

H-ARAIM Exclusion: Requirements and Performance

Yawei Zhai, Boris Pervan Illinois Institute of Technology, Chicago, IL

Mathieu Joerger The University of Arizona, Tucson, AZ

September 16, 2016

- Two key developments in future GNSS:
 - **Dual Frequency Signal**: reduce measurement error
 - <u>Multi-Constellation</u>: provide more measurement redundancy are expected to bring significant navigation performance improvement in civil aviation using RAIM method [1].
- RAIM employs redundant measurements to achieve selfcontained fault detection and exclusion (FDE) [2].
- Advanced RAIM (ARAIM) will serve for applications with more stringent navigation requirements [3].
- [1] Phase II of the GNSS Evolutionary Architecture Study, February 2010
- [2] Lee, Y., et al., "Summary of RTCA SC-159 GPS Integrity Working Group Activities", *NAVIGATION, Journal of The Institute of Navigation*, Vol. 43, No. 3, Fall 1996, pp. 307-362.
- [3] Blanch *et al.*, "ARAIM user Algorithm Description: Integrity Support Message Processing, Fault Detection, Exclusion, and Protection Level Calculation," *ION GNSS 2012*.

Introduction

- Horizontal ARAIM (H-ARAIM) is currently of primary interest [4].
 - H-ARAIM aims at providing <u>horizontal navigation service</u> for the aircraft during en-route flight, terminal, non-precision approach (NPA), etc.

 [4] EU-U.S. Cooperation on Satellite Navigation, Working Group C, "ARAIM Technical Subgroup Milestone 3 Report," February 25, 2016.

Outline

- H-ARAIM Exclusion and Continuity:
 - Interpret H-ARAIM continuity requirements, show that exclusion is required.
 - Assess the impact of different sources on H-ARAIM continuity, and quantify the overall continuity risk.
- Describe H-ARAIM FDE algorithm, quantify predictive FDE integrity risk.
 - Introduce a computationally efficient upper bound on integrity risk, analyze its tightness.
- Evaluate the overall predicted FDE availability.
 - Show the availability performance for H-ARAIM targeted service.
 - Address the impact of unscheduled satellite outages on continuity.

4

Results

 For H-ARAIM service, both misleading information and loss of continuity (LOC) are specified as <u>major</u> failure conditions [5].

	Horizontal Alert Limit (HAL)	Integrity Risk <i>I_{REQ}</i>	Continuity Risk C _{REQ}
RNP 0.1	0.1nm (185m)	10-7/bour	10 ⁻⁸ /hour to 10 ⁻⁴ /hour
RNP 0.3	0.3nm (556m)	10 /Hour	

Table 1. Navigation Performance Requirements [6]

- To declare the service being available, both *I_{REQ}* and *C_{REQ}* need to be met.
 - RNP 0.1/0.3 are used as examples to illustrate H-ARAIM performance.

[5] FAA AC 20-138B, Airworthiness Approval of Positioning and Navigation Systems, September 27, 2010.

[6] ICAO, Annex 10, Aeronautical Telecommunications, Volume 1 (Radio Navigation Aids), Amendment 84

- The range of the continuity risk accounts for the number of aircraft using the same service.
 - "Intermediate values of continuity (e.g. <u>1</u> <u>1</u> x <u>10⁻⁶</u> per hour) are considered to be appropriate for areas of high traffic density and complexity where there is a high degree of reliance on the navigation system but in which mitigation for navigation system failures is possible." [ICAO Annex 10]
- In this work, we use: C_{REQ} = 10⁻⁶ / hour [7].
 - Consider a typical example case for H-ARAIM: two constellations, 16 satellites in view, $R_{sat} = 10^{-5}$ /hour and $R_{const} = 10^{-4}$ /hour [8].
 - Without exclusion, the probability of LOC due to detection is:

 10^{-5} / hour / SV · 16 SVs + 10^{-4} / hour = **2.6** · **10**⁻⁴ / hour >> C_{REQ}

- Therefore, H-ARAIM exclusion is required for navigation continuity.

[7] FAA-E-2892d, System Specification for the Wide Area Augmentation System, March 28, 2012
[8] T. Walter et al., "Determination of Fault Probabilities for ARAIM," *Proceedings of IEEE/ION PLANS 2016*

- *With exclusion implemented,* H-ARAIM LOC can result from any of the following:
 - Not excluded false alarm (NEFA), not excluded fault detection (NEFD), unscheduled satellite outage (USO), radio frequency interference (RFI), and ionospheric scintillation (IOSC).
- The probability of H-ARAIM LOC is:

H-ARAIM LOC Tree

C_{REQ} Allocation

• Not excluded false alarm (NEFA):

$$P_{NEFA} < P(D | FF) P_{FF} < 4 \times 10^{-7} / hr$$
 (2)

- The probability of fault free (FF) detection could be limited by setting the detection threshold.
- Not excluded fault detection (NEFD):

$$P_{NEFD} < P(NE | F) P_{F} < 4 \times 10^{-7} / hr$$
 (3)

- The probability of no exclusion (NE) when faults occur could be limited by setting the exclusion threshold.
- RFI + IOSC:
 - These two impacts are not quantified, and we assume $P_{RFI} + P_{IOSC} < 10^{-7}$ / hr is always true in this work.

C_{REQ} Allocation

• The impact of USO on H-ARAIM continuity is [9]:

$$P_{USO} = n_c \cdot P_{OUT} < 10^{-7} / hr$$

- P_{OUT} is the occurrence rate of USO: **2 x 10⁻⁴/hr/SV** [10].
- n_c is the number of critical satellites. A critical satellite is the one whose loss leads to LOC during flight.
- Eqn. (4) is equivalent to: $n_c < 5 \times 10^{-4}$ SV, which indicates <u>no critical satellite</u> is allowed to exist for H-ARAIM applications.
- Determine a critical satellite:
 - For a geometry where $P_{HMI} < I_{REQ}$, if removing a satellite results in $P_{HMI} > I_{REQ}$, then the removed satellite is regarded as a critical satellite.
 - Therefore, n_c depends on the method of evaluating P_{HMI} (or PL).

[9] RTCA Special Committee 159, "LAAS MASPS," *RTCA/DO-245*, 2004, Appendix D.
 [10] GPS Standard Positioning Service Performance Standard, 4th Ed., Sep 2008, Table 3.6-1, p. 28.

(4)

FDE Flow Diagram

Continue

Measurements This algorithm is based (may be faulted) Exclusion on solution separation Threshold (SS) method. All-in-View Find Subset(s) Yes Motivated from improving H-_ to Exclude Detection ARAIM continuity, this Detection algorithm could be extended Threshold No Yes to other applications. Evaluate P_{HMI} (or PL) The flow diagram described the FDE No $P_{HMI} < I_{REQ}$ procedure in real time. Yes

LOC

No

- Summary of implementing this algorithm in real time:
 - **Step 1:** Using all in view satellites, if there is no fault detection $(\overline{D_0})$, go to step 4; if a fault detection (D_0) occurs, go to step 2.
 - Step 2: Array the normalized detection statistics in a magnitude descending order. This order is called "exclusion option order".
 - > Example: Descending Magnitudes Statistics: $|q_3|$, $|q_7|$, $|q_1|$, $|q_5|$, ... $|q_h|$, $|q_2|$ (5) Order: 1st, 2nd, 3rd, 4th,
 - Step 3: Follow the order made in step 2, employ a <u>second layer detection</u> <u>test</u> for each option. The first option that passes this test is E_i.
 - **Step 4:** Evaluate the integrity risk (or PL) using the present satellites.

 To predict the FDE integrity risk, all exclusion options must be accounted for:

No Fault Detection $(\overline{D_0})$, and user is Fault is detected (D_0) and j is excluded (E_i) , in hazardous state (*HI_o*) and user is still in hazardous state (Hi_i) $P_{HMI} = P(HI_0, \overline{D}_0) + \sum_{i=1}^h P(HI_j, E_j, D_0)$ (6)

• According to the algorithm, two conditions will result in j being excluded:

 $E_{j} \iff \begin{cases} > \text{ No second layer detection after excluding } j : \overline{D_{j}} \\ > j \text{ corresponds to the maximum statistic among the subsets that pass the second layer detection test: } MAX_{j} \end{cases}$

• Account for all fault hypothesis, Eqn. (6) becomes:

$$P_{HMI} \leq \sum_{i=0}^{h} \max_{f_i} \left(P(HI_0, \overline{D}_0 \mid H_i, f_i) + \sum_{j=1}^{h} P(HI_j, \overline{D}_j, MAX_j, D_0 \mid H_i, f_i) \right) P_{Hi} + P_{NM}$$
(7)

- P_{NM} : probability of rarely fault occurring (Not Monitored).
- Hi: fault mode from i = 0 ... h.
- f_i : fault vector corresponds to fault mode *i*.
- Employ an example to illustrate in parity space:
 - Measurement Model: $\mathbf{z} = \mathbf{H}x + \mathbf{v} + \mathbf{f}$
 - > where, $\mathbf{H} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$ and $v \sim N(\mathbf{0}_{3\times 1}, \mathbf{I}_3)$
 - Only consider single fault mode. Assuming the fault is on *i* = 1.

(8)

• The conditional FDE integrity risk for H_1 is:

$$P_{HMI,H_{1}} = \max_{f_{1}} \begin{pmatrix} P(HI_{0},\overline{D}_{0} \mid H_{i},f_{1}) + P(HI_{1},\overline{D}_{1},MAX_{1},D_{0} \mid H_{1},f_{1}) \\ + \sum_{j=2}^{3} P(HI_{j},\overline{D}_{j},MAX_{j},D_{0} \mid H_{1},f_{1}) \end{pmatrix} P_{H_{1}} \quad (9$$

• An upper bound of the FDE integrity risk is used [11].

$$P_{HMI} \leq \sum_{i=0}^{h} \max_{f_i} \left(P(HI_0, \overline{D}_0 \mid H_i, f_i) + \sum_{j=1}^{h} P(HI_j, \overline{D}_j, \underline{MAX}_j, D_0 \mid H_i, f_i) \right) P_{Hi} + P_{NM}$$
(7)

$$\leq \sum_{i=0}^{h} \max_{f_{i,0}} P(HI_0, \overline{D}_0 \mid H_i, f_{i,0}) P_{Hi} + \sum_{i=0}^{h} \sum_{j=1}^{h} \max_{f_{i,j}} P(HI_j, \overline{D}_j \mid H_i, f_{i,j}) P_{Hi} + P_{NM}$$
(10)

– Two conservative steps from Eqn. (7) to (10):

Details in Paper

- > The knowledge of MAX_i and D_o are not used.
- > The risks in Eqn. (10) are maximized individually for same hypothesis.
- However, using Eqn. (10) could potentially cause a loose bound. (next slides).
 - [11] Joerger, M., Pervan, B., "Fault Detection and Exclusion Using Solution Separation and Chi-Squared RAIM," *Transactions on Aerospace and Electronic Systems*, vol. 52, April 2016, pp. 726-742.

Express Bound in Parity Space

• The expression of the bound in parity space is:

- (c) and (d) may cause loose bound since the red region overlaps with the actual fault mode line.
- The tightness of this bound could be investigated by comparing the bound with numerical results.

- To investigate the tightness of the bound, Monte-Carlo simulation is employed for this example.
 - Run 10⁷ trials, standard deviation $\sigma = 1m$, prior probability 10⁻³ and false alarm requirement is set to be 10⁻⁶.
 - The numbers in the table are predictive FDE integrity risk corresponding their requirements. <u>The exclusion requirement in case 2 is more stringent</u> <u>than case 1.</u> (more results in paper)

	AL = 4m		AL = 5m	
	Numerical	Bound	Numerical	Bound
Case 1	2.43 x 10 ⁻⁶	7.37 x 10 -5	2.92 x 10 ⁻⁸	1.91 x 10 -6
Case 2	4.03 x 10 ⁻⁶	7.62 x 10 ⁻⁴	7.45 x 10⁻ ⁷	6.67 x 10 ⁻⁵

Table 2. Comparison of the Numerical Results and Bound

 Tighten the FDE integrity bound is not the focus of this work, and it will be considered in future work.

H-ARAIM Simulation

- In this work, integrity risk bound is used to analyze H-ARAIM FDE performance:
 - Computationally efficient.
 - Guarantee safety.
- Baseline simulation conditions:
 - Nominal error model
 - Dual-frequency, baseline
 GPS/Galileo constellation

Table 3. Simulation Parameters

Integrity Risk I _{REQ}	10 ⁻⁷ /hour	
P _{NEFA, REQ}	4 x 10 ⁻⁷ /hour	
P _{NEFD, REQ}	4 x 10 ⁻⁷ /hour	
HAL	185m / 556m	
P _{sat}	10 ⁻⁵	
P _{const}	GPS: 10 ⁻⁸ / GAL: 10 ⁻⁴	
$\sigma_{\scriptscriptstyle URA}$	2.5m	
b _{nom}	0.75m	
Mask Angle	5 degrees	
Coverage Range	Worldwide	

- The results show the predicted H-ARAIM FDE availability performance of $P_{HMI} < I_{REQ.}$
- In comparison with detection only, continuity is improved by implementing exclusion.

Recall: <u>C_{req} could be met only if n_c = 0.</u>

- At many locations, n_c = 0. At locations where $n_c ≠ 0$, the occurrence of USO on critical satellites could impact H-ARAIM continuity.
- However, an upper bound is used to achieve this analysis. This bound may reduce the robustness to satellite geometry, declare a satellite to be 'critical' when it actually is not.

- Due to the stringent continuity requirement, fault exclusion is needed for H-ARAIM applications.
- By implementing the FDE algorithm described in this presentation:
 - H-ARAIM continuity could be significantly improved.
 - High availability performance could be achieved for H-ARAIM.
- From the critical satellite analysis:
 - The occurrence of USO have a noticeable impact on H-ARAIM continuity.
 - This impact may be mitigated by tighten the FDE integrity bound, and we are investigating it.

Acknowledgement

We would like to thank the **Federal Aviation Administration** for sponsoring this work.

- Results show that there are more critical satellites in the mid-latitude region.
- Since the average critical satellite number is a reflection of the satellite geometry, horizontal dilution of precision (HDOP) could be used to illustrate this trend.

• To evaluate the critical satellite number *n_c*:

(1) At a location and a time epoch, evaluate P_{HMI} (or PL). If $P_{HMI} < I_{REQ}$, then go to step 2, otherwise, $n_c = 0$.

(2) Remove one satellite and reevaluate P_{HMI} . If $P_{HMI} > I_{REQ}$, then the removed satellite is regarded as a critical satellite. Otherwise, it is not a critical satellite.

(3) Repeat step 2 for all the in view satellites, record all the critical satellites.

(4) Sum up the number of critical satellites in step 3, the number is n_c for that location and time epoch.