

Quantifying Navigation Safety of Autonomous Passenger Vehicles (APVs)

Mathieu Joerger, The University of Arizona joerger@email.arizona.edu

Matthew Spenko, Illinois Institute of Technology

APVs Were Just Around the Corner ... in 1958

Stepping Stones to APVs: DGPS/INS, laser, radar

- DARPA Grand Challenge (2005)
 - 150 miles across Mojave desert
 - 4 teams completed the course while averaging ~20 mph

- DARPA Urban Challenge (2007)
 - 60 miles in urban areas,
 - obey traffic regulations and negotiate obstacle, traffic, pedestrian
 - 3 teams completed course while averaging ~13 mph

Stanford's Stanley

https://cs.stanford.edu/group/roadrunner/stanley.html

Tartan Racing's Boss (Carnegie Mellon)

http://www.tartanracing.org/index.html

Scope of Current APV Research Efforts

 Google and most car manufacturers have autonomous car prototypes

- The National Highway Traffic Safety Administration (NHTSA) classification:
 - Level 1: Function-specific Automation
 - Level 2: Combined Function Automation
 - Level 3: Limited Self-Driving Automation driver expected to take over at any time
 - Level 4: Full Self-Driving Automation

[NHTSA '13] NHTSA, "Preliminary statement of policy concerning automated vehicles," online, 2013

[Haueis '15] Haueis, "Localization for automated driving," ION GNSS+ 2015

Example Experimental Testing Campaigns

- My understanding of Google's approach
 - testing with trained operators ready to take over, on select roads
 - soon to reach 2 million miles driven in autonomous mode [Google '16]

- My understanding of Tesla's approach
 - 'Model S' autopilot available on the market, restricted to highway
 - constant reminders: "Always keep your hands on the wheel, be prepared to take over at any time"
 - 70,000 'Model S' Autopilots are claimed to have driven 130 million miles [Rogowsky]

[Google '16] Google, "Google Self-Driving Car Project Monthly Report", available online, August 2016

[Rogowsky] Rogowsky, "The Truth About Tesla's Autopilot Is We Don't Yet Know How Safe It Is", Forbes, 2016

THE UNIVERSITY OF ARIZONA

APV Accident Reports

- In 2015, Google reported:
 - 13 'contacts' avoided by operator, Google car at fault in 10 of them [Google '15]
- February 14 2016 in Mountain View, CA :
 - first crash where Google car was at fault
- May 7 2016 in Williston, FL:
 - Tesla autopilot caused a fatality

[Google '15] Google, "Google self-driving car testing report on disengagements of autonomous mode", available online, December 2015

How do these APVs Compare to Human Drivers?

- In the U.S., car accidents cause over 30,000 deaths/year, 90% of which are due to human error [NHTSA '14]
 - 3 trillion miles driven per year
 - > 1 fatality per 100 million mile driven (MMD)

- Not enough data yet to prove safety (or lack thereof) of Tesla / Google APVs
- A purely **experimental** approach is **not sufficient**

> in response, **leverage analytical methods** used in aircraft navigation safety

Leveraging Analytical Methods Used in Aviation Safety

- It took decades of R&D to bring alert limit down to 10 m [LAAS]
- Challenges in bringing aviation safety standards to APVs
 - GPS-alone is insufficient \rightarrow multi-sensor system needed
 - not only peak in safety risk at landing ightarrow continuous risk monitoring
 - unpredictable meas. availability \rightarrow **prediction** in dynamic APV environment

Example Three Step Approach for APV Safety Evaluation

• Evaluate safety risk contribution of each system component

Example Three Step Approach for APV Safety Evaluation

• Evaluate safety risk contribution of each system component

Laser Data Processing

 Each individual laser (radar) data point provides little information

- Feature extraction
 - find few distinguishable,
 and repeatedly identifiable
 landmarks

- Data association
 - from one time step to the next, find correct feature in stored map corresponding to extracted landmarks

Experimental Setup

True Trajectory and Landmark Location

Integrity Risk Definition

• We define the integrity risk at time step k, or probability of hazardously misleading information (HMI)

- We define the integrity risk at time step *k*, or probability of hazardously misleading information (HMI)
 - considering a two mutually exclusive, exhaustive hypotheses

- We define the integrity risk at time step k, or probability of hazardously misleading information (HMI)
 - considering a two mutually exclusive, exhaustive hypotheses

- We establish an easy-to compute upper-bound in [PLANS '16] :

$$P(HMI_{k}) \leq 1 - [1 - P(HMI_{k} | CA_{K})] P(CA_{K})$$

derived from EKF variance

- We define the integrity risk at time step k, or probability of hazardously misleading information (HMI)
 - considering a two mutually exclusive, exhaustive hypotheses

estimation error specified alert limit incorrect association

$$P(HMI_k) = P(|\hat{\varepsilon}_k| > \ell) = P(HMI_k, CA_K) + P(HMI_k, IA_K)$$
at time k correct association K : times 1 to k

- We establish an easy-to compute upper-bound in [PLANS '16] :

$$P(HMI_{k}) \leq 1 - [1 - P(HMI_{k} | CA_{K})] P(CA_{K})$$

derived from EKF variance

- and, over time [PLANS '16]

$$P(CA_{K}) = P(CA_{1}, CA_{2}, ..., CA_{k}) = \prod_{j=1}^{k} P(CA_{j} | CA_{j-1})$$

Probability of Correct Association

• In [PLANS 2016], we presented an innovation-based method

[BarShalom '88]

$$\begin{array}{ll} \boldsymbol{\gamma}_{i} = \mathbf{z} - \mathbf{h}_{i} \left(\mathbf{\bar{x}} \right) & \min_{i=0,...,\ n_{L}!-1} \ \boldsymbol{\gamma}_{i}^{T} \mathbf{Y}_{i}^{-1} \boldsymbol{\gamma}_{i} \\ \\ \text{measurement} & \text{predicted} & \mathbf{Y}_{i} : \text{covariance matrix of} \\ [z_{1} \ z_{2} \ z_{3}]^{T} & (\text{depends on} \\ & \text{ordering A,B,C} \end{array}$$

• We derived an integrity risk bound accounting for all possible incorrect associations:

$$P(HMI_{k}) \leq 1 - [1 - P(HMI_{k} | CA_{K})] \prod_{j=1}^{k} P(CA_{j} | CA_{J-1}) + I_{FE,ALLOC}$$
risk allocation for feature extraction... for example, 10⁻⁸

[BarShalom '88] Y, Bar-Shalom, and T. E. Fortmann, "Tracking and Data Association," *Mathematics in Science and Engineering*, Vol. 179, Academic Press, 1988.

Multi-Sensor GPS/Laser System

THE UNIVERSITY

OF ARIZONA

[Joerger '09] Joerger, and Pervan. "Measurement-Level Integration of Carrier-Phase GPS and Laser-Scanner for Outdoor Ground Vehicle Navigation." ASME J. of Dynamic Systems, Measurement, and Control. 131. (2009).

Direct Simulation of SLAM

Forest Scenario: Direct

Simulation

Forest Scenario: Direct Simulation

Direct Simulation of SLAM

Integrity Risk Evaluation

- The integrity risk bound accounting for possibility of IA is much larger than risk derived from covariance only
 - IA occur for landmark 6, which appears after being hidden behind 5

Leveraging Feature Extraction to Improve Integrity

- The paper uses a 'design parameter' to select landmarks:
 - Key tradeoff: Fewer extracted features improve integrity by reducing risk of incorrect association, but reduce continuity
 - <u>Future work</u>: quantify continuity risk due to feature selection

Conclusions

- Major challenges to analytical quantification APV navigation safety include
 - safety evaluation of laser, radar, and camera-based navigation
 - **multi-sensor** pose estimation, fault detection, and integrity monitoring
 - pose **prediction** in dynamic APV environment

- Analytical solution to APV navigation safety risk evaluation
 - could be used to set safety requirements on individual sensors
 - would provide design guidelines to accelerate development of APVs
 - would establish clear sensor-independent **certification** metrics

Acknowledgment

 National Science Foundation (NSF) National Robotics Initiative (NRI)

Award #1637899:

"Receding Horizon Integrity—A New Navigation Safety Methodology for Co-Robotic Passenger Vehicles"