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APVs Were Just Around the 
Corner … in 1958 

 

[IEEE Spectrum]  Evan Ackerman , “Self-Driving Cars Were Just Around the Corner—in 1960”, IEEE Spectrum Magazine, September 2016 

1958 
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Stepping Stones to APVs:  
DGPS/INS, laser, radar 

• DARPA Grand Challenge (2005) 

– 150 miles across Mojave desert  

– 4 teams completed the course while 
averaging ~20 mph 

 

• DARPA Urban Challenge (2007) 

– 60 miles in urban areas,  

– obey traffic regulations and negotiate 
obstacle, traffic, pedestrian 

– 3 teams completed course while 
averaging ~13 mph 

http://www.tartanracing.org/index.html 

Stanford’s Stanley 

Tartan Racing’s Boss (Carnegie Mellon)  

https://cs.stanford.edu/group/roadrunner/stanley.html 
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Scope of Current APV Research 
Efforts  

• Google and most car manufacturers have 
autonomous car prototypes 

 

• The National Highway Traffic Safety 
Administration (NHTSA) classification: 

– Level 1: Function-specific Automation  

– Level 2: Combined Function Automation  

– Level 3: Limited Self-Driving Automation  
               driver expected to take over at any time 

– Level 4: Full Self-Driving Automation   
 

[NHTSA ‘13]  NHTSA, “Preliminary statement of policy concerning automated vehicles,” online, 2013 

[Haueis ‘15] Haueis, “Localization for automated driving,” ION GNSS+ 2015  

[Haueis ‘15] 



5 

 

Example Experimental Testing 
Campaigns 

• My understanding of Google’s approach 

– testing with trained operators ready to take over, on select roads 

– soon to reach 2 million miles driven in autonomous mode [Google ‘16]   

 

• My understanding of Tesla’s approach 

– ‘Model S’ autopilot available on the market, restricted to highway 

 constant reminders: “Always keep your hands on the wheel, be prepared 
to take over at any time” 

– 70,000 ‘Model S’ Autopilots are claimed to have driven 130 million miles 
[Rogowsky] 

 

[Google ‘16]  Google, “Google Self-Driving Car Project Monthly Report”, available online, August 2016 

[Rogowsky] Rogowsky, “The Truth About Tesla's Autopilot Is We Don't Yet Know How Safe It Is” , Forbes, 2016 
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APV Accident Reports 

• In 2015, Google reported: 

– 13 ‘contacts’ avoided by operator, 
Google car at fault in 10 of them 
[Google ‘15] 

 

• February 14 2016  
in Mountain View, CA : 

– first crash where Google car was 
at fault 

 

• May 7 2016 in Williston, FL: 

– Tesla autopilot caused a fatality 

Failure to 
distinguish 

white trailer 
from bright 

sky 

Roof strikes belly 
of trailer 

Car keeps 
going 

http://jalopnik.com/ 

www.straitstimes.com 

[Florida Highway Patrol] 

[Google ‘15]  Google, “Google self-driving car testing report on disengagements 
of autonomous mode”, available online, December 2015 
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How do these APVs Compare to 
Human Drivers? 

• In the U.S., car accidents cause over 30,000 deaths/year, 
90% of which are due to human error [NHTSA ‘14]  

– 3 trillion miles driven per year  

 1 fatality per 100 million mile driven (MMD) 

 

• Not enough data yet to prove safety (or lack thereof) of 
Tesla / Google APVs 

 

• A purely experimental approach is not sufficient 

 in response, leverage analytical methods used in aircraft navigation safety 

 

[NHTSA ‘14]  fars.NHTSA.dot.gov, “Fatality analysis reporting system. Technical report, National Highway Traffic and Safety Administration,” 2014 
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Leveraging Analytical Methods 
Used in Aviation Safety 

 

 

 

 

 

• It took decades of R&D to bring alert limit down to 10 m [LAAS] 

 

• Challenges in bringing aviation safety standards to APVs 

– GPS-alone is insufficient   multi-sensor system needed  

– not only peak in safety risk at landing  continuous risk monitoring 

– unpredictable meas. availability  prediction in dynamic APV environment  

[LAAS]  RTCA SC-159, “Minimum Aviation System Performance Standards for the Local Area Augmentation System (LAAS),” Doc. TCA/DO-245, 2004.  

car + prediction 

Current 
position 

Predicted 
position 

Alert Limit Requirement 
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Example Three Step Approach  
for APV Safety Evaluation 

• Evaluate safety risk contribution of each system component 
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Example Three Step Approach  
for APV Safety Evaluation 

• Evaluate safety risk contribution of each system component 
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Laser Data Processing 

• Each individual laser (radar)  
data point provides little  
information 

 

• Feature extraction 

– find few distinguishable,  
and repeatedly identifiable  
landmarks 
 

• Data association 

– from one time step to the next, find correct feature in stored map 
corresponding to extracted landmarks 

[1958]  Spenko and Joerger: “Receding Horizon Integrity—A New Navigation Safety Methodology for Co-Robotic Passenger Vehicles”  

[processed data from the KITTI dataset: http://www.cvlibs.net/datasets/kitti/] 
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Experimental Setup 
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True Trajectory and Landmark 
Location 
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• We define the integrity risk at time step k,  
or probability of hazardously misleading information (HMI) 
 
 
 
 
 
 
 
 

Integrity Risk Definition  

specified alert limit 

  

estimation error  

   

at time k 
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• We define the integrity risk at time step k,  
or probability of hazardously misleading information (HMI) 

– considering a two mutually exclusive, exhaustive hypotheses  
 
 
 
 
 

Integrity Risk Evaluation 

correct association 
 

incorrect association 

   

  ),(),(|ˆ|)( KkKkkk IAHMIPCAHMIPPHMIP  

 

K : times 1 to k 

specified alert limit 

  

estimation error  

at time k 
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• We define the integrity risk at time step k,  
or probability of hazardously misleading information (HMI) 

– considering a two mutually exclusive, exhaustive hypotheses  
 
 
 
 
 

– We establish an easy-to compute upper-bound in [PLANS ‘16] : 
 
 
 

Integrity Risk Evaluation 

correct association 
 

incorrect association 

   

  ),(),(|ˆ|)( KkKkkk IAHMIPCAHMIPPHMIP  

)()]|(1[1)( KKkk CAPCAHMIPHMIP 

derived from EKF variance 

 
K : times 1 to k 

specified alert limit 

  

estimation error  

at time k 

 

[PLANS ‘16]  Joerger et al. “Integrity of Laser-Based Feature Extraction and Data Association”, PLANS 2016 
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• We define the integrity risk at time step k,  
or probability of hazardously misleading information (HMI) 

– considering a two mutually exclusive, exhaustive hypotheses  
 
 
 
 
 

– We establish an easy-to compute upper-bound in [PLANS ‘16] : 
 
 
 

– and, over time [PLANS ‘16] 

Integrity Risk Evaluation 

correct association 
 

incorrect association 

   

  ),(),(|ˆ|)( KkKkkk IAHMIPCAHMIPPHMIP  
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derived from EKF variance 

 
K : times 1 to k 

specified alert limit 

  

estimation error  

at time k 

 

[PLANS ‘16]  Joerger et al. “Integrity of Laser-Based Feature Extraction and Data Association”, PLANS 2016 



18 

 

Probability of Correct 
Association 

• In [PLANS 2016], we presented an innovation-based method 
[BarShalom ‘88]  

 

 

 

• We derived an integrity risk bound accounting for all 
possible incorrect associations: 

 

 

 

 
[PLANS ‘16]  Joerger et al. “Integrity of Laser-Based Feature Extraction and Data Association”, PLANS 2016 
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[BarShalom ‘88] Y, Bar-Shalom, and T. E. Fortmann, “Tracking and Data Association,” Mathematics in Science and Engineering, Vol. 179, Academic Press, 1988. 

)(xhzγ ii 

measurement 
[z1  z2  z3]

T 

  

predicted 
(depends on  
ordering A,B,C) 

ii

T

i
ni L

γYγ
1

1!,...,0
min 



Yi  : covariance  matrix of  
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feature extraction… 
for example, 10-8 
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[Joerger  ‘09] Joerger, and Pervan. “Measurement-Level Integration of Carrier-Phase GPS and Laser-Scanner for Outdoor Ground Vehicle Navigation.”  
ASME J. of Dynamic Systems, Measurement, and Control. 131. (2009). 

Simulation Scenario:  
Vehicle Driving through Forest 
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Direct Simulation of SLAM 

Introduction 

 

Laser-based 
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Forest Scenario: Direct 
Simulation 
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Forest Scenario: Direct 
Simulation 
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Direct Simulation of SLAM 
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Leveraging Feature Extraction  
to Improve Integrity 

• The paper uses a ‘design parameter’ to select landmarks: 

– Key tradeoff: Fewer extracted features improve integrity by reducing risk of 
incorrect association, but reduce continuity 

– Future work: quantify continuity risk due to feature selection 
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Conclusions 

• Major challenges to analytical quantification APV navigation 
safety include 

– safety evaluation of laser, radar, and camera-based navigation 

– multi-sensor pose estimation, fault detection, and integrity monitoring 

– pose prediction in dynamic APV environment 

 

• Analytical solution to APV navigation safety risk evaluation 

– could be used to set safety requirements on individual sensors 

– would provide design guidelines to accelerate development of APVs 

– would establish clear sensor-independent certification metrics 
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