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ABSTRACT  

 

In this work, a new time-sequential positioning and fault 

detection method is derived and analyzed for dual-

frequency, multi-constellation Advanced Receiver 

Autonomous Integrity Monitoring (ARAIM).  Unlike 

conventional ‘snapshot’ ARAIM, the sequential approach 

exploits changes in satellite geometry at the cost of 

slightly higher computation and memory loads.  From the 

perspective of users on earth, the motion of any given 

GNSS satellite is small over short time intervals.  But, the 

accumulated effect geometry variations of redundant 

satellites from multiple GNSS constellations can be 

substantial.  This paper quantifies the potential 

performance benefit brought by satellite motion to 

ARAIM.  It specifically addresses the following research 

challenges: (a) defining and experimentally validating raw 

GNSS code and carrier error models over time, consistent 

with established ARAIM assumptions, (b) designing 

estimators and fault-detectors capable of exploiting 

satellite motion for positioning, carrier phase cycle 

ambiguity estimation, and integrity evaluation, and (c) 

formulating these processes in a computationally-efficient 

implementation.  A modular algorithm is designed, only 

requiring a minor augmentation of the snapshot airborne 

ARAIM multiple hypothesis solution separation (MHSS) 

algorithm.  Other modifications to enable time-sequential 

ARAIM include additional ground segment performance 

commitments, and the inclusion of extra parameters in the 

broadcast integrity support message (ISM).  Availability 

is analyzed worldwide for aircraft precision approach 

navigation applications.  Results show substantial 

performance improvements for sequential ARAIM over 

snapshot ARAIM, not only to achieve ‘localizer precision 

vertical’ (LPV) requirements using depleted GPS and 

Galileo constellations, but also to fulfill much more 

stringent requirements including a ten-meter vertical alert 

limit. 

 

INTRODUCTION  

 

This paper describes the design, analysis, and evaluation 

of a new time-sequential positioning and fault detection 

method for Advanced Receiver Autonomous Integrity 

Monitoring (ARAIM) using dual-frequency, multi-

constellation Global Navigation Satellite Systems 

(GNSS).  The new approach differs from prior work on 

‘snapshot’ (or instantaneous) ARAIM algorithms [1-3] in 

that it also exploits satellite motion, which provides 

observability of constant measurement biases [4].  This 



principle is used in this work to estimate floating (real 

valued) carrier phase cycle ambiguities, thereby 

improving navigation accuracy and integrity.   

 

With the modernization of GPS, the full deployment of 

GLONASS, and the emergence of Galileo and Beidou, a 

greatly increased number of redundant ranging signals 

becomes available, which has recently drawn a renewed 

interest in RAIM.  RAIM exploits redundant GNSS 

measurements to achieve self-contained fault detection at 

the user receiver [5, 6].  In particular, RAIM can help 

relax requirements on ground-based integrity monitors.  

For example, researchers in the European Union and in 

the United States are investigating ARAIM for worldwide 

vertical guidance of aircraft [1-3]. 

 

One of the primary tasks in ARAIM is to evaluate 

integrity risk, or equivalently, the protection levels (PL), 

which are probabilistic bounds on positioning errors.  

Integrity risk is the probability of undetected faults 

causing unacceptably large positioning errors.  Multiple 

research efforts have recently been conducted to design 

optimal estimators and detectors that minimize the 

integrity risk in ARAIM, while meeting specified 

continuity and accuracy criteria [7-10].  These methods 

have been employed in the ‘ARAIM Milestone 2 Report’ 

[2] to identify the circumstances under which dual-

frequency GPS/Galileo could satisfy LPV-200 

requirements globally.  The ‘localizer precision vertical’ 

(LPV) requirements are set to support vertical navigation 

during approach operations down to 200-foot altitude 

above ground.  Reference [2] shows that worldwide 

coverage of LPV-200 is achievable using optimal 

‘snapshot’ ARAIM algorithms for a wide range of 

nominal measurement error and fault parameters.   

 

However, reference [2] also points out cases where 

LPV200 is not achievable using dual-frequency GPS and 

Galileo, for example, when the nominal constellations are 

even slightly depleted—e.g., by a single satellite in each.  

In addition, the alert limit (i.e., the limit on acceptable 

positioning errors, which defines hazardous situations) is 

35 meters for LPV-200, which is much larger than, for 

example, the Category II precision approach alert limit 

requirement of 10 meters [11].  Thus, given that the 

methods used in [7-10] reach the best achievable 

performance, ‘snapshot’ ARAIM algorithms cannot 

provide global service better than LPV-200. 

 

In response, this work explores the potential benefit of 

new integrity monitoring methods that exploit satellite 

motion in dual-frequency multi-constellation ARAIM.   

 

Unlike ‘snapshot’ airborne ARAIM algorithms, where 

carrier-smoothed code (CSC) measurements from 

multiple satellites are combined at one instant in time, 

position estimates obtained, for example, from a batch 

estimator (or finite-interval estimator [12]) are directly 

derived from time-sequences of raw measurements.  The 

‘raw batch’ is more computation and memory expensive, 

but it gives the means to exploit satellite motion over 

short time intervals.  The upper bound on time interval is 

limited by the minimum mission duration for an ARAIM-

equipped aircraft.  A worst-case scenario would be a 

situation in which an aircraft is compelled to land just 

after takeoff.  The duration of such a ‘mission’—

including taxi, takeoff, go-around, and landing—is 

assumed to be no shorter than 10-to-15 min. 

 

This research builds upon prior work in [13] where a 

computationally-expensive ‘raw batch’ ARAIM algorithm 

was evaluated assuming preliminary error models over 

time.  In this paper, we refine and validate these error 

models using experimental data, we implement a new 

modular design for the airborne batch ARAIM method 

(which was briefly introduced in [13] and is refined here), 

and we discuss the need for additional ARAIM ground 

segment commitments and broadcast parameters in the 

Integrity Support Message (ISM).   

 

In the next section of this paper, previous research efforts 

are reviewed, which specifically use geometric diversity 

for carrier phase-based positioning.  These prior 

references have in common that they rely on large 

changes in geometry from a small number of ranging 

sources.  Conversely, in this paper, we exploit the 

combination of small angular variations from many space 

vehicles (SV).  To reinforce this point, we derive an 

analytical expression of the positioning error variance for 

an illustrative aircraft navigation example using a time-

sequence of carrier measurements.  The positioning error 

variance is shown to be inversely proportional to the 

accumulated angular variations from visible SVs, and 

therefore decreases as the amount of geometry change 

summed over redundant satellites from multiple GNSS 

increases. 

 

The third section of this paper addresses the key challenge 

of measurement error modeling over time.  The ARAIM 

error models in [1-3] provide values of the instantaneous 

CSC measurement error standard deviations due to 

satellite clock and orbit ephemeris, troposphere, multipath 

and receiver noise.  For each of these error sources, 

references [13, 14] describe parametric models of the 

time-correlation affecting raw code and carrier 

measurements.  In this paper, we validate these error 

models over time using experimental data.  To achieve 

this, GPS SV clock and orbit ephemeris errors are 

computed over a 10-month period by comparing 

broadcast ephemeris (available on the Crustal Dynamics 

Data Information System website) to precise orbit and 

clock data from the National Geospatial-Intelligence 

Agency (NGA), which is considered truth data.  Error 

distributions are established to determine realistically 



achievable values of the User Range Accuracy (URA) and 

User Range Rate Accuracy (URRA), which are key to 

integrity risk evaluation.  URA and URRA are bounds on 

the satellite clock and orbit ephemeris errors, and on the 

rate of change of these errors over time, respectively.  

Models to account for tropospheric delay, multipath 

reflections, and receiver noise are updated as well. 

 

The fourth section of this paper describes how these 

measurement error models are used in a batch airborne 

estimator and detector.  We define a modular batch 

ARAIM implementation, which only requires minor 

modifications to conventional snapshot ARAIM.  The 

inputs to the batch are CSC measurements (same as 

snapshot), augmented with carrier measurements, and 

stacked over few, infrequent sample times within the 

fixed batch interval (e.g., three sample times at 5 min 

intervals over 10 min).  Fault detection is then performed 

using a batch multiple hypothesis solution separation 

(MHSS) algorithm.  Batch-MHSS is similar to snapshot 

ARAIM, except that a time-sequence of measurements is 

processed rather than a single set of CSC data, and that 

the nominal bias due to signal deformation (specified in 

[1, 2]) is treated differently.  The batch formulation runs 

sequentially using a sliding-window mechanism.  Kalman 

filter (KF) implementations [15] will be investigated in 

future work to further reduce computation load.   

 

In the fifth section of this paper, we discuss performance 

commitments by the ground segment, i.e., by either the 

constellation service provider (CSP) or by the air 

navigation service provider (ANSP).  In ARAIM, the 

ground commits to integrity parameters, which are 

broadcast in the ISM to the aircraft where they serve as 

basis for integrity risk (or PL) evaluation [1-3].  The 

integrity parameter set would have to be extended from 

including URA for snapshot ARAIM to URA-and-URRA 

for batch ARAIM. URRA specifications are readily 

described for GPS in [16], but not fully defined yet.  Also, 

the broadcast ISM must be augmented to include 

information on URRA (only few bits are needed to 

activate the time-sequential ARAIM module).   

 

The sixth section of this paper analyzes batch ARAIM.  A 

performance assessment is presented for aircraft approach 

applications using ARAIM with dual-frequency GPS and 

Galileo satellite measurements.  We quantify the impact 

of SV motion by comparing the integrity performance 

assuming frozen (i.e., time-invariant) versus unfrozen 

satellite geometries.  Performance sensitivity to URRA 

and to batch interval length is also evaluated.  It suggests 

that, based on currently-achieved URRA values, only 

three samples over a ten-minute batch period are needed 

to efficiently exploit satellite motion.  In addition, 

worldwide availability maps show that batch ARAIM can 

effectively augment snapshot ARAIM in order to meet 

LPV-200 requirements even with depleted constellations.  

Under conditions described in the paper, batch ARAIM 

can satisfy much more stringent requirements, including a 

10 meter vertical alert limit. 

 

A FIRST ANALYSIS OF THE IMPACT OF 

GEOMETRIC DIVERSITY ON BIAS ESTIMATION 

 

This work aims at exploiting changes in satellite geometry 

to obtain fast and accurate estimates of carrier phase cycle 

ambiguities [4].  Implementations of this principle for 

aircraft precision approach and landing include the 

pseudo-satellite (‘pseudolite’)-based Integrity Beacon 

Landing System (IBLS) in the early 1990’s [17-19], an 

augmentation of GPS using low earth orbiting (LEO) 

‘GlobalStar’ satellites in 2000 [20], and a GPS 

augmentation system using Iridium LEO satellites in 2010 

[14].  In each of the above references, greatly improved 

positioning performance was achieved by exploiting the 

fast relative angular motion between user receiver and the 

few ranging sources (pseudolites or LEO SVs) in view 

during short (five-to-ten minute long) mission durations.   

 

In contrast, in this work, we only consider measurements 

from medium earth orbiting (MEO) GNSS satellites, 

which are slowly moving from the perspective of a user 

near the surface of the earth.  It is the multiplicity of 

ranging sources from several GNSS constellations that is 

exploited here to achieve a significant accumulated 

geometry change.   

 

To reinforce this idea, we analyze an illustrative example 

of a two-step carrier phase-based aircraft position 

estimation process represented in Figure 1.  This 

qualitative exercise aims at demonstrating that the 

accumulated geometric variations form multiple SVs can 

be a driving mechanism for carrier phase positioning.   
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Fig. 1  Aircraft Positioning Example to Illustrate the 

Impact of SV Motion on Estimation Error Reduction 

 



Let n  and Cn  respectively be the number of satellites in 

view and the number of constellations used for 

navigation.  In a first step, carrier phase measurements 

differenced over times 0t  and 1t  from 3Cn  satellites 

are used to determine the three dimensional aircraft 

displacement and the Cn  changes in receiver clock biases 

over the time interval 01 ttt  .  The vertical 

displacement Vx  estimated using these time-differenced 

carrier measurements is unambiguous and accurate, but 

the absolute aircraft position at 1t , noted Vx  for the 

vertical coordinate, is unknown.  In a second step, the 

contribution of the remaining *n  SVs over t  is 

exploited, where Cnnn  3* .  Appendix A shows that 

the resulting estimation error variance on Vx  can be 

expressed as: 
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where 
2

*   is the variance of the ionosphere-free time-

differential carrier measurement, adjusted 

for Vx  

0
i  is the elevation angle for SV i  at some 

initial time 0t  

1
i   is the elevation angle for SV i  at a later 

time 1t  

 

Equation (1) describes two fundamental mechanisms by 

which 
2
V  can be reduced.  First, if angular variations 

between 0
i  and 1

i  amount to zero for all SVs, then 

carrier phase signals alone provide no absolute 

positioning information.  But, with SV motion, the larger 

the angular variation is, the smaller 
2
V  becomes [21].  

Second, the larger the number of visible SVs *n  is, the 

smaller 
2
V  becomes.  Further results in Appendix A 

suggest that low-elevation satellite motion contributes 

more to vertical positioning than high-elevation SV 

motion does.   

 

In multi-constellation ARAIM, even though i -

variations may be small over short time periods, the 

number *n  of contributing terms in the denominator of 

Equation (1) can be large enough to provide significant 
2
V  reduction.  For a coarse numerical example, if we 

assume hypothetical values of 12n , 2Cn , 

deg300 i  for *,...,1 ni  , min10t , m52

*   

(accounting for the Vx -adjustment, receiver noise, 

multipath, and residual tropospheric errors), and a rate of 

change in elevation angle sdeg/005.0i
, we find 

m7.4V .  This value of V , obtained even without 

CSC measurements, can be sufficient to meet a 35 m alert 

limit.  This is because V  multiplied by an integrity 

multiplier of 5.3 (corresponding to a 710  integrity risk 

requirement) is 25 m, significantly smaller than 35 m.  

The remainder of the paper aims at evaluating positioning 

integrity for more realistic estimation processes, 

measurement error models, multi-GNSS SV geometries, 

and integrity requirements. 

 

Both snapshot and batch estimation are represented in 

Figure 2.  Let n  be the number of satellites in view, and 

q  the number of samples, collected from filter initiation 

at time-epoch 0 to current time q .  For snapshot 

estimation, raw code measurements q

i

,...,0  for SV i  (as 

indicated by the left superscript) are smoothed using 

carrier data q

i

,...,0  sampled at times 0  to q  (right 

subscripts).  Carrier-smoothed code measurements q

i  

are output by Hatch filters (HF) at time q  for satellites 

ni ,...,1 .  ARAIM error models specify ‘steady-state’ 

CSC standard deviations.  HF initiation time 0 is therefore 

assumed to be far enough in the past to reach steady-state.  

CSC measurements q

i  are then used, for example, in a 

weighted least squares (WLS) estimator [1] and a MHSS 

detector [2-3], to determine user position SNAPx̂  and 

protection levels at one instant in time.   

 

In parallel, the modular design of batch ARAIM is 

represented in Figure 2.  Three additional parameters are 

introduced.  Let BT  be the batch period, i.e., the finite 

time interval over which measurements are processed:  

BT  determines the amount of change in SV geometry 

(e.g., we will use BT =10 min in the next sections of the 

paper).  Also, let ST  be the sampling interval, i.e., the 

time between raw samples within the batch (e.g., ST = 0.5 

s).  Let BST  be the batch sampling interval within the 

batch period BT .  Because in this modular batch process, 

noise averaging is performed in separate HF’s, BST  can be 

selected much larger than the raw measurement sampling 

period ST  ( BST >> ST ). 

 



In Figure 2, CSC data q

i  are augmented with carrier 

measurements q

i  and stacked at infrequent batch 

sample intervals BST  (nominally min5BST ) over the 

batch interval BT  (nominally min102  BSB TT ).  BST  is 

selected much larger than the raw measurement sampling 

period ST =0.5s  ( BST >> ST ).  This compact time-

sequence of few measurements is processed in a WLS 

estimator to simultaneously estimate user position BATCHx̂  

at time q  and floating cycle ambiguities, and in an MHSS 

detector similar to the snapshot algorithm.   

 

This CSC-based batch ARAIM method only requires a 

minor augmentation of the existing snapshot ARAIM 

algorithms.  It exploits two key estimation principles 

 code noise averaging using CSC from HFs —

also used in snapshot ARAIM 

 SV motion using few carrier measurements —

not used in snapshot ARAIM 

This modular design is also much more computation and 

memory efficient than the ‘raw batch’ in [13], which had 

to process more than a thousand raw code and carrier 

signals collected at ST =0.5s sampling periods.  

Preliminary evaluation in [13] suggests that the 

performance of this new batch implementation (with 

min5BST , min10BT ) is only slightly poorer than 

that of a ‘raw batch’ (with ST =0.5 s, min10BT ).   

 

 

Batch

WLS 
Estimator

MHSS 
Detector

p
o

sitio
n

 
(a

n
d

 c
y

c
le

 a
m

b
ig

u
ity

) 
e
stim

a
te

s

BATCHx̂

ra
w

 c
o

d
e
 

a
n

d
 c

a
rr

ie
r

q

n

,...,1

q

n

,...,1

q,...,1

1

q,...,1

1



Hatch 
Filter

Hatch 
Filter

 

CSC and raw carrier at infrequent 
times  (e.g., 3 times over 10 min)

ra
w

 c
o

d
e
 

a
n

d
 c

a
rr

ie
r

CSC at time q

p
o

sitio
n

 e
stim

a
te

s

Hatch 
Filter

q

n

,...,1

q

n

,...,1

q
1

Hatch 
Filter

q,...,1

1

q,...,1

1



Snapshot

WLS
Estimator

MHSS 
Detector

q

n

SNAPx̂


qTqTq BSBS ,,2

1




qTqTq

n

BSBS ,,2 


2,1,0

1





k

kTq BS



2,1,0



k

kTq

n

BS



 
Fig. 2  Overview of ‘Snapshot’ ARAIM Estimation 

(top) vs. ‘Batch’ ARAIM (bottom) 

 

The first key challenge in this work is that the ARAIM 

measurement error models in [1] were only established 

for CSC code q

i , using large data collection campaigns 

in [22, 23].  However, evaluating the batch ARAIM 

performance requires raw measurement error models for 

q

i

,...,1  and q

i

,...,1 .  The next section addresses this issue. 

 

DERIVATION OF RAW MEASUREMENT ERROR 

MODELS OVER TIME 

 

This section aims at deriving statistical error models over 

time for raw measurements used in batch ARAIM.  This 

work provides refinement and experimental validation of 

prior research on measurement error time correlation in 

[13, 14].  It also aims at finding error models that are 

consistent with the well-established CSC models 

experimentally validated in [22, 23] and used in ARAIM 

[1-3]. 

 

The linearized ionospheric-error-free code and carrier 

phase measurement equations for satellite i  at time k  

respectively are: 
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where 

k

i
e   is the 13  line-of-sight vector in a local 

reference frame (e.g., North-East-Down or 

NED) for satellite i  at time k  

kx  is the 13  user position vector in NED 

k   is the receiver clock offset 

kT

i

,  is the tropospheric error  

kE

i

,   is the SV clock and orbit ephemeris error 

k

ib ,   is a nominal bias on k

i  primarily due to 

code signal deformation (SD)  

k

ib ,   is a nominal bias on k

i , such that 

k

ib , << k

ib ,  (carrier is unaffected by SD), 

included to account for small mean values in 

the paired overbounding process [24]. 

i  is the carrier phase cycle ambiguity 

(constant over time) 

kMP

i

,,  and kMP

i

,,   

  respectively are code and carrier errors due 

to multipath  

kRN

i

,,  and kRN

i

,,  

 respectively are code and carrier receiver 

noise terms 

 



The following subsections describe models for each 

individual source of error. 

 

Satellite clock and orbit ephemeris error  

 

The satellite clock and orbit ephemeris error equation for 

satellite i  at time k  is: 

 

    kRES
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BqkE
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E
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kE

i Tttgb ,,     (3) 

 

where 

E

ib   is an unknown, constant bias 

E

i g  is an unknown, constant gradient 

Bq Tt    is the first time-epoch of the batch interval 

kt   represents any time k during the batch 

interval, such that qk 1 , where q  is the 

last epoch of the batch interval 

kRES

i

,   residual errors not captured by the ‘bias plus 

ramp’ model 

 

The first term E

ib  in Equation (3) captures the 

instantaneous uncertainty in kE

i

, .  It is set according to 

ARAIM assumptions, i.e., E

ib  is assumed zero-mean 

normally distributed with variance 2

URA .  We use the 

notation:  ),0(~ 2

URAE

i Nb    and we assume:  URA = 1 m 

[2].  This standard deviation represents URA values that 

are expected to be achievable within the next decade, 

when GPS satellites older than Block IIF are 

decommissioned. 

 

It can easily be shown that a time-invariant bias E

ib  

affecting a sequence of raw code measurements input to a 

Hatch filter causes the same error E

ib  in the resulting 

output CSC q

i .  But, the ARAIM error model does not 

specify whether nominal SV clock and orbit errors can be 

assumed constant over any particular time interval.  To 

account for temporal error variations, the second term in 

Equation (3) is added:  it is a ramp over time ( 1ttk  ) 

with an unknown but constant gradient E

i g , accounting 

for linear deviations from the initial value.  Reference 

[14] gives evidence that periodic variations of orbit errors 

are on the order the MEO GNSS orbital period, which 

supports the use of a simple linear model over ten 

minutes.  It also cites references [25-27] to establish a 

distribution on the rate of change of orbit/clock errors:  

))m/s 107.4(,0(~ 24NgE

i
.   

 

To further validate Equation (3), an experimental data 

analysis is carried out, which completes the work in [13].  

Similar to prior work in [2, 26, 28], precise GPS satellite 

orbit and clock estimates from the National Geospatial-

Intelligence Agency (NGA) are considered ‘truth’ 

reference data, and are compared to broadcast GPS 

ephemerides archived by the Crustal Dynamics Data 

Information System (CDDIS).  To complement the work 

in [2, 26, 28] that addressed instantaneous errors, the 

focus in this work is on the validation of error model 

characteristics over time.   

 

In this analysis, a set of data from January 4, 2015 to 

September 19, 2015 is processed, for eight Block IIF 

satellites (PRNs 1, 3, 6, 9, 25, 26, 27, and 30).  The bias-

plus-ramp model in Equation (3) is fit to truth-minus-

broadcast data.  Because NGA orbit data is only provided 

every five minutes, the fit interval is selected to be 30 

minutes long.  This is larger than the example 10-minute 

batch period assumed in the next sections of this paper.  It 

will provide conservative results because residual fitting 

errors are larger over 30 min than they would be over 10 

min. 

 

Based on this data, empirical parameter distributions for 

E

ib , E

i g  and kRES

i

,  are established.  These are then 

bounded in the cumulative distribution function (CDF)-

sense [24, 29] using Gaussian distributions.  The standard 

deviations of the over-bounding Gaussian functions are 

given in Table 1 for the clock error contribution, and for 

the three-dimensional orbit errors.  Orbit errors are 

expressed in a local-level, satellite-fixed reference frame, 

in terms of the in-track, cross-track and radial components 

[28].  Because GPS satellites are at altitudes of about 

20,000 km, user receivers near the surface of the earth are 

affected by ranging errors that are mostly due to the radial 

orbit and clock components.  Fortunately, orbit radial and 

clock errors are significantly smaller than orbit in-track 

and cross-track components, as shown in Table 1.   

 

To get a conservative estimate of the error parameter 

variance 
2

BE  for E

ib  while taking into account the worst-

case geometry between SV and user receiver near earth 

surface, we use the following equation from [28]: 

 

   2

,

2

,

22

,

2

,

2 24.0 CBEIBERBECLKBEBE    (4) 

 

where 0.24 is a multiplier accounting for the worst-case 

projection of non-radial orbit error components; 
2

,CLKBE , 

2

,RBE , 
2

,IBE  and 
2

,CBE , respectively, are the variances of 

the clock, orbit radial, in-track and cross-track error 

components contributing to E

ib .  The same can be done 

for the variance 
2

GE  of E

i g .  Equation (4) is consistent 

with equation (A-1) in [16] (although providing a slightly 

looser bound because different SV elevation mask angles 

are considered).   



Experimental data analysis in Table 1 shows that 

m61.0BE  and m/s108.1 4GE , which are both 

much smaller than the assumptions mentioned above.  In 

the upcoming availability analysis, we will assume 

m1 URABE   and m/s107.4 4 URRAGE  .   

 

In addition, the distribution of residual errors kRES

i

,  are 

plotted for the orbit radial and orbit in-track components 

in Figs. 3 and 4, respectively. kRES

i

,  is obtained by 

removing the best fit bias-plus-ramp model from the 

truth-minus-broadcast data.  The figures show that kRES

i

,  

is not negligible as compared to other error sources 

affecting carrier measurements.  As could be expected 

from prior analyses [2, 26, 28], radial error components 

are much larger than in-track errors.  We cannot 

determine what parts of these residuals are caused by 

errors in NGA ‘truth’ data.  We therefore attribute the 

entire residual errors to SV clock and orbit ephemeris 

errors, and account for them in the availability analysis, 

assuming: 

 

   2

, m)056.0(,0~ NkRES

i  (5) 

 

where the standard deviation of 0.056 m was obtained 

using the same formula as in Equation (4) but applied to 

kRES

i

,  (values listed in the rightmost column of Table 1).  

Future work will include a detailed analysis of the time-

characteristics of kRES

i

,  which, for now, is modeled as 

white noise for samples taken at intervals BST , several 

minutes apart. (We will assume a min5BST  in the sixth 

section later in this paper.) 

 

As an alternative to Equation (3), Appendix B evaluates a 

quadratic model for SV clock and orbit ephemeris errors.  

This quadratic model halves the standard deviation of 

residual errors kRES

i

,  as compared to the linear model.  

But, it would require additional CSP or ANSP 

commitments on the User Range Acceleration Accuracy 

(URAA), and extra parameters in the broadcast ISM.  The 

quadratic model is not employed in this paper, but may be 

further investigated in future work. 

 

Tropospheric Delay 

 

The troposphere error model is also modified as compared 

to [13].  The tropospheric delay for SV i  at time k  is 

modeled as: 

 

  kZTD

i

kT

i

kT

i c ,,,    (6) 

 

 

Table 1.  Linear Error Model Parameter Over-

Bounding Standard Deviations  

 
Standard deviation of bounding 

Gaussian function 

 for bE for gE for RES 

Clock 

component 
0.27 m 1.010-4 m/s 0.042 m 

Orbit  

radial 
0.30 m 1.110-4 m/s 0.027 m 

Orbit  

in-track 
1.22 m 3.510-4 m/s 0.084 m 

Orbit  

cross-track 
1.46 m 2.410-4 m/s 0.072 m 

Overall 

(using (5)) 
0.61 m 1.810-4 m/s 0.056 m 
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Fig. 3  Folded CDF (Empirical and Bounding 

Gaussian) for the Orbit-Radial Component of the 

Residual Error  
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Fig. 4  Folded CDF (Empirical and Bounding 

Gaussian) for the Orbit-In Track Component of the 

Residual Error 

 



where 

kZTD

i

,  is the zenith tropospheric delay for SV i  at 

time k  

0h  is the tropospheric scale height   

( 0h  = 7000m) 

kh   is the aircraft height at time k  

kT

i c ,   is the tropospheric zenith-to-slant mapping 

coefficient:  

 

 2

, ))(sin(002001.0001.1 k

i

kT

ic    

 

k

i   is the elevation angle for SV i  at time k  

 

Prior work in [13] modeled the tropospheric delay time-

correlation assuming that tropospheric refractivity was 

unknown, but constant over BT  [30].  In this paper, we no 

longer make this assumption, the resulting error model is 

much more conservative.  We use: 

 

  ),0(~ 2

, ZTDkZTD

i N    ,  m 12.0ZTD  [1]  (7) 

 

Receiver Noise and Multipath Error 

 

We use the receiver noise and multipath error model 

derived in [13], based on [1, 14, 22-24, 29].  Time-

correlated raw code and carrier measurement errors due to 

multipath reflections are modeled as first order Gauss 

Markov Processes (GMP) with time constant MPT , with 

s 80MPT : 

 

  ),0(~ 2

,,,   MPkMP

i N   ,  ),0(~ 2

,,,   MPkMP

i N  

 

 kMP

i

kMP

i

,,,, 5.1       ,   kMP

i

kMP

i

,,,, 015.0     (8) 

 

The ARAIM elevation-dependent model for 
2

,MP  given 

in [1] for GPS is, in units of meters: 

 

   )10/exp(53.013.0,, k

i

IFkMP

i c      (9) 

 

where 

IFc   is the ionosphere-free measurement 

combination multiplier: 

  22

5

2

1

4

5

4

1 )/()( LLLLIF ffffc   

1Lf , 5Lf  respectively are L1 and L5 frequencies 

k

i  is the elevation angle in degrees for SV i  at  

time k  

 

Similar, The time-uncorrelated CSC receiver noise 

standard deviation assumed in ARAIM [1] in units of 

meters, is given by: 

 

  )9.6/exp(43.015.0,, k

i

IFkRN

i c      (10) 

 

Raw code and carrier standard deviations are then 

expressed as [13]: 

 

 kRN

i

kRN

i

,,,, 8.9       ,   kRN

i

kRN

i

,,,, 1.0     (11) 

 

The only source of error left unaddressed in Equation (2) 

is kSD

ib , , which is dealt with in the next section.  It is 

worth noting that the robustness of the error models can 

be ensured by selecting a large batch sampling interval 

BT .   The correlation time constants for multipath error 

kMP

i

,,  and kMP

i

,, , tropospheric delay kT

i

, , and 

residual SV clock and orbit ephemeris errors kRES

i

,  can 

be roughly approximated, as long as they are significantly 

smaller than BST .  Evidence of this will be established in 

future work.  

 

 

AIRBORNE BATCH ESTIMATOR AND 

DETECTOR DESIGN 

 

In this section, CSC and raw code and carrier 

measurement error models derived above are incorporated 

in a batch estimator and in a batch-MHSS RAIM fault-

detection algorithm that enables integrity risk evaluation.  

This batch implementation is formulated in a 

computationally efficient process illustrated in Figure 2 

and referred to as ‘batch ARAIM’. 

 

Batch Measurement Equation 

 

For each SV i , CSC and carrier measurements at 

1/  BSB TTp  sample times, from times BTq   to q  in 

BST  increments, are respectively stacked in 1p  vectors 

ρ
i

 and φ
i

.  These vector are then arranged in a 12 pn  

batch measurement vector ( n  is number of visible SVs): 

 

    TTnTTnTTTT
ρρφφρφ  11   (12) 

 

This vector can be expressed in terms of state variables, 

and of measurement error vectors as: 
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where 

u   is a 15 q  vector of positions and GPS and 

Galileo receiver clock offsets at all times 

(assuming a dual-constellation GNSS) 

η   is an 1n  vector of cycle ambiguities:  

ERRs   is a 1)1(2 n  vector of constant error 

states.  

ba0   is an ba  matrix of zeros 

 

Vector u  is constructed using the following equations: 

 

  TT

k

T
uuu 1    ,    TkGALkGPS

T

kk ,, xu   (14) 

 

where kx  is the three-dimensional aircraft position vector 

at time k , kGPS ,  and kGAL ,  are the receiver clock offsets 

for GPS and Galileo respectively, assuming that the time-

offset between the two constellations is unknown.   

 

The vector of constant cycle ambiguities is defined as: 

 

   Tn 1η  (15) 

 

The vector of error states is given by: 

 

   TT

E

T

EERR gbs    (16) 

 

where Eb  and Eg  are the 1n  vectors of constant clock 

and orbit ephemeris biases and gradients for all n  

satellites constructed following the exact same pattern as 

η  in Equation (15).   

 

Error states ERRs  are included in the state vector, not 

because their estimated values are of particular interest, 

but because state augmentation is a practical way to 

incorporate measurement error dynamics.  Prior 

knowledge on state variables u  is captured in a diagonal 

state information matrix (inverse of covariance matrix) 

with diagonal elements: 

 

   nGEnBEnp 







 1

2

1

2

)5(1 110   

 

This a-priori knowledge of state estimate errors can 

directly be incorporated in the estimator by adding up 

information matrices as described in Section 2.1.2 of [12].  

Or, it can be included by measurement vector 

augmentation, i.e., assuming pseudo-measurements on 

ERRs  as in [14, 31]. 

 

The batch geometry matrix G  and state coefficient 

matrices NH  and ERRH  are not explicitly expressed here 

to limit the length of the paper.  Other batch realizations 

including error states for different applications can be 

found in [14, 31].   

 

Vector ][ ,,

T

TRNM

T

TRNM  vv  accounts for random 

troposphere, receiver noise, and multipath errors affecting 

carrier and code signals.  Its covariance matrix is noted 

V .  Matrix V  is built as follows.  First, for the 

troposphere contribution, matrix V  is partitioned in four 

pnpn  identical blocks made of diagonal matrices 

capturing the fact that the troposphere identically affects 

code and carrier.  Then, the troposphere covariance is 

added to that of receiver noise and multipath errors.  The 

multipath and receiver noise covariance contribution is a 

fully populated matrix that accounts for multipath time-

correlation, for HF smoothing time-correlation, and for 

CSC-to-carrier correlation.  A detailed description of how 

to construct V  is given in [13]. 

 

The 1pn  vector of nominal biases due to code signal 

deformation b  for all SVs at all times is arranged the 

same way ρ  is in Equation (12).  Vector b  is arranged 

in a similar fashion, but takes much smaller values 

because carrier phase measurements  are not affected by 

signal deformation.  (Note that for carrier signals, biases 

that are constant over the short batch interval will be 

absorbed into the floating cycle ambiguity states.) 

 

Next we consider the batch measurement Equation (13), 

with an additive 12 pn  batch fault vector f , which will 

have to be detected.  The resulting batch observation 

equation can be rewritten in a standard form as: 

 

 fvHxz   (17) 

 

where  
z   is the batch measurement vector 
H   is the batch observation matrix,  
x   is the batch state vector 
v  is the batch measurement error vector: 

),]([~ Vbbv
TTTN   

 

Batch Estimator Design 

 

The batch weighted least-squares (WLS) estimate for the 

state of interest (e.g., for the vertical position coordinate, 

which is of primary interest in aircraft approach 

navigation) at the current time q is defined as:  

 

 zs
Tx 00

ˆ    (18) 

 

where 0s  is the 12 pn  vector of batch WLS coefficients. 

(The same notations, with additional details, are used in 



[32]).  0x̂  in Equation (18) is obtained using all available 

measurements, and is also referred to as full-set solution.  

The full-set estimate error is noted 0 :  00 x̂x  , 

where x  is the true value of the state of interest.  0  is 

such that: 

 

  00

2

0000 ,~ Vssfs
TTbN     (19) 

 

where 0b  is the impact on state estimation of b  and b .  

The ARAIM error model in [1-2] does not specify 

whether these biases are constant over time, but it 

assumes that the elements of b  and b  can all be 

bounded by a maximum value noted nomb :  nomb = 0.75 m  

in [2].  We further assume that ranging errors due to these 

biases can be different for all satellites.  It follows that 0b  

can be bounded by: 

 

 
nompn

T bb 1200  1As  (20) 

 

where  denotes the element-wise absolute value 

operator, and: 
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where a factor of 0.05 is used to capture the fact that 

carrier measurements are not impacted by signal 

deformation, but may be impacted by small non-Gaussian 

but bounded errors. 

 

Batch Detector Design 

 

A multiple-hypothesis solution separation (MHSS) batch 

RAIM method [1, 2, 14, 15, 32, 33] is adopted for 

detection of f . Let h  be the number of fault hypotheses 

that need to be monitored against (refer to [32, 33] for 

details on how to determine h ).  A set of mutually 

exclusive, exhaustive hypotheses iH , for hi ...,,0 , is 

considered.  Under iH , a number in  of measurements 

are simultaneously impacted by the fault.  The fault-free 

subset solution, which excludes these in  measurements, 

is written as: zs
T

iix ˆ , where is  is the 12 pn  vector of 

the subset solution’s batch WLS coefficients with zeros 

for elements corresponding to the in  faulted 

measurements [32, 33].  Under iH , the estimation error 

i  of ix̂  is such that: 

 

  i

T

iiii bN Vss2,~    (22) 

 

where  
nompn

T

ii bb 12  1As . (23) 

 

The batch MHSS test statistics are then defined as:   

 

  ii xx ˆˆ
0  ,  for hi ...,,1 ,  (24) 

 

i  is normally distributed with variance [15, 32, 33]: 

 

  
2

0

22   ii   (25) 

 

Integrity and Continuity Risk Evaluation 

 

The integrity risk, or probability of hazardous misleading 

information HMIP , is evaluated using the following upper-

bound [32]: 
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 (26) 

 

where  

   is the alert limit (AL) that defines hazardous 

situations:  in [2], the vertical AL is  =35m 

HiP  is the prior probability of iH  occurrence 

0H  is the fault-free hypothesis 

iH  for hi ...,,1   are the fault hypotheses 

corresponding to faults on subset 

measurement ‘i’ (including single-satellite, 

multi-satellite, and constellation faults [2]) 

 

Under fault-free hypothesis 0H , the detection threshold 

iT  is set based on an allocated continuity risk 

requirement REQC  (specified in [2]) to limit the 

probability of false alarms.  iT  can be defined as:  

 

    iHREQi hPCQT 

 )2( 0

1   (27) 

 

where the function {}1Q  is the inverse tail probability 

distribution of the two-tailed standard normal distribution. 

 

It is worth noting that this batch implementation is 

compatible with estimator optimization methods [2, 7, 9], 

which are specifically designed to minimize integrity risk 

while meeting continuity requirements.  These methods 

will be investigated for batch ARAIM in future work. 

 



GROUND SEGMENT AND INTEGRITY SUPPORT 

MESSAGE AUGMENTATION TO ENABLE 

BATCH ARAIM 

 

This section discusses the implications of using batch 

ARAIM as a modular complement to snapshot ARAIM.  

Just as the User Range Accuracy (URA) is a primary 

integrity parameter for snapshot ARAIM [1-3], the User 

Range Rate Accuracy (URRA) is key to batch ARAIM. 

 

First, the foundational definition of a fault, which in 

snapshot ARAIM is defined in terms of the URA, must be 

refined when batch ARAIM is implemented to address 

URRA.  A straightforward modification of [34] gives the 

following definition: 

 A Signal in Space (SIS) fault state is said to exist 

on satellite i  in constellation j  when the 

magnitude of the instantaneous SIS ranging error  

is greater than jiURAifk ,,,  at the worst user 

location, or when the magnitude of the 

“instantaneous” SIS range rate error over a 

predefined time period (e.g., 10 min) is greater 

than jiURRAifk ,,,  at the worst user location . 

This fault definition can then be used as in [34] to define 

prior probabilities of satellite faults jisatP ,,  and of 

constellation faults jconstP , .  The integrity parameters 

jiURA ,, , jisatP ,, , and jconstP , , and the nominal bias bound 

nomb  in Equation (20) are needed at the aircraft to evaluate 

navigation integrity.  The ground segment, i.e., the 

constellation service provider (CSP) and/or the air 

navigation service provider (ANSP) provide quantifiable 

assurance on the validity of these parameters.  In batch 

ARAIM, a fifth parameter needs to be included:  the 

URRA, noted jiURRA ,, . 

 

URRA specifications are readily described for GPS in 

[16], but they are not fully defined yet. (“A future version 

of this SPS PS may establish a standard” [16].)  Reference 

[16] notes that a 6-sigma upper bound on the SPS SIS 

instantaneous User Range Rate Error (URRE) is 0.02 m/s 

over any 3-second interval.  This number corresponding 

to a 0.003 m/s 1-sigma value is an order of magnitude 

larger than our observations in Table 1.  This is because 

the value is specified over 3-second period, and probably 

accounts for high-frequency SV clock variations.  As 

such, it is not applicable over our period of interest of 10-

15min.  Assuming a 0.003 m/s 1-sigma URRA over 10 

min yields unrealistically large user range errors (much 

larger than specified URAs).  Thus, for the performance 

analysis in the next section, we use the URRA value of 

0.0004 m/s established in previous sections. 

 

Finally, consistently with the ARAIM architecture 

defined in [2], the integrity support message (ISM) can be 

employed as a means to modify the URA and URRA 

values assumed at the aircraft.  This facilitates the 

integration of newly-deployed constellations and 

satellites, which are not expected to achieve low URA’s 

in early phases of operation, but can improve as the 

GNSS matures, and degrade again as it gets older.  

Integrity parameters are not expected to change 

frequently, but should stay constant over months.  

Multiple alternatives are considered to broadcast URRA 

values, depending on how many data bits can be allocated 

to this parameter in the ISM: 

 URRA values can be broadcast for each 

individual satellite 

 or, URRA values can be broadcast for sets of 

satellites, for example, a single bounding URRA 

could be transmitted per satellite Block, or per 

constellation  

 or, a batch ARAIM validity flag could be 

incorporated in the ISM, indicating that preset, 

stored URRA are validated by the ground.  

These preset values could be uploaded monthly 

as part of the aircraft database.   

 

If these practical issues are overcome, batch ARAIM can 

achieve substantial reductions in integrity risk as 

compared to snapshot ARAIM.  Examples of such 

improvements are quantified in the next section. 

 

BATCH ARAIM INTEGRITY AND AVAILABILITY 

PERFORMANCE ANALYSIS 

 

This section presents an integrity and availability 

performance analysis of batch ARAIM as compared to 

snapshot ARAIM.  Sensitivity of navigation integrity risk 

to batch interval length BT  and URRA value is 

quantified, and global availability maps are given. 

 

Sensitivity Analysis 

 

A method was developed in [13] to analytical establish 

the conditions of equivalency between snapshot and batch 

ARAIM.  These analytical relationships were used to 

ensure that raw measurement error models parameters 

that are not experimentally set were consistent with 

ARAIM assumptions in [1, 2].  Equivalency was obtained 

by artificially freezing the simulated satellite geometry, 

and by adequately selecting BT  [13]. 

 

In Figure 5, we freeze and unfreeze the SV geometry to 

emphasize the impact of exploiting SV motion in batch 

ARAIM. The figure shows the integrity risk HMIP  in 

Equation (26) evaluated over 24 hours, at an example 



Chicago location (25.5 deg N, -80.1 deg E), assuming 

dual-frequency measurements from GPS and Galileo.  

The nominal batch interval BT  is 10 min, and the nominal 

URRA is m/s0004.0URRA .  Other parameter values 

that are not directly relevant in this subsection and that are 

kept constant include: sTBS 300 , an example integrity 

risk requirement 71098.0 REQI  [2], a continuity risk 

requirement 6109.3 REQC  [2], a vertical alert limit 

m10 , and prior probabilities of satellite and 

constellation faults, both noted HiP  in equation (26), 

respectively are 510satP  and 810constP .   

 

Figure 5 shows that for frozen SV geometries, batch 

ARAIM performs similar to snapshot ARAIM.  It is 

actually slightly better than snapshot ARAIM because the 

batch interval BT  is significantly longer than the Hatch 

filter (HF) transient response time, and over BT , the 

process gets some observability on the error states ERRs  in 

Equation (13).  HMIP  decreases substantially when 

unfreezing the SV geometry, especially at the HMIP  peaks 

which are a primary cause for unavailability.  In the 

remainder of the paper, we will no longer artificially 

freeze geometry. 

 

Figure 6 illustrates the sensitivity of HMIP  to BT .  It 

shows that using batch ARAIM with min5BT  already 

provides significant HMIP -reduction as compared to 

snapshot ARAIM.  Further reduction is obtained when 

increasing BT  to 10 min and 15 min.  Larger BT -values 

are not considered because of the operational constraints 

on minimum BT  that are mentioned in “Introduction”. 

 

In Figure 7, we investigate the sensitivity of HMIP  to 

URRA, for the nominal value BT =10 min.  Just as URA 

is key in snapshot ARAIM [2], low URRA (labeled 

URRA ) values are instrumental in achieving low HMIP  in 

batch ARAIM.  When the experimentally-validated 

nominal URRA ( m/s0004.0URRA ) is increased to 

m/s004.0URRA , then the benefit of using SV motion in 

batch ARAIM becomes negligible, and the corresponding 

HMIP -curve with diamond markers in Fig. 7 matched that 

of batch ARAIM for the frozen geometry case in Fig. 5. 

 

Availability Maps 

 

This sub-section evaluates the global availability of LPV-

200 navigation requirements to support localizer precision 

vertical aircraft approach operations down to 200 feet 

above the ground, using ARAIM with dual-frequency 

measurements from GPS and Galileo.  Nominal 

simulation parameters are defined in [2], and include: 

 a five degree satellite elevation mask 

 ARAIM CSC measurement error model 

parameters in equations (1) to (10), and (21)  

 navigation requirements:  71098.0 REQI , 

6109.3 REQC , m35  

 prior probabilities of faults:    
510satP ,  410constP  

 reduced-batch period and sampling interval:    

min10BT , min5BST  

 nominal constellations, comprising 24 GPS 

satellites and 24 Galileo SVs [35] 
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Fig. 5  Integrity Risk Bound Obtained Using Snapshot 

Vs. Batch ARAIM:  all parameters identical to Fig. 8 

(TB = 600s, TRB = 300s). 
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Fig. 6  Integrity Risk Bound Obtained Using Snapshot 

Vs. Batch ARAIM:  all parameters identical to Fig. 8 

(TB = 600s, TRB = 300s). 



0 5 10 15 20 25
10

-8

10
-7

10
-6

10
-5

10
-4

Time (hr)

In
te

g
ri
ty

 R
is

k

 

 
required P

HMI

CSC: Snapshot ARAIM

Batch ARAIM (
URRA

=0.004m/s)

Batch ARAIM (
URRA

=0.0004m/s)

 
Fig. 7  Integrity Risk Bound Obtained Using Snapshot 

Vs. Batch ARAIM:  all parameters identical to Fig. 8 

(TB = 600s, TRB = 300s). 

 

 

These parameters are modified below to evaluate 

performance sensitivity.  In order to account for potential 

satellite outages, depleted constellations of ‘24-1’ GPS 

satellites and ‘24-1’ Galileo SVs [35] are considered as 

well.  Additional requirements, including Effective 

Monitor Threshold (EMT) and fault-free accuracy 

requirements [2], are included in the simulation but not 

discussed in this paper as they only have a minor impact 

on overall availability.   

 

Figures 8 and 9 display availability maps for a 10 deg  

10 deg latitude-longitude grid of locations, for depleted 

‘24-1’ GPS and ‘24-1’ Galileo constellations, for satellite 

geometries simulated at regular 5 minute intervals over a 

24 hour period.  Availability is computed at each location 

as the fraction of time where the HMIP -bound meets REQI .   
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Fig. 8  Availability Map for Snapshot ARAIM  

using depleted constellations, Pconst = 10-4,  ℓ = 35 m 

(coverage of 99.5% availability is 62.5%). 
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Fig. 9  Availability Map for Batch ARAIM  

using depleted constellations, Pconst = 10-4,  ℓ = 35 m 

(coverage of 99.5% availability is 90.0%). 

 

 

In the figures, availability is color-coded:  white color 

corresponds to a value of 100%, black represents 80%.  

Constant availability contours are also displayed.  The 

gray areas in Fig. 8 indicate that snapshot ARAIM is 

clearly outperformed by batch ARAIM in Fig. 9. 

 

The worldwide availability metric given in the figure 

captions is the weighted coverage of 99.5% availability:  

coverage is defined as the percentage of grid point 

locations exceeding 99.5% availability.  The coverage 

computation is weighted at each location by the cosine of 

the location’s latitude, because grid point locations near 

the equator represent larger areas than near the poles.  

Figures 8 and 9 show that the coverage of 99.5% 

availability increases from 62.5 % for snapshot ARAIM, 

to 90.0% for batch ARAIM, assuming   = 35 m. 

 

This result was obtained using the ‘baseline’ snapshot 

ARAIM algorithm described in [1-3].  Reference [2] also 

provides an ‘optimized’ estimator, which, when evaluated 

under the same assumptions as in Fig. 8, provides 

coverage of 99.5% availability of 81%.  Therefore, even 

using an optimized estimator, coverage using snapshot 

ARAIM is 9% lower than using batch ARAIM.  

Furthermore, the optimal estimator approach [2, 7, 9] is 

compatible with batch ARAIM, so that availability in  

Fig. 9 can be further improved.  This will be investigated 

in future work. 

 

Figures 10 and 11 evaluate the potential of batch ARAIM 

to meet requirements that are more stringent than 

LPV200, including a tight alert limit:   = 10 m. In this 

case, one key assumption to achieve high availability is 

that the prior probability of constellation-wide faults must 

be reduced to 810constP .  This assumption, also 

considered in ARAIM (for ‘horizontal ARAIM or H-

ARAIM in [2]), may be accomplished using the 



guidelines in [36].  These guidelines exploit additional 

information from the ANSP ground segment.  In Figs. 10 

and 11, availability maps assume nominal 24-satellite 

GPS and Galileo constellations.  The same color code as 

in Figs. 8 and 9 is used.  Again, batch ARAIM in Fig. 11 

provides a dramatic improvement as compared to 

snapshot ARAIM in Fig. 10.  

 

Worldwide coverage of 99.5% availability, and of 95% 

availability (given in parentheses), for the above 

configurations, for nominal and depleted constellations, 

are listed in Table 2.  Table 2 quantifies the global 

performance improvement brought by batch ARAIM as 

compared to snapshot ARAIM.  As mentioned throughout 

the paper, this improvement comes at the cost of higher 

computation and memory loads, of additional ground 

segment commitments on URRA, and of few extra 

parameters in the ISM.  It must also be noted that, for 

aircraft navigation standards that are more stringent than 

LPV200, and that include   = 10 m, additional 

requirements are typically involved, e.g., on the 

communication link between ANSP ground segment and 

aircraft.  Such considerations are beyond the scope of this 

paper.   

 

Table 2 suggests that a 10 meter alert limit may be 

reachable using nominal constellations, but for now, only 

with low coverage.  The coverage metric can be deceiving 

(e.g., availability averaged over all locations in Fig. 11 is 

98%).  Still, additional research is needed to improve 

coverage, for example using optimized estimators. 

 

CONCLUSION 

 

In this paper, a new ARAIM integrity monitoring method 

was devised, which exploits the motion of satellites from 

multiple GNSS.  Raw measurement error models over 

time were established.  These models were then 

incorporated in batch-type estimation and solution-

separation fault-detection processes.   

 

The impact of satellite motion on ‘batch ARAIM’ was 

analyzed as a functions of batch period, and then 

quantified globally in comparison with conventional 

‘snapshot ARAIM’.  The proposed batch ARAIM 

implementation is slightly more computation and memory 

expensive than snapshot ARAIM.  But, it can provide 

significant performance improvements both when aiming 

to achieve LPV200 requirements using depleted 

constellations, and when trying to meet a much more 

stringent ten-meter alert limit.   

 

The next step of this research is to investigate ways to 

further improve availability when trying to achieve 10-

meter alert limits, for example by employing non-least-

squares estimators specifically designed to minimize 

integrity risk.   

0
.8

0
.8

0
.8

0
.8

0
.8

0.
8

0.8

0.8 0
.8

0.
8

0.8

0.8

0
.8

0.8

0.8

0
.80

.8

 135

 W   90


 W   45


 W    0


     45


 E   90


 E  135


 E 

 45

 S 

  0

   

 45

 N 

 
Fig. 10  Availability Map for Snapshot ARAIM using 

nominal constellations, Pconst =10-8, ℓ =10 m,  

(coverage of 99.5% availability is 0%). 

 

 

0
.90

.9
5

0
.9

5

0
.9

50.95
0.9

5

0
.9

5

0
.9

50
.9

5

0.950
.9

5 0.95

0
.9

5 0.95

0
.9

5

0.99

0.990.99

0
.9

9

0.99

0
.9

9

0.99

0
.9

9

0.
99

0.99 0
.9

9

0.
99

0.9
9

0.99

0.99 0.99 0.99

0
.9

9

0.9
9

0.99

0.99

0.99

0.99

0
.9

9

0.99

0.99

0
.9

9
0
.9

9

0
.9

9

0.9
9

0
.9

9

0.99

0.99

0.99

0.99

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1 1

1

1

1 1

1
1 1

1

1 1

1
1

1

1

1

1

1
1

1

1

1

1

1
1

1

1

1

1

1

 135

 W   90


 W   45


 W    0


     45


 E   90


 E  135


 E 

 45

 S 

  0

   

 45

 N 

 
Fig. 11  Availability Map for Batch ARAIM, using 

nominal constellations, Pconst =10-8, ℓ =10 m, TB =900s, 

(coverage of 99.5% availability is 43%). 

 

 

Table 2. Coverage of 99.5% Availability, and 

Coverage of 95% Availability (in parentheses) 

 
Snapshot 

ARAIM 

Batch 

ARAIM 

nominal constellations ,  

Pconst = 10-4,  =35 m, TB=600s 
94%  

(100%) 

100%  

(100%) 

depleted constellations,  

Pconst = 10-4,  =35 m, TB =600s 
63%  

(98%) 

90%  

(100%) 

nominal constellations,  

Pconst = 10-8,  =10 m, TB =900s 
0% 

(0%) 

43% 

(86%) 
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APPENDIX A:  IMPACT OF SV MOTION ON 

POSITIONING ERROR VARIANCE DERIVATION  

 

The analysis described in this appendix and illustrated in 

Figure 1 is an extension of the ‘Static Surveying’ problem 

given in [21].  In this case, the measurement vectors 0φ   

and 1φ  include differential carrier phase signals (at times 

0 and 1) from satellites i , for ni ,...,1 .  Simplifying the 

problem to be one-dimensional along the vertical 

direction in a local reference frame at the aircraft location, 

0φ   and 1φ  are written by: 
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These measurements are expressed in matrix form as: 
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and 

Vx   is the vertical position to be estimated 

(displayed in Figure 1) 

nI   is an nn  identity matrix 

i   carrier phase cycle ambiguity for SV i  

 

The carrier phase measurement noise vector 
TTT ][ *1*0 vv  

is assumed zero-mean normally distributed with 

covariance matrix 
2

*2 nI .  The WLS estimate error 

variance for Vx  is given by: 
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where 

ba0   is an ba  matrix of zeros 

 

Using a popular matrix inversion formula, 
2
V  becomes:  
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which, using the above definitions of 0g  and 1g  can be 

written as: 
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This result is commented upon in Section ‘A First 

Analysis of the impact of Geometric Diversity on Bias 

Estimation’.   

 

Equation (A.4) can be further analyzed considering small 

angular variations over an infinitesimally small time 

interval tδ .  Because in this illustrative example, 
2
V  

becomes infinitely large when 10  ii  , let us assume 

that we have prior knowledge on Vx  with variance 

2
, priorV .  The reasoning is pursued in the information 

form because information (inverse of variance) can 

directly be added up.  We are interested in determining 

the contribution 2δ 
V

i  of the motion of SV i over tδ  

(other SVs are assumed static) to the a-posteriori Vx -

estimate information 
2
,


postV :  22

,
2
, δ   V

i
priorVpostV  .  

The information 2δ 
V

i  can be written as: 
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Using a first order Taylor series approximation for small 

angular variations about 0  of the second term in the 

sum, Equation (A.5) becomes: 
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Low elevation satellites have a zenith angle 0
i  

approaching 90 .  Equation (A.6) shows that the 

information contribution 2δ 
V

i  is larger for these 

satellites than for high elevation SVs, both because of the 

0sin i -term, and because   is larger at low elevations. 

 

 

APPENDIX B:  QUADRATIC ERROR MODEL 

 

The satellite clock and orbit ephemeris error equation for 

satellite i  at time k  is: 
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where 

E

i q   is an unknown, constant quadratic 

coefficient 

 

This quadratic error model is processed using nine months 

of truth-broadcast data processed as described in Section 

“Derivation of Raw Measurement Error Models Over 

Time”.  The resulting overbounding Gaussian standard 

deviations are listed in Table 3.  The residual error 

deviation in the rightmost column is reduced from 5.7 cm 

for the linear model (see Table 1) to 3.1 cm for the 

quadratic model.  But, as mentioned in the text, 

implementing the quadratic error model would require 

additional commitments on URAA, and extra parameters 

broadcast in the ISM.   

 

 

Table 3.  Quadratic Error Model Parameter Over-

Bounding Standard Deviations  

 
Standard deviation of bounding Gaussian 

function 

 for bE for gE for qE for RES 

CLK 0.27 m 1.510-4 m/s 5.610-8 m/s2 0.024 m 

R 0.30 m 2.310-4 m/s 9.510-8 m/s2 0.002 m 

I 1.42 m 5.410-4 m/s 2.110-7 m/s2 0.061 m 

C 1.22 m 3.010-4 m/s 1.410-7 m/s2 0.053 m 

O 0.6 m 3.110-4 m/s 1.310-7 m/s2 0.031 m 

CLK : clock component;  R : orbit radial;  I : in-track;  C : cross-track  

O: overall value (using Equation (5)) 
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