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ABSTRACT  

 

In this paper, a new continuity risk evaluation method is developed, simulated, and tested for laser-based navigation 

algorithms using feature extraction (FE) and data association (DA).  A major risk for safety in FE and DA is caused by 

incorrect association, which happens when attributing a feature extracted from laser data to the wrong landmark in a pre-

established map.  In prior work, we designed an innovation-based DA process to evaluate the integrity risk caused by 

incorrect associations while considering all potential measurement permutations.  In this paper, permutations are used again 

at the FE step to determine the minimum normalized separation between extracted features.  Features that are poorly 

separated are easily found, but are likely to be incorrectly associated.  If the minimum separation is smaller than expected, 

then features are not extracted, which causes loss of navigation continuity.  This paper provides an analytical upper-bound on 

the continuity risk caused by nominal laser measurement errors, and an integrity risk bound guaranteeing a predefined level 

of continuity.   These safety risk bounds are analyzed and tested in example scenarios showing that the lower the continuity 

risk requirement is, the higher the integrity risk due to incorrect associations becomes.   

 

INTRODUCTION  

 

This paper describes the design, analysis and testing of a new integrity and continuity risk monitoring method for laser-based 

localization using feature extraction (FE) and data association (DA).  FE and DA are pre-estimator data processing functions 

that are implemented in laser-based navigation applications [1-14].  This research builds upon prior work in [15] where an 

integrity risk prediction method for FE and DA was first established.  The focus in this current paper is on continuity risk 

evaluation, and on quantifying the impact on navigation integrity of meeting a pre-defined continuity requirement.  This work 

intends to quantify risks involved with FE and DA, thereby ensuring safety of laser-based localization for autonomous 

passenger vehicles (APV).   



 

Currently, the most publicized efforts to demonstrate APV safety are Google’s and Tesla’s approaches to have APVs drive 

millions of miles with minimal human intervention.  At this time, Google cars have autonomously travelled an impressive 

two million miles in urban areas [16].  Tesla’s autopilot is reported to have driven more than 130 million miles –on highways 

only– before it caused a fatality in May 2016.  In parallel, the National Highway Traffic Safety Administration (NHTSA) 

reports about one fatality in traffic accidents per 100 million mile driven by human drivers [17, 18].  But, this number 

accounts for incidents on all roads, in all weather conditions, and for all vehicle ages and types.  Thus, a purely experimental, 

complete proof that APVs match the level of safety of human driving would require billions of miles driven.  This is 

assuming that no fatalities occur during that time, that no major APV upgrade is performed, and that the testing environment 

is representative of all U.S. roads.  Clearly, other methods must also be employed to ensure APV safety. 

 

As a complement to testing, this research leverages prior analytical work carried out in civilian aviation navigation where 

safety is assessed in terms of integrity and continuity.  These top-level quantifiable performance metrics are sensor- and 

platform-independent, and can thus be used to set certifiable requirements on individual system components to achieve and 

prove an overall level of safety.  Integrity is a measure of trust in sensor information:  integrity risk is the probability of 

undetected sensor errors causing unacceptably large positioning uncertainty [19].  Continuity is a measure of the navigation 

system’s ability to operate without unscheduled interruption [19].  Both loss of integrity and loss of continuity can place the 

APV in hazardous situations.   

 

Several methods have been established to predict the integrity and continuity risks in Global Navigation Satellite Systems 

(GNSS)-based aviation applications, which are instrumental in ensuring the safety of pilots and crew [19-22].  Unfortunately, 

the same methods do not apply to APVs, because ground vehicles operate under sky-obstructed areas where GNSS signals 

can be altered or even blocked by buildings and trees.   

 

APVs require sensors in addition to GNSS, including laser scanners or radars, whose raw information must be pre-processed 

before it can be used for navigation [8, 23-24].  We focus on laser scanners because of their prevalence in APVs, of their 

market availability, and of our prior experience.  A raw laser scan is made of thousands of data points, each of which 

individually does not carry any useful information.  Raw laser data must be segmented or grouped to identify ‘features’, 

which are then processed for navigation.   

 

Features in the perceived environment can include, for example, lines or planes corresponding to building walls in two- or 

three-dimensional scans, respectively.  Features can be tracked over successive observations to provide relative ‘pose’ 

estimation (pose designates position and orientation).  Previous knowledge of feature parameters, such as the coordinates in a 

local East-North-Up navigation frame of the vector normal to line- or plane-features, can be provided either by a landmark 

map, or by previous observations when using SLAM-type algorithms (SLAM stands for Simultaneous Localization And 

Mapping).  Feature parameters can be used for APV pose estimation using an extended Kalman filter (EKF) [8,23,24]. 

 

To achieve this, two intermediary procedures must be carried out [2,5,7,8].  (1) ‘Feature extraction’ (FE) aims at identifying 

the few most consistently identifiable, distinguishable, and viewpoint-invariant landmarks in the raw laser scan.  (2) ‘Data 

association’ (DA) assigns these extracted features to the corresponding mapped landmarks that are used in the EKF over 

successive observations.  Incorrect association is a well-known problem that can lead to large navigation errors [25].  Several 

publications on multi-target tracking describe relevant approaches to evaluate the probability of correct association in the 

presence of measurement uncertainty [1, 26, 27].  However, these algorithms are not well suited for safety-critical APV 

applications due to their lack of prediction capability, to approximations that do not necessarily upper-bound risks, and to 

high computational loads.  Overall, research on integrity and continuity of FE and DA is sparse.    

 

In [15], we developed an analytical integrity risk prediction process for FE and DA.  We established a multiple-hypothesis 

innovation-based DA method, which provides the means to evaluate the probability of incorrect associations while 

considering all potential measurement permutations.  This algorithm was analyzed and tested to quantify the impact of 

incorrect associations on integrity risk, and the following key safety-tradeoff was pointed out:  on the one hand, clearly 

distinguishable landmarks are desirable to avoid incorrect associations; but on the other hand, requiring large separation 

between features may prevent continuous navigation.  How can we evaluate the continuity risk of FE and DA? 

 

In response, in this work, we derive a new analytical method to rigorously quantify the continuity risk of laser-based 

navigation for applications to APV localization.  The method guarantees that a predefined continuity risk requirement is met, 



and evaluates the resulting impact on integrity risk.  The paper does not present a landmark selection method, but is an 

incremental step towards extracting the set of features that maximizes safety performance.   

 

To narrow down the scope of the paper, we must first define the continuity risk as it specifically applies to laser-based 

navigation, which has not been done before.  In this paper, a set of features will be extracted only if it meets a predefined 

separation threshold.  Thus, to mirror the aviation’s definition of continuity threats that are unscheduled mission interruptions 

[19], this paper addresses loss of continuity due to unexpectedly low separation between extracted features.  Lack of 

predictability is caused by sensor and map uncertainty.  In other words, the continuity risk is the probability of not extracting 

a feature which was supposed to be extracted because of sensor error.  Similar to GNSS, there will be other sources of loss of 

continuity [28, 29] that will be addressed in future work.   

 

Following the above definition, areas of sparsely distributed landmarks can prevent laser-based navigation, but do not cause 

loss of continuity as long as they can be scheduled, e.g., using a map or using previous observations of landmarks.  

Insufficient landmarks are a source of availability risk, which can be mitigated using multi-sensor approaches that are beyond 

the scope of this work. 

 

Thus, this paper assumes either a pre-established map, or prior observations of static landmark features.  Many sophisticated 

algorithms have been devised to extract such features [1-15], and specific FE implementation detail are not discussed here.  

In practice, misleading-feature detection and exclusion methods must be used to deal with miss-extracted, non-static, and 

non-repeatedly-identified features that are not addressed in this work.  Instead, the starting point of this paper is that the few 

most reliably recognizable features are repeatedly extracted, with a feature estimation error that can be linearly modeled and 

stochastically bounded using [30, 31].  The objective is to quantify the safety risks involved in FE and DA. 

 

The second section of this paper introduces a probabilistic measure of the system’s ability to distinguish landmarks, which is 

instrumental to prevent incorrect associations.  The normalized separation between features is evaluated for all possible 

landmark permutations within a set.  Features that can be exploited in this research not only include landmark position and 

orientation, but also size, surface color, reflectivity, roughness, or any other measurable characteristic.  The minimum feature 

separation can be determined at FE using current sensor data (no association needed), and can be also be predicted using a 

landmark map or prior observations.  We use this minimum separation metric to compare expected versus measured 

separation and to establish an upper-bound on the continuity risk.  A minimum separation threshold is established to meet a 

predefined continuity requirement. 

 

This threshold is used in the third section of this paper to refine the integrity risk bound derived in [15].  DA is performed 

using a nearest neighbor criterion [1], defined by the minimum normalized norm of the EKF innovation vectors over all 

possible landmark permutations.  A multiple-hypotheses approach is employed to assess the impact on integrity risk of 

incorrect associations.  An analytical integrity risk bound is obtained by incorporating the continuity-based minimum 

separation threshold defined above. 

 

In the fourth section, the FE and DA integrity and continuity risk monitoring methods are evaluated by covariance analysis, 

for landmark geometries representing an APV passing by two point-features.  The results illustrate the fact that the estimation 

error covariance is not an accurate measure of safety performance.  In contrast, the integrity risk bound derived in this paper 

does account for potential incorrect associations.   

 

Preliminary experimental testing is carried out in the fifth section.  A set of data was collected in a structured environment 

using a multi-sensor system made of two two-dimensional laser scanners mounted back to back, and a carrier phase 

differential GPS implementation.  This data is analyzed to assess the sensitivity of the integrity risk bound to varying values 

of the continuity risk requirement.   

 

CONTINUITY RISK OF FEATURE EXTRACTION 

 

This section first describes a normalized measure of separation between landmark features.  The minimum separation can be 

computed at FE without requiring DA.  It can be established in parallel using current sensor data and using a map of 

previously observed features, so that expected and measured separation can be compared.  This comparison is the basis for 

continuity risk evaluation.  In addition, the minimum separation within a set of features is determined by considering all 

possible permutations.  This multiple-hypothesis approach will become useful again in the next section because the mean 

separation vectors and mean EKF innovation vectors are related.   



 

Normalized Measure of Separation Between Features 

 

Let Ln  be the total number of visible landmarks, and Fm  the number of feature parameters estimated per landmark.  

Depending on the sensor system, feature parameters can include a variety of measured characteristics such as position, 

orientation, size, and surface properties.  The total number of feature parameters within the visible landmark set is:  

FLmnn  .  We can stack the actual (true) values of the extracted feature parameters for all landmarks in an 1n  vector z .  

Let ẑ  be an estimate of z .  Vector ẑ , the extracted feature parameter measurement vector, is normally distributed with 

mean z and covariance matrix V .  We use the notation: 

 

   Vzz ,~ˆ N   (1) 

 

At the FE step, all feature measurements ẑ  are known for an arbitrary ordering of the landmarks.  If Ln  landmarks are 

extracted, there are )!( Ln  potential landmark permutations, i.e., )!( Ln  ways to arrange the feature measurements in (1), which 

we will call )!( Ln  candidate associations in the next section of the paper.  To determine the separation between all visible 

landmarks, we consider a comprehensive set of landmark permutations matrices noted iA , for hi ,...,1 , where the number 

of non-identity permutations is 1! Lnh .  We also define matrices iB  as ini AIB  , for hi ,...,1 , where aI  is the 

aa  identity matrix. 

 

As an illustrative example, consider the case where permutation ‘ 1i ’ is used to evaluate the separation between landmark 

‘1’ and landmark ‘2’.  iA  and iB  take the following forms:  
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where ba0  is an ba  matrix of zeros.  For a permutation i , the following estimated landmark ‘separation’ vector is defined:   
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and where id  is the true value (or mean value) of the separation vector while id̂  is its estimated value.  iB  is rank deficient, 

with rank values ranging from Fm  to Fmn   depending on how many landmarks are involved in permutation i , for 

hi ,...,1 .   Let ir  be the rank of iB .  An orthogonal decomposition of the symmetric positive semi definite matrix iD  is 

expressed as: 
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where iS  is a ii rr   diagonal matrix of non-zero singular values, and iU  is a irn  matrix such that 
ir

i

T

i IUU  .  For 

each permutation, we can define the 1ir  normalized separation vector iη̂  as: 
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Let 
2ˆ
id  be the measured separation metric, which we choose to be the norm squared of iη̂ : 
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Using the norm operator, id̂  can be expressed as:  
iid η̂ˆ  .  

2ˆ
id  is non-centrally chi-square distributed with ir  degrees of 

freedom and with non-centrality parameter noted 
2

id .  We use the notation: 
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Let iz  be the expected feature parameter value, obtained either from a map ( ii mz  ) or from previous observations of 

landmark feature parameters ( )(xhz ii  ).  We assume that ),(~ iii N Vzz .  At FE, current-time measured landmark 

features have not been associated with expected ones (no DA yet), so that landmark orderings in ẑ  and iz  do not necessarily 

match.  Substituting iz  and iV  for ẑ  and V in equations (1) to (9), the ‘expected’ (instead of ‘measured’) feature 

separations jd , for hj ,...,1  can be computed.  The notations id̂  (hat-symbol) and jd  (bar-symbol) are used to 

distinguish measured versus expected quantities, which are impacted by different sensor/map errors.  Different indices ( i  

versus j ) are used because the ordering of landmark subset separations does not match in general.   

In order to compare the two sets of separation metrics, we use the minimum measured separation d̂  and the minimum 

expected separation d  defined as: 
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We assume that the same set of landmarks is observed and expected.  The case where this assumption is not satisfied can be 

addressed by FE algorithm design and by misleading-feature detection/exclusion, which will be tackled in future work.   

 

Bounding the Continuity Risk of Feature Extraction 

 

Let REQC  be a predefined continuity risk requirement, as specified for example aviation applications in [19].  To ensure that 

REQC  is achieved, a continuity criterion is defined, expressing that a set of landmarks is extracted if and only if:  

 

    Td ˆ  (11) 

 

where T  is the FE threshold.  T  is set to ensure that the continuity risk, or probability of loss of continuity (LOC), is smaller 

than REQC .  The following equation can be used to determine T : 

 

  
REQLOC CdTdPP  )|ˆ(   (12) 

 

The distribution of 2d̂  given in (9) is unknown because the non-centrality parameter 
2d  is unknown.  But, we can use d  as 

a noisy estimate of d .   

Appendix A describes a two-step process to determine T  while taking into account uncertainty in d̂  and d .  The continuity 

risk requirement is allocated between these two steps following the equation: 
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The first step provides a probabilistic lower-bound DL  on d , which ensures that the following inequality is satisfied:    

 

  REQD CdLdP  )|( .   (14) 

 

The resulting value of DL  is then employed to upper-bound LOCP , starting from the definition in (12), and using the law of 

total probability and (14) in the following inequalities:  
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where we used the bound 1)(  DLdP , and we assumed that d  and d̂  were independent random variables.  Thus, to 

ensure REQLOC CP  , the following inequality must be satisfied:   
REQD CLdTdP ˆ)|ˆ(  .   

The second step of the derivation in Appendix A shows that: 
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where the distribution of 
2ˆ
D  is known:  
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D  is centrally chi-square distributed with a number of degrees of freedom Dr  such 

that  FDF mnrm  .  It is conservative with respect to LOCP  to assume FD mr  :   )0,(~ˆ 22

FD m .   

Finally, the continuity threshold T  is obtained using the following equation: 
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The above two step FE threshold determination process is illustrated in Fig. 2. 
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Fig. 1  Schematic Representation of the Two-Step Threshold Determination Process to Ensure a Predefined 

Continuity Risk Requirement  

 

 

 

 



INTEGRITY RISK EVALUATION FOR FEATURE EXTRACTION AND DATA ASSOCIATION 

 

Our approach to bound the integrity risk, or probability of hazardous misleading information )(HMIP , leverages the FE step 

to ensure that features are distinguishable, hence easier to associate.  The objective is to guarantee, with quantifiable integrity, 

that there is a minimum distance between landmarks.   

 

In this section, an integrity bound on the actual separation between estimated landmark features id , for all permutations 

hi ,...,1 , is established using the separation threshold T  defined in (20).  This bound is then used in the innovation-based 

multiple-hypothesis integrity risk evaluation method derived in [15].  We obtain an analytical upper-bound on )(HMIP  

accounting for the probability of incorrect association (IA) and constrained to a continuity risk requirement.   

 

Integrity Lower-Bound on True Feature Separation 

 

Using the same notations as in the previous section, if Ln  landmarks are extracted, there are )!( Ln  potential candidate 

associations between extracted features and mapped landmarks.  Subscript i  designates association hypotheses, for 

hi ,...,0 , where 1! Lnh .  We define 0i  the correct association (CA) hypothesis, the other h  hypotheses are IA.  The 

FE criterion specifies that no landmark is extracted if Td i 
ˆ  so that data association (DA) can only be performed under the 

condition Td i 
ˆ . 

 

The innovation-based method derived in [15] to evaluate )(HMIP  assumes a lower-bound iL  on the mean separation id  to 

bound the norm of the EKF innovations for association candidates hi ,...,0 .  The following derivation establishes with 

quantifiable confidence the value of iL , for hi ,...,1 .  The larger iL  is, the lower the )(HMIP -bound becomes [15].  

Therefore, we want to find the largest iL  that satisfies the following inequality: 
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where iREQFEI ,,  is a sub-allocation of REQFEI , , which is itself a small fraction of the overall integrity risk requirement REQI .  

REQFEI ,  is divided among the h  IA hypotheses as:  
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Using steps similar to the derivation in Steps 1 and 2 of the Appendix, the left-hand-side in (18) can be bounded using the 

following inequalities:  
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Fig. 2  Schematic Representation of the Process used to Determine a Lower-Bound ‘Li’ on the Mean Separation ‘di’ 

that is Guaranteed with a Predefined Integrity Risk Allocation IFE,REQ,i 

 

 

Fig. 2 provides an illustration of the variables in (20):  we want to find the largest mean value ii Ld   such that the 

probability of id̂  exceeding T  is lower than iREQFEI ,, .  Substituting (20) into (18), the integrity bound iL  can be determined 

using the following equation:  
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iL  is the minimum value of the mean separation vector norm squared id  that can be ensured with probability larger than 

iREQFEI ,,1 .  If TLi  , the integrity allocation cannot be met.  If TLi  , we have ensured with pre-allocated integrity that: 

 

  
22
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Innovation-Based Multiple-Hypothesis Integrity Risk Evaluation 

 

Reference [15] describes a method to evaluate the integrity risk in the presence of potential incorrect associations.  It uses a 

nearest neighbor association criterion [1] defined by the minimum norm of EKF innovation vectors weighted by the inverse 

innovation covariance matrix 1

iY , over all possible landmark permutations hi ,...,0 .  Let iy  be the mean value of the 

innovation norm.  iy  is remarkable in that it is only zero for the correct association ( 00 y , 0iy  for 0i ), which makes 

it a pertinent indicator of IA.  iy  is the true, sensor-error-free value of the innovation norm and is unknown.  

 

Reference [15] shows that iy  can be lower-bounded using the following inequality:  
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This result is used to establish an analytical bound on the integrity risk )( kHMIP  at a time step k , which accounts for the 

risk of incorrect association.  The integrity risk is expressed as [15]:  
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where 

k , q  are indexes identifying time steps 

K , Q  we use the notation ‘capital letter K ’ to designate a range of indices: },...,0{ kK   

KCA   is the correct association hypothesis for all landmarks at all times 

)(Q  is the tail probability function of the standard normal distribution 

  is the required alert limit that defines a hazardous situation, as specified in [19] for example aviation applications 

k   is the standard deviation of the EKF pose estimation error for the vehicle state of interest (e.g., lateral deviation may 

be of primary concern for an APV staying in its lane) 

kREQFEI ,,  is a predefined integrity risk allocation at FE, chosen to be a small fraction of the overall integrity risk requirement 

kREQI , . 

2

qr  is a chi-square distributed random variable with a number of degrees of freedom that is the sum of the number of 

measurements and of EKF states at time step q  

2

,qiL   is defined at FE in (22), and represents the minimum value of the mean separation vector norm squared that is 

measured at FE at time step q . 

2

,, qiMIN  can be determined at DA, and is defined to account for the worst-case projection of the FE’s separation vector into 

the DA’s innovation space. 

 

The analytical integrity risk bound in (26) to (28) not only accounts for the risk )|( Kk CAHMIP  that can be directly derived 

from the EKF covariance matrix assuming correct association (CA), but it also accounts for the probability of correct 

association at all current and past time steps 




k

q

Qq CACAP
1

1)|( .  This bound is implemented, analyzed, and tested in the next 

two sections. 

 

COVARIANCE ANALYSIS 

 

In this section, an example simulation is employed to evaluate (26) to (28).  The scenario is an illustrative two-dimensional, 

two-landmark problem.  Covariance can be analyzed assuming flawless FE and DA.  However, the integrity risk bound in 

(26) to (28) will show cases where the covariance does not capture aspects of safety risk due to incorrect associations (IA).  

Thus, this scenario helps quantify the impact of IA on )( kHMIP , and shows the sensitivity of )( kHMIP  to continuity risk 

requirement. 

 

Illustrative ‘Two Distinguishable Landmark’ Scenario 

 

Fig. 3 represents a vehicle designated by an upward pointing triangle roving between two landmarks represented by black-

shaded circles.  The vehicle starts at an initial, known position at point (0, 0) in a local East-North reference frame, and uses 

measurements from a laser or radar to estimate its position while moving northwards.  In this example, vehicle orientation is 

known (as if given by another sensor, e.g., a perfect inertial navigation system).  While roving along the North axis, the 

vehicle passes by two point-feature landmarks.  The actual landmark locations are initially unknown to the navigation 

system.  Landmark locations are simultaneously estimated with vehicle pose in a SLAM-type approach.  Simulation 

parameters are listed in Table 1. 

 

Positioning errors at consecutive sample updates are represented by covariance ellipses in Fig. 3, for the locations of the 

vehicle (red ellipses) and landmarks (blue ellipses).  These ellipses assume consistently successful FE and DA.  We focus on 

the East-West positioning error, perpendicular to vehicle’s straight line trajectory.  Cross-track errors are of primary concern 

for APV navigation safety, and the cross-track direction is where errors are the largest.  A cross-track drift over distance 

travelled is observed, which is typical of SLAM [13, 32, 33]. 



Table 1:  Simulation parameters 

System Parameters Values 

Standard deviation on raw ranging 

measurement in (2) 
0.02 m 

Standard deviation on raw angular 

measurement in (2) 
0.5 deg 

Laser range Limit  20 m 

Laser data sampling interval 0.5 s 

Vehicle speed 1 m/s 

Alert limit ℓ  0.5 m 

Integrity risk allocation for FE, IFE,REQ,k 10-8 

Continuity risk allocation for FE, CFE,REQ,k 10-2 to 10-6 
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Fig. 3  Covariance Analysis for the Illustrative ‘Two Distinguishable Landmark’ Scenario 

 

In this first ‘distinguishable landmark scenario’, the actual landmark locations are at (-5, 15) and (5, 15).  This relatively large 

separation makes them easy to distinguish.  It is worth noticing for the upcoming comparison with the next scenario that the 

blue covariance ellipses for the left and right landmarks do not overlap;  this can give an indication of separation magnitude. 

 

Fig. 4 shows the integrity risk bound labeled )( kHMIP , represented with a solid red curve for 
6

, 10kREQC , versus 

northward travel distance as the vehicles passes by the two landmarks.  The bound is always larger than 
8

,, 10kREQFEI , 

which corresponds to our choice of an example integrity risk requirement allocation 
8

,, 10kREQFEI .  As captured in (26), this 

)( kHMIP -bound is loose when 1)( KCAP  and 
810)|( Kk CAHMIP  , which is the case in Fig. 4 for travel distances 

smaller than 30 m.  The )( kHMIP -bound captures the risk involved in FE, and is a practical bound when trying to achieve an 

overall example requirement of 
7

, 10kREQI .   

 

In parallel, the black curve in Fig. 4 represents the bound on )|( Kk CAHMIP , which is fully determined by the alert limit   

and the vehicle positioning covariance.  This curve represents a vehicle navigation performance metric often used to evaluate 

laser-based navigation systems [13, 32, 33].  The black curve converges with our integrity risk bound (red curve) for travel 

distances larger than 30 m.  In this example, the black curve adequately captures the safety risk, because 1)( KCAP .  The 

next subsection shows that it is not always the case.  Finally, Fig. 4 indicates that, in presence of widely separated landmarks, 

)( kHMIP  is not sensitive to the continuity risk requirement since the curves for 
2

, 10kREQC  and 
6

, 10kREQC  overlap. 
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Fig. 4  Integrity Risk Bound for the Illustrative ‘Two Distinguishable Landmark’ Scenario.   

The red integrity risk ( )( kHMIP ) curves do not reach lower than 10-8 because of our choice of IFE,REQ,k=10-8 
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Fig. 5  Covariance Analysis for the Illustrative Two Difficult-to-Distinguish Landmark Scenario 
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Fig. 6  Integrity Risk Bound for the Illustrative Two Difficult-to-Distinguish Landmark Scenario  

 



Illustrative ‘Two Difficult-to-Distinguish Landmark’ Scenario 

 

In this second case, the two landmark locations represented in Fig. 5 are at (-3, 15) and (3, 15).  This makes them difficult to 

distinguish as suggested by the blue covariance ellipses that overlap from one landmark to the other. 

 

Fig. 6 displays the )( kHMIP -bounds in red, and the )|( Kk CAHMIP -bound in black, versus travel distance.  All curves are 

orders of magnitude higher than in Fig. 4.  This is because the change in geometry between vehicle and landmarks provides 

less information on vehicle cross-track deviation in Fig. 5 than it did in Fig. 3.  (The estimation process is detailed in [34].)  

This can also be seen with the red ellipses, which are horizontally more elongated in Fig. 5 as compared to Fig. 3.   

 

The )( kHMIP -bound shows the impact of possible incorrect associations on the integrity risk.  It can be noted that there is a 

substantial difference between the red and black curves, especially for a travel distance of 15 m where the vehicle is right 

between landmarks.  In this case, the covariance-based )|( Kk CAHMIP -bound is orders of magnitude below the )( kHMIP -

bound.  From a safety perspective, the covariance is a misleading navigation performance metric. 

 

In addition, Fig. 6 shows that, in the presence of poorly separated landmarks, )( kHMIP  can be very sensitive to the 

continuity risk requirement:  there is almost an order of magnitude difference between the thick dotted red curve for 
2

, 10kREQC  and the thinner solid red curve for 
6

, 10kREQC .  The method that we used to quantify the impact of kREQC ,  on 

)( kHMIP  using analytical results is a key contribution of this paper. 

 

PRELIMINARY EXPERIMENTAL TESTING 

 

Preliminary experimental testing of our proposed method is carried out using data collected in a structured environment 

shown in Fig. 7.  Static simple-shaped landmarks are located at locations sparse enough to ensure successful outcomes for FE 

and DA.  Because the results presented here are free of incorrect associations, they describe the estimation process, and 

)( kHMIP  is expected to match )|( Kk CAHMIP .  Also, because landmarks are widely separated, the sensitivity of )( kHMIP  

to kREQC ,  is expected to be small, similar to the case displayed in Fig. 4. 

 

Measurements from carrier phase differential GPS (CPDGPS) as well as laser scanners are synchronized and recorded.  In 

order to obtain a full 360 deg laser scan, two 180deg laser scanners are assembled back-to-back.  The laser scanners have a 

specified 15-80 m range limit, a 0.5 deg angular resolution, a 5 Hz update rate and a ranging accuracy of 1-5 cm (1 sigma) 

[35].  The GPS antenna is mounted on top of the front laser.  The lever-arm distance between the two lasers is included in the 

measurement model.   

 

The two lasers and the GPS antenna are mounted on a rover also carrying the GPS receiver and data-link.  An embedded 

computer onboard the vehicle records all measurements including the raw GPS data from the reference station transmitted via 

wireless spread-spectrum data-link.  Truth vehicle trajectory and landmark locations are obtained using a fixed CPDGPS 

solution.   

 

In this ‘forest-type scenario’, landmarks are tree-trunks reproduced using five cardboard columns and one dark plastic 

garbage can.  Because there is actually no physical obstruction to the sky, satellite masking for the GPS/laser integration 

system is performed artificially as illustrated in Fig. 7:  an artificially simulated tree canopy blocks high-elevation satellite 

signals;  low-elevation GPS observations are not used either inside the obstruction. 

 

As mentioned in the first paragraph of this section, the landmark geometry in this experiment is such that the risk of incorrect 

association is extremely small.  This is confirmed on the upper chart in Fig. 8 where the actual error (thick line) fits the 

covariance envelope (thin line) throughout the test.  The lower graph also shows that the )( kHMIP -bound matches the 

)|( Kk CAHMIP -bound, except between 565 m and 600 m of travel distance where the predefined integrity risk allocation for 

FE (
8

,, 10kREQFEI ) is the dominant term in the )( kHMIP -bound.  Also, because landmarks are clearly distinguishable, the 

)( kHMIP -bound is expectedly insensitive to the continuity risk requirement kREQC , , which is consistent with the result in 

Fig. 4. 



 

This test demonstrates that the method derived in this paper can be implemented using actual data from a multi-sensor 

GPS/laser system, and that the analytical integrity risk bound is tight when the risk of incorrect association is small.  Further 

experimental validation in more realistic environments will be carried out in future work. 
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Fig. 7  Experimental Setup of a Forest-Type Scenario, where a GPS/Laser-Equipped Rover is driving by Six 

Landmarks (Cardboard Columns) in a GPS-Denied Area.  GPS is Artificially Blocked by a Simulated Tree Canopy, 

and a Precise Differential GPS Solution is used as Truth Trajectory.   
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Fig. 8  (TOP) Cross-Track Positioning Error (thick black line) and Covariance Envelope (thin line), and  

(BOTTOM) Integrity Risk Bounds Versus Travel Distance for the Preliminary Experimental Data Set Capturing a 

Forest-Type Scenario.  The vehicle started in a GPS-available area (yellow-shaded) and entered a transitional GPS-

and-laser-available area (green) where absolute landmark position start being estimated;  the vehicle then travels 

through a GPS obstruction and relies on laser/radar-only (blue-shaded area), so that the vehicle pose estimation error 

increases with travel distance;  the vehicle finally gets back into a GPS available area (yellow), and the cross-track 

positioning drift is stopped.   

 

 

 



CONCLUSION 

 

This paper presents a new approach to ensure the safety of laser or radar-based navigation using feature extraction (FE) and 

data association (DA) by quantifying the integrity risk, while guaranteeing a required level of continuity.  

 

Analytical integrity and continuity risk bounds are established, which account for failures in FE and DA.  This paper focuses 

on establishing a minimum normalized separation metric ensuring, in a statistically quantifiable manner, that landmarks are 

distinguishable.  An FE-criterion is designed to achieve a pre-defined continuity risk requirement.  Then, this FE criterion is 

exploited at DA, where an innovation-based nearest-neighbor association criterion is employed to evaluate the risk of all 

potential incorrect associations, at each time step in the iterative vehicle pose estimation process.   

 

Performance evaluations are carried out by covariance analysis, showing that the positioning error covariance is an 

incomplete and misleading safety performance metric, and quantifying the impact on integrity risk of the continuity risk 

requirement:  the integrity risk is most sensitive when landmarks are poorly separated.  In this case, the more stringent the 

continuity risk requirement is, the higher the integrity risk becomes.  This is a key tradeoff in navigation safety, and is 

demonstrated here for the first time in laser-based localization using FE and DA.   

 

Finally, preliminary experimental testing was carried out using a multi-sensor GPS/laser system onboard a vehicle roving in a 

structured environment.  It showed that the integrity risk evaluation method can be implemented with real data.  Future 

testing will be performed in a more realistic passenger vehicle operating environment. 

 

APPENDIX 

 

This appendix aims at (Step 1) establishing a LOC probability bound DL  on the true minimum separation between landmarks 

d , and (Step 2) deriving an upper bound on )|ˆ( DLdTdP   so that the FE continuity threshold T  can be determined. 

 

Step 1: Probability bound on the true separation 

 

The first step of the derivation aims at finding DL , such that dLD  , to satisfy (14):   REQD CdLdP  )|( .   REQC  and d  

are given, DL  and d  are unknown, but d  provides a noisy measure of d .  The following inequalities are used: 
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where η  is the normalized expected separation vector and 
2

D  is the expected separation error squared (
22

ηηD ).  η  

corresponds to the minimum expected separation, i.e., η  is jη  for j  defined using (10) as:   )(minarg
,..,1

j
hj

d


.  The 1jr  

vectors jη  where jr  is the rank of jB , for hj ,...,1 , are derived using the same equations as (3) to (7), except that 

subscripts i  are replaced with j , ẑ  in (3) is replaced with iz , and V  in (4) is replaced with V .  The above derivation uses 

the reverse triangle inequality: 

 

  ηηηηηη  dd   

 



In addition, 
2

D  is centrally chi-square distributed with a number of degrees of freedom r :  FF mnrm  , and it is 

conservative with respect to continuity risk to assume  )0,(~ 22

FD m .  The lower bound DL  is determined using the 

equation: 
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Step 2: Upper bound on )|ˆ( DLdTdP   

 

The second part of this Appendix aims at showing that:   )ˆ()|ˆ( TLPLdTdP DDD   .  We will use this inequality 

to find the FE threshold T  such that DLT  , to guarantee that REQLOC CP  .  We consider the following inequalities: 
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The threshold T  will be selected such that DLT  .  In addition, by definition in (12), the event 0`ˆ  dd  is not a continuity 

issue because, when this event occurs,  TLdd D ˆ  (in accordance with the conditional event on the left-hand side of the 

above inequalities, and with the definition of LOCP  in (12)).  Thus, the only LOC case to consider is 0ˆ  dd , so that both 

sides of the inequality in the above bound are negative.  )|ˆ( DLdTdP   can be further bounded using the following 

inequalities: 
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where η̂  is the normalized estimated separation vector and 
2ˆ
D  is the estimated separation error squared (

22 ˆˆ ηηD ).  η̂  

corresponds to the minimum estimated separation, i.e., η̂  is iη̂  for i  defined using (10) as:   )ˆ(minarg
,..,1

i
hi

d


.  The above 

derivation uses the reverse triangle inequality: 

 

 
Ddd ̂ˆˆ|ˆ|  ηηηη   

 

and proves that )ˆ()|ˆ( TLPLdTdP DDD   . 
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