps.  Therefore, in the estimator design it is not necessary to 

pursue a complicated orbit determination process.  We can instead the simple, transparent approach described in the next section.  

 

OFFLINE MONITOR ARCHITECTURE 

 

This section describes the offline monitor architecture step-by-step.  A network of worldwide sparsely distributed RS is employed 

to collect code and carrier measurements over time.  In the selection of sites for the RS, we take advantage of the satellite based 

augmentation system (SBAS) ground infrastructures since they are already existing and are designed to support civil aviation 

applications.  Figure 2 (left) shows all of the existing SBAS RS from different countries or regions, and Figure 2 (right) shows the 

network of 20 RS used in this work.  To obtain a roughly uniform global distribution, five non-SBAS RS sites are added.  This 

network ensures that each satellite can continuously be tracked by at least two reference stations, but does not allow reverse 



positioning (four RS simultaneously observing a space vehicle (SV) are required to directly estimate the satellite position).  

Instead, the offline monitor uses parametric orbit models to determine SV trajectories.   

 

 
Fig. 2 All Existing SBAS Stations (Left) and Example Network of 20 RS Used in This Work (Right) 

 

Two candidate GPS orbit models, legacy and CNAV, are investigated.  Both models are valid for medium earth orbit (MEO) SVs, 

with 15 orbit parameters being used for legacy model and 17 parameters for CNAV model [15].  Throughout this paper, we assume 

no satellite maneuvers occur, because the orbit models will not be valid while the spacecraft is thrusting.  Maneuvers occur rarely, 

and they can be handled by simply initiating a new estimator after the maneuver.  However, these details of practical 

implementation are beyond the scope of this work and will not be considered further.   

 

Let 𝐩𝑖
𝑜𝑟𝑏 be the 15×1 (or 17×1, depending on which orbit model is used) vector of orbit model parameters for SV i, and let 𝐠𝑜𝑟𝑏,𝑘 

be the non-linear function that determines SV orbit.  The true SV position 𝐱𝑖,𝑘 of SV i at time epoch k can be expressed as: 
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where 𝛎𝑖,𝑘
𝑜𝑟𝑏  is the deviation of the model output from the true position 𝐱𝑖,𝑘 .  𝛎𝑖,𝑘

𝑜𝑟𝑏  represents the model’s inability to perfectly 

capture the true orbit, and this it will be further analyzed in later sections.  The GPS orbit model is valid over a four-to-six-hour 

time interval noted 𝑇𝐹𝐼𝑇  [15].  Sensitivity to 𝑇𝐹𝐼𝑇 has been evaluated in our prior work in [14].  We use a four-hour fitting interval, 

which is the most common value for GPS ephemeris. 

 

Both RS and SV are equipped with atomic clocks, and a quadratic polynomial is usually employed to model their nominal errors.  

However, most SV faults are caused by their clocks, and for the monitor to clearly observe them, no assumption can be made on 

the SV clock dynamics.  As for the RS, whose clock faults can be detected at the ground, it is feasible to apply quadratic clock 

model.  To assess the potential benefit of using such a model for the RS clocks, we analyze two cases: (a) applying a quadratic 

polynomial to model RS clock errors, and (b) making no assumption on RS clocks, (i.e., punctually estimate RS clock states).  

Under the scenario of (a), let 𝑏𝑗,𝑘 to be the clock bias of RS j at time k; it can be modeled as:   
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Similar to equation (2), 𝐩𝑗
𝑐𝑙𝑘 in equation (3) is the 3×1 vector of clock parameters including 𝑎𝑓0

𝑗
, 𝑎𝑓1

𝑗
, 𝑎𝑓2

𝑗
 [15], and 𝜈𝑗,𝑘

𝑐𝑙𝑘  is the clock 

model error.  g𝑐𝑙𝑘,𝑘(𝐩𝑗
𝑐𝑙𝑘) is a linear function (in the clock parameters) that can be expressed as:  
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where 𝑡𝑘 and 𝑡𝑟𝑒𝑓 are respectively the true time and reference time.   
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Dual-frequency, ionosphere-free code and carrier measurements for SV i, from RS j, at time epoch k, are expressed by the 

following two equations: 
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where 

 𝐱𝑗 : known location of RS j, for example, in an Earth-Centered Earth-Fixed (ECEF) reference frame 

 𝐱𝑖,𝑘 : unknown location of SV i at time k 

 𝜏𝑖,𝑘 : unknown clock offset of SV i at time k 

 𝑏𝑖,𝑘 : unknown clock offset of RS j at time k 

 𝜂 
𝑖,𝑗  : unknown, constant carrier phase cycle ambiguity for SV i at RS j 

   ‖  ‖ : Euclidean norm operator, in this case providing the distance between RS j and SV i. 

 

The error terms in equations (5) and (6) account for residual tropospheric delay noted 𝜀𝑡𝑟𝑜𝑝𝑜,𝑘 
𝑖,𝑗 , and receiver noise and multipath 

(RNM) errors denoted by 𝜀𝑅𝑁𝑀,𝜌,𝑘 
𝑖,𝑗  for code and 𝜀𝑅𝑁𝑀,𝜑,𝑘 

𝑖,𝑗  for carrier.  We assume raw code and carrier measurement RNM error 

standard deviations of 0.5 m and 0.01 m, respectively.  These standard deviations are multiplied by 2.588 to account for the 

ionosphere-free combination at L1 and L5 frequencies.  To account for the temporal and spatial correlation of zenith tropospheric 

deal (ZTD), a first order Gauss-Markov process with a two-hour correlation time is applied.  Assuming the RS have access to data 

from weather stations, we use the value of 0.05 m as the standard deviation of residual ZTD.  This value is scaled for lower 

elevation satellites using the tropospheric mapping function given in [7, 9].  

 

To estimate the SV orbit parameters and clocks, the measurement equations (5) &. (6) and the orbit/clock model equations (3) & 

(4) need to be linearized and incorporated into one filter.  For illustrative purposes, we will only show code measurement in the 

following derivations.  The code measurement equation (5) is first linearized at 𝐱𝑖,𝑘
∗ : 
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where 

 𝛿 : deviation from nominal values, e.g., 𝛿𝐱𝑖,𝑘 = 𝐱𝑖,𝑘 − 𝐱𝑖,𝑘
∗  

 𝐞𝑘
 

 
𝑖,𝑗  : 3×1 line of sight (LOS) vector between SV i and RS j at time k in ECEF 

 𝜀𝜌,𝑘 
𝑖,𝑗  : code measurement error, including 𝜀𝑡𝑟𝑜𝑝𝑜,𝑘 

𝑖,𝑗  and 𝜀𝑅𝑁𝑀,𝜌,𝑘 
𝑖,𝑗 . 

 

In the next step, the orbit model is linearized at 𝐩 
∗

𝑖
𝑜𝑟𝑏  where 𝐱𝑖,𝑘

∗ = 𝐠𝑜𝑟𝑏,𝑘( 𝐩 
∗

𝑖
𝑜𝑟𝑏).  Substituting the linearized orbit model equation 

and the clock error model equation (4) into the code measurement, equation (7) becomes: 
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where 

 𝐀𝑖,𝑘
𝑜𝑟𝑏  : Jacobian matrix for the SV orbit model in equation (2), which is 3×15 for the GPS legacy orbit model and 3×17 for the 

CNAV model.  It is composed of numerically-derived partial derivatives of the position coordinates of SV i at time k  𝐱𝑖,𝑘 = 

[𝑥𝑖,𝑘 𝑦𝑖,𝑘 𝑧𝑖,𝑘]𝑇  with respect to the orbit parameters 𝐩𝑖
𝑜𝑟𝑏 = [𝑝1 ⋯ 𝑝15]𝑇: 
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ESTIMATOR DESIGN 

 

Once the linearized single measurement equation (8) is derived, the estimator can be established.  The parameters to be estimated 

or ‘states’ include SV orbit parameters 𝛿𝐩𝑖
𝑜𝑟𝑏, SV clock 𝜏𝑖,𝑘, RS clock model parameters 𝐩𝑖

𝑐𝑙𝑘, and cycle ambiguities 𝜂 
𝑖,𝑗 .  All of 

these states can be simultaneously estimated using either a batch and Kalman filter implementation.  The states are estimated over 

𝑇𝐹𝐼𝑇  of 4 hours, using a 4 min sample period to avoid modelling correlation between samples due to RS multipath.  In addition, to 

obtain observability, all the clock error states, including both SV and RS clocks, are measured with respect the clock of RS 1. 

 

Batch Estimator 

 

The batch estimator is established by stacking all code and carrier measurements over the fit interval 𝑇𝐹𝐼𝑇 .  Measurements for all 

SVs from 1 to I are collected by all RS from 1 to J, at all time epochs from 1 to K.  The resulting estimation equation is written as: 
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 (9) 

 

Four groups of states are distinguished by the dashed thin lines.  The notations are worth clarifying: 𝟎𝑎×𝑏 is an a×b matrix of zeros, 

𝟏𝑎×𝑏 is an a×b matrix of ones, and 𝐈𝑎×𝑎 is an a×a identity matrix.  In addition, the product of LOS vector and Jacobian matrix in 

equation (8) is defined as 𝐁𝑘 
𝑖,𝑗 , i.e., 𝐁𝑘 

𝑖,𝑗 = 𝐞𝑘
𝑇

 
𝑖,𝑗  𝐀𝑖,𝑘

𝑜𝑟𝑏 .  Since measurements at all time epochs are incorporated in equation (9), we 

use capital ‘K’ to denote the time sequence.  Therefore, 
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It is obvious from equation (9) that this estimator is humongous due to the substantial number of measurements in the fit interval.   

 



It is important to note that not all SVs will be visible to all RS during the fitting interval. To lighten the notations, these cases are 

not explicitly expressed in equations (9) and (10).  But the corresponding rows must be removed whenever the measurements are 

unavailable. 

 

Let us simplify equation (9) by defining 𝐳, 𝐇, 𝐬, and 𝛆 to respectively be the measurement vector, observation matrix, state vector, 

and error vector.  Then equation (9) becomes 𝐳 = 𝐇𝐬 + 𝛆, and the states can be evaluated using a weighted least-squares estimator: 

 

     zVHHVHs
111ˆ  TT  (11) 

 

where 𝐕  is the covariance matrix of the measurement error vector 𝛆 .  The SV orbit parameters 𝛿𝐩𝑖
𝑜𝑟𝑏  and clock 𝜏𝑖,𝑘  can be 

extracted from the full-state estimate vector 𝐬̂.  Furthermore, the SV position is obtained by substituting the estimated orbit model 

parameters into equation (2).  

 

Kalman Filter Approach 

 

In addition to the batch estimator, we also provide a KF approach.  The KF implementation is more computationally efficient, and 

it allows us to cross-check with the results from batch estimator.  At one time epoch k, the measurement equation is expressed as: 
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Compared with equation (9), the additional states 𝜀𝑡𝑟𝑜𝑝𝑜,𝑗,𝑘
𝑍𝑇𝐷  in equation (12) represent the residual ZTD at RS j, and 𝑐𝑇  is the 

obliquity factor.  We use state augmentation to account for time correlation of the tropospheric ZTD error [16].  Because 𝜀𝑡𝑟𝑜𝑝𝑜,𝑗
𝑍𝑇𝐷  is 

modeled as a first order Gauss-Markov process (FOGMP), the associated dynamic model of the KF approach is expressed as: 
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In equation (13), the first row accounts for the states in equation (9), which do not change over time.  The second row shows the 

dynamics of FOGMP, where 𝑇 is the sample period and 𝜇 is the time constant [17].  𝛆𝑡𝑟𝑜𝑝𝑜,𝑘
𝑍𝑇𝐷  is obtained by stacking 𝜀𝑡𝑟𝑜𝑝𝑜,𝑗,𝑘

𝑍𝑇𝐷  of all 

RS, and the variance of 𝜔𝑡𝑟𝑜𝑝𝑜,𝑘
𝑍𝑇𝐷  is (1 − 𝑒−2(𝑇/𝜇) )𝜎𝑍𝑇𝐷

2  [18].  As a result, with both the measurement equation and dynamic model 

available, the nominal KF steps [16] can be implemented to estimate SV orbit/clock.  

 

Up until now, the offline monitor’s orbit and clock estimator has been fully established using two approaches, and the estimation 

process has been described in detail.  The derivations of both approaches were done for the case where the legacy orbit model is 



applied and RS clock errors are modeled using a quadratic polynomial.  For cases when the CNAV orbit model is used or RS 

clocks are not modeled, the expressions of equations (9) and (12) need to be modified to accommodate the corresponding scenario. 

 

There will be two error sources contributing the monitor’s SV orbit/clock estimation error: (a) measurement error and (b) residual 

model error.  To respectively address their impacts on the monitor’s performance, we carry out two separate analyses: covariance 

analysis and model fidelity analysis.    

 

COVARIANCE ANALYSIS 

 

In this section, covariance analysis used to investigate the contribution of measurement error on 𝜎𝑀𝑂𝑁𝐼𝑇𝑂𝑅 .  For illustrative 

purposes, we will employ the batch estimator equations to derive the covariance matrix of SV orbit/clock states.  According to 

equations (9) and (11), the covariance matrix of the full-states 𝒔 can be computed by: 

 

     11  HVHΣ
T  (14) 

 

To evaluate the position and clock estimate error covariance of SV i at time epoch k, we first build the covariance matrix of the SV 

orbit parameters and clock 𝐃𝑖,𝑘, by extracting corresponding elements from 𝚺.  Therefore, 𝐃𝑖,𝑘 is 16×16 if a legacy orbit model is 

employed.  Then, the 4×4 covariance matrix 𝐏𝐿𝐿,𝑖,𝑘 of satellite position and clock in the local-level (LL) reference frame (along-

track, cross-track, radial) can be evaluated by: 
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where 𝐑𝐿𝐿,𝑖,𝑘 is the ECEF to LL rotation matrix, and 𝐂𝑖,𝑘 is defined as: 
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To investigate the SIS in range domain, we evaluate the maximum SISRE standard deviation at the worst-case user location.  This 

is achieved by projecting 𝐏𝐿𝐿,𝑖,𝑘  along LOS for all locations within SV footprint [11].  And the worst-case SISRE standard 

deviation 𝜎𝑆𝐼𝑆𝑅𝐸,𝑖,𝑘
2  is defined as the maximum projection.  In Figure 3, the projection region is shaded in light blue, and the black 

dashed line is one example projection line 𝐆𝑖,𝑚, where m is the index of the lines.  Therefore, 𝜎𝑆𝐼𝑆𝑅𝐸,𝑖,𝑘
2  is evaluated by: 

 

    T

mikiLLmi
ALLm

kiSISRE ,,,,
,...1

2

,, max GPG


  (17) 

 

 

 
Fig. 3 Covariance Matrix Projections along LOS for All Locations 



 

To explore the potential benefits of employing orbit/clock models to the estimation process, the covariance analyses are performed 

under 4 scenarios: 

 

• CASE 1: legacy orbit model, quadratic RS clock model 

• CASE 2: legacy orbit model, free RS clock states 

• CASE 3: CNAV orbit model, quadratic RS clock model 

• CASE 4: CNAV orbit model, free RS clock states 

 

In the analyses, we take all measurements over the fitting interval 𝑇𝐹𝐼𝑇  as one data set, with each data set starting at regular one-

hour intervals over a day.  SV positions are computed from a GPS almanac, which is typically applied in covariance analysis [7, 9]. 

 

 
Fig. 4 Example Profiles of Error Deviations along One Fitting Interval for Case 1 (Left) and Case 4 (Right) 

 

Figure 4 shows standard deviation profiles of an example satellite (PRN 5) over one fitting interval.  Three light blue lines are the 

orbit error deviations of orbit along-track, cross-track, and radial.  The black thin lines represent the satellite clock error deviation.  

The red thick lines are of greatest interest because they show the worst-case SISRE standard deviation, evaluated using equation 

(17).  In both cases shown in the figure, the orbit radial and clock components are highly correlated, which results in significantly 

smaller 𝜎𝑆𝐼𝑆𝑅𝐸 than each individual term.  Comparing the two figures, even though the orbit radial and clock terms are increased for 

case 4, there is no noticeable difference between the two red lines.  We take the central two-hour values as the final results of each 

fitting interval.  Therefore, only the data between Hour 1 and Hour 3 in Figure 4 will be considered.   

 

 

 
   Fig. 5 Maximum 𝝈𝑺𝑰𝑺𝑹𝑬 over One Day (Left) and Their Distribution (Right) for Case 4 

 



The left plot of Figure 5 shows the maximum 𝜎𝑆𝐼𝑆𝑅𝐸 profiles over a one-day period.  Each column represents the largest 𝜎𝑆𝐼𝑆𝑅𝐸 

values of that fitting interval, and satellites are distinguished by different colors.  The distribution of 𝜎𝑆𝐼𝑆𝑅𝐸 is captured by the 

histogram on the right, which shows that a large majority 𝜎𝑆𝐼𝑆𝑅𝐸 values are well below 0.25 m, and the maximum 𝜎𝑆𝐼𝑆𝑅𝐸 is 0.3 m. 

 

   Table 1. Maximum 𝝈𝑺𝑰𝑺𝑹𝑬 Values under Four Scenarios 

 Quadratic Model for RS Clock Free RS Clock 

Legacy Orbit Model CASE 1: 0.277m CASE 2: 0.287m 

CNAV Orbit Model CASE 3: 0.283m CASE 4: 0.30m 

 

Table 1 summarizes the covariance analysis results by presenting the maximum 𝜎𝑆𝐼𝑆𝑅𝐸 values of the four cases.  At the first sight of 

this table, it can be observed that there are only small variations among those values.  So, from the perspective of mitigating the 

contribution of measurement error on 𝜎𝑀𝑂𝑁𝐼𝑇𝑂𝑅, no significant benefit can be obtained by using different orbit/clock models.  As 

expected, case 4 results in the largest 𝜎𝑆𝐼𝑆𝑅𝐸 because it has the largest number of unknown parameters to be estimated.  Based on 

these results, we recommend not using a quadratic model for RS clock error since there is little benefit from it, and not using it 

simplifies the estimator and allows for seamless performance in the event of an RS clock fault (because clock errors are estimated 

at each epoch individually).  Therefore, cases 1 and 3 are no longer investigated, and so it only remains to address the impact of 

orbit model error on the monitor’s performance. 

 

ORBIT MODEL FIDELITY ANALYSIS 

 

In this section, the residual model error is evaluated for two candidate orbit models: legacy and CNAV.  To do this, precise GPS 

orbit data is first fed as measurements into equation (2), and then the orbit parameters 𝐩𝑖
𝑜𝑟𝑏 are estimated using a non-linear least 

squares algorithm [19]. IGS data 𝐱𝐼𝐺𝑆 was employed as the truth orbit, and the CSP broadcast ephemeris 𝐩𝑖
𝑜𝑟𝑏 parameter vector 

was used as the initial guess in the estimation process.  Once 𝐩𝑖
𝑜𝑟𝑏 is estimated the residual error can be computed by subtracting 

𝐱𝐼𝐺𝑆 with the model’s output.  Therefore, for SV i at time epoch k, the ECEF residual is: 
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where 𝐩𝑖
𝑜𝑟𝑏 is the estimated orbit parameter vector.  Finally, 𝐫𝑖,𝑘 can be expressed in the LL frame as: 
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In equation (19), the three components of the last vector represent the residual error in three dimensions: along-track, cross-track, 

and radial.  To evaluate the ranging error from 𝐫𝐿𝐿,𝑖,𝑘, multiple analytical expressions can be found in the literature [12], [20-22].  

In this paper, we consider the following equation for orbit-only SISRE: 

 

   
2

,,

2

,,,,,,,, )sgn(24.098.0 kiCkiAkiRkiRkiSISRE rrrrr   (20) 

 

Equation (20) is very similar to the one in [20], except the SV clock term is removed.  The derivation can be found in the reference 

and will not be restated here. 

 

This analysis utilizes IGS data of the first ten days of 2016, i.e., 01/01/2016 - 01/10/2016.  Similar to the covariance analysis, the 

data is fit to the model over 𝑇𝐹𝐼𝑇  of 4 hours, and each fitting interval starts at 2 hours over a day.  The sample period is 15 mins, 

and only the 2-hour central results are recorded.      

 



 
Fig. 6 Best Fit Residual SISRE Orbit over One Day 

 

Figure 6 shows the residual SISRE error for an example SV (PRN 5) on 01/06/2016.  In each individual figure, the color-code 

helps distinguish fit intervals.  Vertical 𝑡𝑜𝑒-lines indicate the time of ephemeris, which is at the center of each 2-hour window.  The 

results show that the residual SISRE of CNAV orbit model is significantly smaller than that of legacy orbit model.    

 

 
Fig. 7 Residual SISRE Orbit Ranges 

 

 
Fig. 8 Residual SISRE Orbit Overbound 

 

Figures 7 and 8 provide a more general view of the residual SISRE profile by processing all of the IGS data.  The SISRE ranges in 

Figure 7 are expressed in terms of GPS SV blocks.  Using the GPS legacy orbit model, the maximum SISRE is 0.5 m and SISRE 



root-mean-square (RMS) is 0.089 m.  These two values are respectively reduced to 0.1 m and 0.022 m with the CNAV model.  In 

Figure 8, the data is overbounded using a Gaussian distribution with mean at 𝑏𝑜𝑏  and standard deviation of 𝜎𝑜𝑏.  By comparing the 

two orbit models, it can be observed that employing the CNAV model will dramatically reduce the residual error.  The CNAV 

model fidelity error can be quantified using a Gaussian bound with approximately zero-mean, 2 cm standard deviation, which does 

not cause a significant contribution to the monitor’s orbit/clock error.  Given that contribution of CNAV model error is negligible 

compared to the effect of measurement error shown in Table 1, and that the same is not true for the legacy model, it is 

recommended to use the CNAV orbit model for the ARAIM offline monitor’s orbit estimator. 

 

CONCLUSION 

 

This paper describes the design, analysis, and evaluation of an ARAIM offline ground monitor, which aims at validating the ISM 

broadcast to the users.  The monitor employs a network of worldwide sparsely distributed reference stations (RS) and a parametric 

orbit model to simultaneously estimate SV orbits, SV clocks, and RS clocks.  Two estimators are derived, and their implementation 

is described in detail in the paper.  Covariances and model fidelities are analyzed to assess the impact of RS measurement error and 

model fitting error on the monitor’s performance:  the most robust implementation with the overall lowest SV orbit/clock errors is 

achieved by making no assumptions on SV or RS clock dynamics and by using the CNAV orbit model.  This monitor is predicted 

to achieve a signal in space range error standard deviation 𝜎𝑀𝑂𝑁𝐼𝑇𝑂𝑅  of about 0.3 m, which will allow validation ARAIM user 

range accuracies 𝜎𝑈𝑅𝐴  of 1.05 m if the actual 𝜎𝑈𝑅𝐴 is 1 m.  In the next steps of this work, we will use experimental data to validate 

the design of the offline monitor.    
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