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Abstract—This paper aims to evaluate the performance of the
set-based fault detection. This approach differs from probabilistic
residual-based (RB) or solution separation (SS) fault detection
and exclusion methods utilized in the Receiver Autonomous
Integrity Monitoring (RAIM) and Advanced RAIM. In the basic
positioning model, measurement-level intervals are constructed
based on the investigated error models and propagated in a
linear manner using interval mathematics and set theory. Convex
polytope solutions provide a measure of observation consistency
formulated as a constraint satisfaction problem. Consistency
checks performed using set operations facilitate multiple-fault
detection. Choosing set-emptiness as the detection criterion can
alleviate the need for multiple test statistics. In this paper, we
formulate the fault detection problem in the context of measure-
ment intervals and propose a framework of integrity monitoring
for the set-based detection. Considering a probabilistic error
model, we implement the set-based detection methods and assess
its integrity performance using Monte Carlo simulations. These
evaluations will serve as a basis for further development of
efficient estimators and integrity monitors.

Index Terms—GNSS integrity, error modeling, fault detection,
set theory, interval mathematics

I. INTRODUCTION

GNSS integrity monitoring methods, including Receiver
Autonomous Integrity Monitoring (RAIM) and Advanced
RAIM (ARAIM) are using residual-based (RB) approaches
or solution separation (SS) for fault detection and exclusion.
While being widely implemented in aviation [1]–[3], integrity
concepts have not yet achieved a similar level of maturity
for land navigation. To fill this gap, detectors and estimators
utilizing different strategies have been investigated in recent
years, e.g., [4], [5].

Measurement error modeling is foundational to integrity
evaluation methods. Overbounding theory can account for
stochastic error sources in GNSS [6], [7]. However, error
distributions for rarely-occurring, rarely-observed undetected
faults are unknown, and error calibration for user receiver and
antenna biases is not scalable across equipment manufacturers
and models. Thus, systematic uncertainty remains that can
dominate the error budget. To bound those systematic errors,
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interval mathematics and set theory have been investigated in
prior works [8]–[11].

Representing errors as intervals, set-theoretic methods ex-
plore the linear uncertainty propagation in localization prob-
lems, computing confidence zones in which the user is claimed
to be located with a given confidence or risk [12]–[14].
For linear estimators, measurement-level intervals have an
impact on estimation states that can be expressed as a set of
inequalities. For example, a least-squares estimator produces
predictive error bounds represented by zonotopes, [15], [16].

In the presence of sample measurement errors, interval
solutions provide a measure of observation inconsistency
formulated as a constraint satisfaction problem in [17]. Ge-
ometrical constraints formed by interval bounds result in a
polytopic solution set: this inconsistency area serves as a basis
for fault detection through set operations [18]. Applications
can be seen across various domains, e.g., robot localization
[19], autonomous boats [20], Instrument Landing System [21].
In set-based detection, set-emptiness is used as a detection
criterion which alleviates the need for multiple test statistics in
the framework of multiple hypothesis testing. However, there
is currently no process to evaluate the false alert probability,
which then depends on measurement uncertainty intervals.
Studies like [14], [22], [23] investigated only the risk based on
Gaussian distributed error model without considering unknown
distributed faults. The potential of set-based approaches to
tighten integrity and continuity risk bounds has yet to be
explored.

The main contributions of this paper are twofold:
• We formulate the fault detection problem for GNSS in-

tegrity monitoring in the context of measurement intervals
and show a relationship between detection intervals, error
distributions, and feasible set solutions;

• Through a benchmark example, we implement and eval-
uate the probability of loss of continuity and loss of
integrity for the set-based detector. The performance
of the set-based detection is compared with classical
RB/SS detectors in terms of critical integrity events by
Monte Carlo simulations. We show that the continuity
risk of set-based detector can be effectively assessed,
and the feasible set solution from measurement interval
constraints assures high integrity for all elements. We
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demonstrate the need of designing optimal set estimation
to tighten the integrity risk bound. These will serve as
a basis to further development in the set-based integrity
monitoring approach.

The remainder of the paper is organized as follows: Sec.
II briefly introduces the basics of interval and set representa-
tions. Sec. III describes the paper’s fundamental assumptions,
in particular, the fault detection in context of measurement
error intervals. Sec. IV reviews the concepts of continuity
and integrity in conventional RAIM/ARAIM approaches, i.e.,
the residual-based and solution-separation detectors, and then
interprets and formulates loss of continuity and loss of in-
tegrity for the set-based detector. Sec. V discusses and imple-
ments an evaluation strategy through a canonical example to
demonstrate the procedures and performance of the set-based
detection.

II. BASICS OF INTERVAL AND SET REPRESENTATION

Intervals are represented with their lower bounds and upper
bounds in this paper, such as: [y] = [y, y]. The width of an
interval is defined as W ([y]) = y− y, and its radius is half of
the width rad([y]) = 1

2W ([y]). Readers of interest can refer
to textbooks, e.g., [12], [24] for more introduction to interval
mathematics.

Polytopes can be defined in two ways: the H-Polytope
and the V-Polytope, [25]. The H-Polytope used in this paper,
denotes an intersection of closed halfspaces, i.e. a set P ⊆ Rm

presented in the form:

P(H,b) = {z ∈ Rm | Hz ≤ b,H ∈ R2n×m,b ∈ R2n} (1)

which can be interpreted as the solution set of a finite number
of linear inequalities.

Zonotopes form a special class of polytopes: Each zonotope
is a convex polytope that is centrally symmetric, [25]. In this
paper, we construct the zonotope as the intersection of n pairs
of parallel hyperplanes, i.e., [26]

Z(H,b) = {z ∈ Rm|H(z− cZ) ≤ b,

H ∈ R2n×m,b ∈ R2n, cZ ∈ Rm
}

(2)

with cZ denoting its center.

III. FAULT DETECTION IN THE CONTEXT OF
MEASUREMENT INTERVALS

A. Observation model and its linearization

The basic satellite positioning problem is usually handled by
a first order linearization of the GNSS pseudorange measure-
ment pkr between satellite k and receiver r w.r.t approximate
values for the states x0:

pkr
∼= pkr,0 +Akx (3)

where pkr,0 is the observation computed using the approximate
parameter values and correction models and Ak the corre-
sponding line of the design matrix (Jacobian), x the vector of
state increments w.r.t to their approximate values x0, i.e. the

total state reads x′ = x0+x. The pre-fit residual observations
or observed-minus-computed (OMC) values are computed

yk := pkr − pkr,0 (4)

and finally for all n observations of one epoch, we get the
linear model:

y = Ax+ e (5)

where,
• y: [n× 1], vector of OMC values
• A: [n × m], design matrix, indicating the line-of-sights

(LOS)
• x: [m × 1], state vector, representing the offsets of

the receiver’s position to its approximate values x0, in
addition to the receiver’s clock offset

• e: [n×1], error vector, containing all the remaining error
components.

B. Construction of an interval-based detector

In order to construct a detector, we fix a threshold ±d or
interval [d] = [−d,d] for the acceptable amount of observa-
tion errors. Then, based on Eq. 5, the detector is formulated
as the constraint satisfaction problem:

Ax ∈ y − e+ [d]

⇐y − e− d ≤ Ax ≤ y − e+ d
(6)

With B =

[
A
−A

]
and b =

[
y − e+ d
−y + e+ d

]
, we obtain a

concise version:
Bx ≤ b (7)

which results in a feasible set solution:

P(B,b) = {x ∈ Rm|Bx ≤ b,B ∈ R2n×m,b ∈ R2n} (8)

This solution is a polytope [25]. Geometrically, each interval
constitutes a “slab” (Sj), perpendicular to the j-th LOS,
indicating a finite range of the state uncertainty along its
direction:

Sj =
{
dx ∈ Rm | Aj x ∈ [yj − ej − dj , yj − ej + dj ]

}
(9)

and the polytopic set solution is the intersection of all “slabs”.
Considering an ideal error-free situation, i.e., e = 0 in Eq.

5, we obtain:

y∗ =Adx∗ (10)

where y∗ is interpreted as the OMC vector obtained when
all measurement-domain error perfectly corrected and x∗ the
compatible, true state vector. Subsequently, the state-domain
set solution is expressed as

Z = {x ∈ Rm | Ax ≤ y∗ + d,−Ax ≤ −y∗ + d}
= {x ∈ Rm | A(x− x∗) ≤ d,−A(x− x∗) ≤ d}

(11)
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Fig. 1. Conceptual sketch of the two-dimensional slabs and their intersected polytope, with (i) In an ideal noise-free and bias-free case, the intersection is a
zonotope. (ii) The intersection of slabs is deformed and shifted in presence of bias in the red line-of-sight.

which is centered at the true state x∗. By definition, it is a
zonotope. Fig. 1 (i) illustrates a conceptual sketch of the slabs
in the 2D positioning context.

The fault cases are modeled with an additional fault term f .
For example, in a specific fault mode Hi, the j-th measurement
is biased by the fault magnitude f :

Ax+ f ∈ y − e+ [d], f = [0, ..., f, ..., 0]T (12)

Subsequently, Eq. 7 becomes

Bx+

[
f
−f

]
≤ b (13)

Therefore, the feasible set solution P is deformed and shifted
from the fault-free set solution. The deviating direction and
magnitude are dependent on both geometry and fault magni-
tude. For example, the state-domain “slab” associated with the
faulty measurement is expressed as:

Sj = {x ∈ Rm | Ajx ⊆ [yj − ej − d− f,

yj − ej + d− f ]} (14)

In Fig. 1 (ii), the red LOS l2 is biased to the indicated
direction. Once the fault magnitude f excesses a certain value,
the feasible solution set becomes an empty set:

P = ∅ (15)

i.e., there is no feasible point solution for the inequalities in Eq.
13, thereby establishing a detection. Graphically, the “slabs”
do not intersect.

In order to fulfill requirements of integrity monitoring
purposes, it is mandatory to understand the characteristics of
this detector under the investigated error models which will
be investigated in the next sections.

IV. LOSS OF CONTINUITY AND LOSS OF INTEGRITY
CONCEPTS

A. Conventional RAIM/ARAIM detectors

1) Loss of continuity: The International Civil Aviation
Organization (ICAO) defines the continuity of a service as
the capability of the system to perform its function without
unscheduled interruptions during the intended operation [27].
Therefore, the continuity risk, or probability of loss of conti-
nuity (LOC), is the probability of a detected but unscheduled
navigation function interruption after an operation has been
initiated [28] for aviation applications, expressed as:

PLOC = PFA + PD,F + POther (16)

indicating three components:
• PFA: false alert (FA) probability
• PD,F : the probability of fault detection when a fault

occurs
• POther: contains other causes of loss of continuity

The first term, the false alert probability is in practice limited
by an allocated continuity risk requirement:

PFA ≤ CREQ,0 (17)

The other two terms are typically evaluated dependent on
dedicated fault models, which is beyond the scope of this
work.

Classical RB and SS detectors are designed as comparing
individual test statistic q with detection thresholds T that
are derived from Eq. 17. For example, under the fault-free
hypothesis H0, the RB threshold TRB is defined as:

P (|qRB | ≥ TRB | H0)P (H0) ≤ CREQ,0 (18)
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where qRB is the RB test statistic. SS detection (normalized)
thresholds TSS,i, w.r.t each fault mode i, i ∈ {1, ..., h}, are
defined as:

P (|qSS,1| ≥ TSS,1 ∨ ... ∨ |qSS,h| ≥ TSS,h | H0)P (H0)

≤ CREQ,0 (19)

where qSS,i represents the corresponding SS test statistic. To
avoid mixing up set and logical operators, this paper adopts
the symbol ∨ for the logical operator “or” and ∧ for the logical
operator “and”.

The continuity risk budget of SS detector is influenced by
all fault modes, thus should account for multiple test statistic
to ensure that the overall requirement is satisfied [29]. Precise
assessment can be done towards the joint probability based on
multidimensional probability density functions. To implement
in real time, an upper bounding approach is employed:

P (|qSS,1| ≥ TSS,1 ∨ ... ∨ |qSS,h| ≥ TSS,h | H0)P (H0)

≤
h∑

i=1

P (|qSS,i| ≥ TSS,i | H0)P (H0) (20)

Subsequently, the SS detection (normalized) threshold can be
computed by:

TSS,i = Φ−1

{
CREQ,i

2P (H0)

}
CREQ,0 =

h∑
i=1

CREQ,i, e.g., CREQ,i =
CREQ,0

h

(21)

2) Loss of integrity: The integrity risk, or equivalently the
probability of hazardous misleading information (HMI), is a
joint probability defined as:

PHMI = P (|ε0| > l ∧ |q| < T ) (22)

with
• ε0 the error of estimator
• l a specific alert limit that defines the hazardous situations
• q detection test statistic in RAIM/ARAIM approaches
• T detection threshold in RAIM/ARAIM approaches

which involves the event of Hazardous Information (HI)
(|ε0| > l), and the No Detection (ND) event (|q| < T ).

When the multiple-hypothesis approach is employed, e.g.,
SS detector in ARAIM, the entire set of mutually exclusive,
jointly exhaustive hypotheses should be accounted for to derive
the overall probability of loss of integrity:

PHMI =

h∑
i=0

P (|ε0| > l ∧ |qSS,1| < TSS,1 ∧ ...

∧ |qSS,h| < TSS,h | Hi)P (Hi) (23)

A bound on the HMI probability can be established, e.g.,
[29]:

PHMI ≤
h∑

i=0

P (|εi|+ TSS,iσ∆i
> l | Hi)P (Hi) ≤ IREQ

(24)

with
• εi the error of estimator under each hypothesis Hi

• σ∆i
std of solution separations ∆i = εi − εi for i =

1, ..., h

B. Framework of the set-based detector

1) Loss of continuity: The set-based detector takes the set-
emptiness as the only criterion. Using the formulation of the
solution set from Eq. 8, the expression for PFA reads

PFA = P (P = ∅ | H0) · P (H0) ≤ CREQ,0 (25)

which is applicable in the definition of loss of continuity in
Eq. 16 and Eq. 17.

The set-based detector differs from RB detector, as it
performs on the state domain; and from SS detector, as it does
not involve multiple test statistics but one single test criterion.
It should be mentioned that the polytope P degenerates to
an interval in the scalar state problem. In Sec. V, we present
approaches for analytically determining the continuity risk for
the set-based detection through an illustrative example.

2) Loss of integrity: Similar to the classical case, we can
define the HMI probability in the interval case: We can
formulate the Protection event when a set B, e.g., interval in
1D, circle in 2D, and sphere in 3D, with the true position x∗

as center and radius ℓ, encloses the polytope P . In this case
the maximum distance from the true position to any element
of the feasible set solution, i.e. the polytope, is not larger than
ℓ:

P ⊆ B(x∗, ℓ) (26)

Figure 2 indicates the different situations in an two-
dimensional conceptual sketch with three measurements: i) all
elements of the feasible set solution (P) has shorter or equal
distance than ℓ to the true position. Hence, P ⊆ B(x∗, ℓ); ii)
the feasible set solution (P) is only partially overlapped with
B(x∗, ℓ), such that some elements of P has larger distance
than ℓ to x∗. This case belongs to P ⊈ B(x∗, ℓ).

Subsequently, the probability of loss of integrity (PHMI ) is
proposed to be expressed as:

PHMI = P (P ⊈ B(x∗, ℓ) ∧ P ̸= ∅) (27)

which is interpreted as the joint probability of
• No Protection (P ⊈ B(x∗, ℓ)): the feasible set solution

P does not meet the alert limit for all elements, and
• No Detection (P ≠ ∅): the fault detection is not triggered,

i.e., the measurements are considered self-consistent.
Considering the multiple hypothesis framework, the HMI

probability is expressed as:

PHMI =

h∑
i=0

P (P ⊈ B(x∗, ℓ) ∧ P ̸= ∅| Hi)P (Hi)

≤ IREQ

(28)

This formulation follows the structure of the classical one.
However, it is noteworthy, that here the conditions rely only
on the polytope.
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Fig. 2. Concept of Protection in case of intervals: i) the set solution polytope is protected (P ⊆ B(x∗, ℓ)); ii) the set solution polytope is not protected
(P ⊈ B(x∗, ℓ))

V. DETECTION PERFORMANCE UNDER PROBABILISTIC
ERRORS

To our knowledge, up until now, there is no study on the ex-
plicit evaluation for loss of continuity or loss of integrity. [22]
gives a probabilistic interpretation of intervals and proposes
a strategy of computing a lower bound of the probabilities
for the computed set solution; Studies such as [14], [23],
[30] apply this method in GNSS positioning to estimate
high-integrity confidence zones. However, the risks are not
yet characterized or verified with Monte Carlo simulations
considering unknown distributed faults. We start this section
with the example in Sec. V-A. Next, we discuss our evaluation
approach in Sec. V-B, and then implement and validate with
Monte Carlo simulations under a Gaussian error model in Sec.
V-C.

A. A benchmark example

In this section, we consider a simulated scenario to demon-
strate the detection procedure and the performance of the
set-based detector in the probabilistic context. By setting
prior probability requirements, we can assess the risk of loss
of integrity and then perform a Monte Carlo simulation to
observe the occurrence of those events for verification.

We directly take and adapt the canonical example from
[31] to demonstrate without making unnecessarily complicated
context. The problem is configured with three measurements
solving a scalar estimation problem:

Ax+ f ∈ y − e+ [d], A = [1 1 1]T (29)

which degenerates to a mean estimator. For simplicity, we
consider the case e ∼ N(0, I) and equal magnitude of the
detector interval [di] = [−d, d]. The fault vector f represents

three single-measurement faults, corresponding to three alter-
native hypotheses Hi, with unknown fault magnitude fi:

f =

f10
0

 or f =

 0
f2
0

 or f =

 0
0
f3

 (30)

Integrity related parameters for evaluations are summarized
in Tab. I, which is discussed in detail in the following
subsections.

TABLE I
INTEGRITY-RELATED PARAMETERS FOR SIMULATIONS.

Parameter Value
Measurement error (σ) 1 m

Continuity risk requirement CREQ 10−6

Prior probability of single-satellite fault Pf 10−3

Prior probability of multiple-satellite fault N/A
Prior probability for fault-free hypothesis P (H0) 1− 3× 10−3

Integrity risk requirement IREQ N/A
Alert limit ℓ variable

B. Risk evaluation
1) Probability of loss of continuity: Under H0, the feasible

set solution is obtained from the following inequality system
based on Eq. 6:x ≤ y1 + d, −x ≤ −y1 + d,

x ≤ y2 + d, −x ≤ −y2 + d,
x ≤ y3 + d, −x ≤ −y3 + d,

(31)

which results in the solution set:

P := [x, x] = [max(y1, y2, y3)−d,min(y1, y2, y3)+d] (32)

To achieve a non-empty solution set P , we should have
max(y1, y2, y3) − min(y1, y2, y3) ≤ 2d. A fault detection is
triggered once the difference value excesses 2d.
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With n measurements y = [y1, ..., yn]
T , the test statistic

and criterion are expressed as:

W := max(y1, ..., yn)−min(y1, ..., yn) ≤ 2d (33)

which is a typical application of order statistics [32]:
Let Y1, Y2, ..., Yn be independent random variables drawn

from a population with CDF F (y) and PDF f(y). Then the
CDF of Y(r:n) (r-th order statistic, r = 1, ..., n) is given by:

FY(r:n)
(y) =P (Y(r:n) ≤ y)

=P (at least r of Y1, Y2, ..., Yn are ≤ y)

=

n∑
i=r

(
n

i

)
F i(y)[1− F (y)]n−r

(34)

The binomial probability in the summand represents the prob-
ability that exactly r of the Yi’s are no greater than to y.

The test statistic W is in fact the difference of the n-th
order statistic (maximum, Y(n:n)) and the first order statistic
(minimum, Y(1:n)), i.e., sample range:

W = Y(n:n) − Y(1:n) (35)

Its PDF reads
fW (w)

=n(n− 1)

∫ ∞

−∞
f(y) [F (y + w)− F (y)]

n−2
f(y + w)dy

(36)

and CDF:

FW (w) = n

∫ ∞

−∞
f(y) [F (y + w)− F (y)]

n−1
dy (37)

Fig. 3 presents the CDF of W with varying Gaussian-
distributed samples n. For the derivation of above equations,

Fig. 3. CDF of test statistic W := Y(n:n) − Y(1:n) with varying Gaussian-
distributed samples n

readers of interest are referred to textbooks such as [32].
Subsequently, the probability of non-empty intersection,

given f(y) and F (y), can be determined by:

P (non-empty intersection | F (y), f(y) = F ′(y))

=P (W ≤ 2d | F (y), f(y) = F ′(y))

=FW (2d)

(38)

Thus, the continuity risk can be assessed analytically
through:

P (P = ∅ | H0) = 1− P (W ≤ 2d | H0) (39)

If an arbitrary standard deviation σ is used for the obser-
vation, a normalisation by σ must be carried out in Eq. 32
which leads to the important d-to-Sigma Ratio ( dσ ) that links
the interval radius d with a Gaussian variance σ.

Subsequently, the interval radius d can be determined based
on the continuity risk requirement, cf Eq. 25. For illustration,
Fig. 4 displays the relations between d

σ , number of mea-
surements n and detection probabilities under H0. It depicts
that the involvement of more measurements increases the
probability of loss of continuity if the detector’s interval radius
is unchanged. While, given a fixed number of measurements,
using wider intervals for detection tends to reduce the proba-
bility of loss of continuity.

Fig. 4. Contour plot for the derived detection probabilities under H0. The
values are colored w.r.t varying d

σ
and number of measurements.

2) Probability of loss of integrity: The loss of integrity,
discussed in Sec. IV, is a joint event of No Protection (NP)
and No Detection (ND). Specifically, for the scalar estimation
problem in the canonical example, we can express the set
associated with alert limit as B = [x∗ − ℓ, x∗ + ℓ], and the
feasible set solution P:

• P = [max{y}− d,min{y}+ d] under fault-free hypoth-
esis H0

• P = [max{y + f} − d,min{y + f} + d] under the
hypothesis Hi, i = 1, 2, 3 with the unknown fault vector
f .

Therefore, the conditions of loss of integrity can be derived
accordingly:

• H0:
– NP: max{y} −min{y} ≤ 2d
– ND: max{y} ≤ −ℓ+ d or min{y} ≥ ℓ− d

• Hi:
– NP: max{y + f} −min{y + f} ≤ 2d
– ND: max{y + f} ≤ −ℓ+ d or min{y + f} ≥ ℓ− d
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with x∗ = 0, ℓ and P (Hi) given as well as d determined
from the continuity risk requirement in Eq. 39, the HMI
probability can be evaluated with Eq. 28 using order statistics.

C. Experimental results

1) Loss of continuity: Based on the pre-defined continuity
requirement CREQ,0 = 10−6, we determine the interval
for detection with radius d = 3.608σ. In a Monte Carlo
simulation, we generate up to 107 random values for each mea-
surement yj , i.e., 107 epochs. Fig. 5 compares the simulation
with evaluated probabilities and upper bounds for the detection
events under H0 with varying d

σ . The occurrence in Monte
Carlo is very close to the analytical evaluated probability, and
the detection criterion determined by order statistics method
is verified.

Fig. 5. Comparison of the analytically evaluation, Monte Carlo simulation for
the detection probability under H0. Values are computed for the illustrative
example, varying with the d

σ
. The Monte Carlo results are based on the same

set of randomly generated measurements.

For the given continuity risk requirement, the detection
threshold for RB and SS detectors can be determined for this
canonical example, summarized in Tab. II. The continuity risk

TABLE II
DETECTION THRESHOLD FOR RB AND SS DETECTORS FROM

PRE-DEFINED CONTINUITY RISK REQUIREMENT.

Detector RB SS
Threshold 5.256σ 5.103σ

is equally allocated to each test statistic for SS detector as done
in [29]. These thresholds are utilized in the next analysis.

2) Detectability: The set-based detector and classical
RB/SS detectors are characterized by different parameters, and
the set-based detector is not associated with a point estimator.
Therefore, this section focuses on the detection “capability”,
or interpreted as the sensitivity to faults.

We perform the Monte Carlo simulation by adding a con-
stant bias to the randomly generated measurements introduced
in Sec. V-C1, and then observe the occurrence of the Detection
events, i.e. P (D|f). By increasing the added bias magnitude, a

comparison can be made in terms of the detection sensitivity
to faults. The detection thresholds for RB and SS detectors
and interval radius for set-based detector are introduced in
Sec. V-C1. All three curves start at, or below 10−6 for the
fault-free case.

Fig. 6. Comparison of Detection probability P (D | f) in Monte Carlo
simulation for RB, SS and set-based detector.

Fig. 6 compares the Detection probability P (D | f) for the
RB, SS and set-based detector. The comparison result suggests
that the SS detector outperforms RB detector slightly. A
theoretical analysis in term of detection boundary in the parity
space can be found in [29]. Meanwhile, the set-based detector
performs relatively worse than the two classical detectors,
particularly for greater biases. It may therefore be concluded
that the classical RAIM/ARAIM detectors, especially the SS
detector is optimal in terms of detection capability under
Gaussian error assumption at this stage.

3) Loss of integrity: To understand the characteristics of
integrity risk, we take again the randomly generated measure-
ment dataset in Sec. V-C1 and perform multiple Monte Carlo
runs: In the first run, we add a constant bias representing
the fault to each of the three measurements with the pre-
defined probability of single-measurement fault, cf Tab. I.
The set-based detector, constructed by the detection intervals
[−d, d] in Sec. V-C1 which limits the false alert probability
by given continuity risk requirement CREQ,0 = 10−6, is
then conducted over the obtained dataset including the faulty
measurements. Subsequently, we can evaluate the probability
of loss of integrity in Eq. 28 against various alert limits. In
the following runs, the added bias is increased, whereas the
other settings remain. The probability of loss of integrity is
evaluated for all designed values of added bias and alert limit.

In Fig. 7, the probability of loss of integrity is colored
with varying alert limit and added bias. A vertical section
for ℓ = 4σ is plotted in Fig. 8 (i). The probability of No
Detection (P (ND | f)) is additionally plotted. It should be
pointed out that P (NP∧ND | f) = P (NP | f) because there is
not separate estimator involved and PHMI is evaluated over
the same feasible set solution P . Interestingly, the worst case
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Fig. 7. Probability of loss of integrity for the set-based detector. The Monte
Carlo results are based on the same set of randomly generated measurements
with additional added single-measurement bias as fault f . The probabilities
(log10(P (NP ∧ ND | f)) are colored with varying alert limit ℓ/σ and fault
magnitude ℓ/σ.

that maximizes the integrity risk indicates a “flat peak” as
denoted by the grey range in Fig. 8 (i). This tendency can be
found for all cases where d ≤ ℓ from Fig. 7.

As a comparison, the probability of loss of integrity for SS
detector against the same alert limit is plotted in Fig. 8 (ii). The
worst case fault is obvious as it is recognized by the cross point
of P (HI|f) and P (ND|f) curves, depicted as the black dashed
line, whereas PHMI is maximized. Furthermore, SS detector
has greater worst case fault magnitude in this example. In
this regard, the two detectors demonstrate completely different
characteristics.

In Fig. 9, we compare the probability of loss of integrity
directly for RB, SS and set-based detectors against various
alert limits. A risk bound is calculated using the method in Eq.
24 cf [29] and plotted additionally as a black dashed curve.
For this example, the difference between RB and SS detectors
is insignificant. Meanwhile, the set-based detector presents a
higher probability of loss of integrity, indicating conservative
risk bounds. This can be understood in two aspects:

• The risk is evaluated over all elements of the feasible
set solution, among which the less optimal estimates are
weakening its performance.

• Different from the conventional RB and SS detectors,
where a least squares estimator is assessed, the knowledge
of Gaussian distribution is not fully taken advantage of for
integrity in the set-based detector but only for continuity.

Therefore, a fair enough comparison still needs to be accom-
plished. In the sense of Gaussian error models, it is desired to
optimize the set estimation for integrity purposes.

VI. CONCLUSIONS AND OUTLOOK

In this paper, we assess a set-based detector for GNSS
integrity monitoring. The key contributions include: a) for-

Fig. 8. Comparison of the worst case situation of loss of integrity between
the set-based detector and SS detector against alert limit ℓ = 4σ. The worst
case situation for set-based detector is highlighted as the grey area, while that
for SS detector is depicted as the black dashed line.

Fig. 9. Comparison of probability of loss of integrity for different detectors as
the alert limit l varies. The Monte Carlo results are based on the same set of
randomly generated measurements with additional added single-measurement
bias as fault (f = 8σ). The detection thresholds are determined from
continuity risk requirement. The black dashed curve presents IR bound for
SS detector cf Eq. 24.
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mulating the fault detection for integrity monitoring in the
context of measurement intervals; b) evaluating the proba-
bility of loss of continuity and loss of integrity for the set-
based detector c) implementing and validating the detector
in a benchmark example under the Gaussian assumption of
measurement errors using Monte Carlo simulation, compared
to classical RAIM/ARAIM detectors. The feasible set solution
from simple measurement interval constraints assures high
integrity of all point elements, however, at the price of rel-
atively low availability in the sense of Gaussian assumptions.
Therefore, the design of optimal set estimation for integrity is
still needed for a better-performed set-based integrity monitor.
In addition, future work should extend to multi-dimensional
evaluation, and implementation in realistic GNSS satellite-user
geometries.
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