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Safety-critical navigation applications require that estimation er-
rors be reliably quantified and bounded. This can be challenging
for linear dynamic systems if the process noise or measurement
errors have uncertain time correlation. In many systems (e.g., in
satellite-based or inertial navigation systems), there are sources of
time-correlated sensor errors that can be well modeled using Gauss–
Markov processes (GMP). However, uncertainty in the GMP parame-
ters, particularly in the correlation time constant, can cause mislead-
ing error bounds. In this article, we develop time-correlated models
that ensure tight upper bounds on the estimation error variance,
assuming that the actual error is a stationary first-order GMP with
a variance and time constant that are only known to reside within an
interval. We first use frequency-domain analysis to derive stationary
GMP models in both the continuous and discrete-time domains, which
outperform models previously described in the literature. Then, we
derive an even tighter estimation error bound using a nonstationary
GMP model, for which we determine the minimum initial variance
that guarantees bounding conditions. Both models can easily be im-
plemented in a linear estimator like the Kalman filter.
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I. INTRODUCTION

Safety and liability-critical applications require a guar-
anteed bound on the estimation error, even when process and
measurement noise cannot be precisely characterized. The
concept of cumulative distribution function (CDF) over-
bounding supports safe error quantification in the context of
global navigation satellite systems (GNSS) positioning [1],
[2]. However, CDF overbounding is designed to be used
only for snapshot estimators, such as least-squares estima-
tors [3], [4], [5]. That is, it does not directly apply to linear
dynamic systems (LDSs) because it does not account for
measurement error correlation over time. New navigation
applications are emerging that require the use of Kalman fil-
ters (KFs) or other sequential or fixed-lag estimators to meet
stringent requirements and to incorporate information from
other sensors e.g., from inertial navigation systems (INS).

Robust estimation approaches have been developed to
address model uncertainty in LDSs. For instance, the opti-
mization of a scaling parameter to bound the estimation
error using a discrete-time KF is proposed in [6]. This
approach can present limitations due to the need to perform
an optimization process at each time step, and it only con-
siders uncertainty in the process and measurement design
matrices, not in the noise terms that are of main interest
in this article. In [7], the authors also aim at guaranteed
cost filtering under system uncertainty, but noise structure
uncertainty is not considered. Other robust filters use norm-
bounded cost functions based on H∞ or H2/H∞ [8], [9]
or use cost functions based on M-estimators [10]. They
have been implemented in navigation applications and show
great potential [11]. But, they do not allow for rigorous
estimation error bounding, which makes them unfit for
safety-critical applications.

The authors in [12] and [13] provide bounds on the
error of linear systems with spherically symmetric time cor-
related measurement errors. In [14], a bounding approach
is proposed when the autocorrelation function of measure-
ment or process noise can be upper and lower bounded.
While these methods do not require any knowledge about
the structure of the errors, they require evaluating the impact
of all previous time epochs in a batch processing scheme.
This is a limitation for real-time systems since the required
operations and memory allocation grow fast as time passes.
In [15], the authors show that the true KF estimation error
covariance could be upper bounded if the power spectral
density (PSD) of the measurement or process error model
upper bounded that of the actual time-correlated sensor
errors at all frequencies.

Realistic time-correlated errors can have complex time
correlation structures. To model these structures in practical
applications, Gauss–Markov Processes (GMPs) are widely
employed both because they can be reasonably accurate
and have a simple two-parameter formulation. GMPs can
easily be incorporated in a KF by state augmentation. For
instance, the satellite-based augmentation system minimum
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operational performance standard recommends using first-
order GMP to model the tropospheric, satellite ephemeris,
and clock errors in GPS/INS tight integration [16]. How-
ever, time-correlated errors that can be considered station-
ary over the duration of a Kalman filtering period may
change over longer time scales, and may vary depending
on sensor location. This has been observed, for instance,
in GNSS satellite orbit and clock errors, residual tropo-
spheric delays, and multipath errors; in these cases, ranges
of values for GMP variance and time-constant are provided
[17], [18], [19]. Error models are needed, which incorpo-
rate the fact that true process parameters are uncertain,
thereby enabling realistic predictions of estimator perfor-
mance in the presence of time correlation. Such models
have begun to emerge in the literature. In [20], a stationary
model for uncertain GMPs is derived by sensitivity analysis
of continuous-time KFs. This derivation is revisited for
sampled-data systems in [21] and a tighter, nonstationary
model is provided in the discrete-time domain. However,
Langel et al. [21] does not prove that the model guarantees
an upper bound on the estimate error variance. In [22], the
model from [21] is implemented in a GNSS/INS KF for
an aircraft landing application: the authors conjectured that
another model may exist that can provide a tighter bound on
the KF estimate error variance. Langel et al. [23] provided
rigorous proofs that the models in [21] are bounding, and
these models are applied to a batch ARAIM application.
Thus, while prior work in [20], [21], and [23] guarantee
an upper bound on estimation error variance, they are not
designed to achieve any measure of optimality. In this
article, we derive a closed-form solution for the tightest
stationary GMP model that upper bounds the KF estimate
error variance in the presence of measurement and process
noise with stationary GMP structure but uncertain variance
and time constant. Both continuous and discrete-time mod-
els are found using the PSD criterion in [15]. These bounds
not only guarantee bounding error conditions but also pro-
vide smaller predicted KF error covariances with respect to
previous work in [20], [21], and [23]. In safety-critical appli-
cations, they can be used to ensure integrity while enhancing
continuity and availability performance. Then, we tighten
the discrete implementation of the bound by considering a
nonstationary GMP model whose initial variance is less than
the steady-state variance. The nonstationary bound is tighter
during the transient phase of the nonstationary process, and
remains bounding at steady state.

The rest of this article is organized as follows. In Sec-
tion II, we derive the parameters of a stationary GMP bound
in the continuous-time domain and represent its PSD. In
Section III, we present the stationary GMP model derived
in the discrete-time domain. Sections IV and V provide non-
stationary bounding models for the continuous and discrete-
time domain, respectively, by deriving conditions on the
initial GMP variance. A reader only interested in applying
the new bounds may directly consult Table I in Section VI.
In Section VII, we evaluate the bounds for an example KF
implementation. Finally, Section VIII concludes this article.

II. STATIONARY CONTINUOUS-TIME GMP MODEL

A. Problem Formulation

We consider a hybrid LDS described by a continuous-
time system model and a sampled measurement model at a
time epoch n ∈ Z ≥ 0:

ξ̇(t ) = F(t )ξ(t ) + w(t ),

zn = Hnξn + vn, (1)

where F and H, respectively, are the state transition and
observation matrices, and ξ and z are the state and mea-
surement vectors. A hybrid LDS is a common state-space
realization in GNSS/INS. Vectors w(t ) and vn are time-
correlated process and measurement noise vectors such that

w(t ) = Ewa(t ) + η(t ), (2)

vn = Evan + νn, (3)

where Ew and Ev are matrices of 0s and 1s and η(t ), νn

are mutually uncorrelated, zero-mean white Gaussian noise
vectors. an is the sampled signal a(t ) such that an = a(n�t ),
where �t ∈ R>0 is the sampling interval. The l × 1 vector a
is composed of mutually independent stationary first-order
GMPs. Each GMP i is modeled by the following differential
equation [24]:

ȧi(t ) = − 1

τi
ai(t ) +

√
2σ 2

i

τi
ζi(t ), ζi(t ) ∼ N (0, 1), (4)

or equivalently in vector form

ȧ(t ) = La(t ) + u(t ), (5)

where

L = diag

[
− 1

τ1
, . . . , − 1

τl

]
, (6)

U = E [uuT ] = diag

[
2σ 2

1

τ1
, . . . ,

2σ 2
l

τl

]
, (7)

where τi ∈ R>0 and σ 2
i ∈ R≥0 are the GMP correlation

time constant and variance, respectively, with i ∈ 1, . . ., l
and u(t ) is a zero-mean white Gaussian noise vector. The
condition τi > 0 ensures that the system in (5) is stable. We
only consider stable GMPs since most random processes
encountered in practice exhibit this behavior. Since (1) to (5)
define a linear system driven by zero-mean white Gaussian
noise, and the KF is a linear unbiased estimator, error bound-
ing conditions can be derived by focusing solely on the
estimate error covariance. Under the mutually independent
GMP assumption, the bounding methodology in [15] and
[23] can be implemented for each GMP separately. We drop
subscripts i in the rest of this article when referring to an
arbitrary GMP’s parameters.

The state-augmented model of the LDS in (1) can be
written as[

ξ̇(t )
ȧ(t )

]
=
[

F(t ) Ew

0 L

] [
ξ(t )
a(t )

]
+
[
η(t )
u(t )

]
, (8)
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zn = [Hn Ev
] [ξn

an

]
+ νn. (9)

In this article, we design a KF to guarantee that the state
estimation error covariance matrix tightly upper bounds, in a
positive semidefinite sense, the true error covariance matrix
when the GMP parameters in L and U are uncertain within
known ranges, i.e., τ ∈ [τmin, τmax] and σ 2 ∈ [σ 2

min, σ
2
max].

Examples of navigation error sources that can be character-
ized with a range of parameter values include GNSS satel-
lite orbit, clock, tropospheric, and multipath errors [17],
[18], [19].

To model the KF process and measurement noise, we
first analyze the PSD, which is a widely used methodol-
ogy [24]. It was shown in [15] that the KF’s estimated
state error covariance matrix upper bounds that of the true
state error if, for each of the independent process and
measurement errors, the model PSDs bound the empirical
PSDs. Therefore, we seek to find a GMP model whose PSD
upper bounds that of an actual GMP with uncertain time
constant and variance. The spectral density of a GMP in the
continuous-time domain can be expressed as [24]

Sc(ω) = 2σ 2/τ

ω2 + (1/τ )2
, (10)

where the angular frequency in radians per second is ω =
2π f , with f being the linear frequency in Hertz. Since the
spectrum of a real process is an even function, we only need
to bound the PSD over [0, ∞)

Ŝc(ω) ≥ Sc(ω), ∀ω ∈ [0, ∞), (11)

where Ŝc is the bounding PSD of the continuous-time GMP
model to be determined.

The bounding GMP model is fully defined by two
parameters: its correlation time constant τ̂c ∈ R>0 and its
variance σ̂ 2

c ∈ R≥0, which is also the total net power of
the GMP process. The KF state estimation error covariance
is a linear combination of the variance of the process and
measurement noise components. Therefore, in order to find
the tightest stationary bound, we want to minimize the total
net power of each of the noises, which is expressed for an
arbitrary noise as

min
σ̂c,τ̂c

1

π

∫ ∞

0
Ŝc(ω)dω = min σ̂ 2

c , s.t. Ŝc(ω) ≥ Sc(ω),

∀ω ∈ [0, ∞), ∀τ ∈ [τmin, τmax] and ∀σ 2 ∈ [σ 2
min, σ

2
max]. (12)

B. GMP Continuous-Time Model Parameters

The GMP bounding model in the continuous-time do-
main is presented by the following theorem.

THEOREM 1: Let a(t ) ∈ R be a continuous-time, stationary,
first-order GMP with uncertain variance σ 2 ∈ [σ 2

min, σ
2
max]

and correlation time constant τ ∈ [τmin, τmax]. The corre-
lation time constant and variance of a continuous-time,
stationary, first-order GMP model â(t ) ∈ R that provides
the tightest bound on the PSD of the process a(t ) can,

respectively, be expressed as

τ̂c = √
τminτ max, and σ̂ 2

c =
√

τ max

τmin
σ 2

max. (13)

PROOF: Theorem 1 gives a closed-form solution for the
minimization problem in (12). To find this solution, we start
by using (10) to express (11) as

2σ̂ 2
c /τ̂c

ω2 + 1/τ̂ 2
c

≥ 2σ 2/τ

ω2 + 1/τ 2
, ∀ω ∈ [0, ∞). (14)

Subtracting the right-hand-side term from both sides of the
inequality, writing the resulting fraction with a common
denominator, and factoring out ω2 in the terms where it
appears in the numerator, (14) becomes

ω2(2σ̂ 2
c τ − 2σ 2τ̂c) + 2σ̂ 2

c τ̂c−2σ 2τ

τ τ̂c

τ τ̂c(ω2 + 1/τ̂ 2
c )(ω2 + 1/τ 2)

≥ 0, ∀ω ∈ [0, ∞). (15)

Since ω, τ , and τ̂c are positive, the denominator in (15)
is always positive. Therefore, the numerator must also be
nonnegative

ω2(σ̂ 2
c τ − σ 2τ̂c) + σ̂ 2

c τ̂c − σ 2τ

τ τ̂c
≥ 0, ∀ω ∈ [0, ∞). (16)

Equation (16) is linear in ω2, i.e., monotonically increasing
or decreasing with ω ≥ 0. Thus, a necessary and sufficient
condition for (16) to be satisfied ∀ ω ∈ [0, ∞) is that it must
hold true for the two limit values of ω. At the limit when
ω → ∞ and ω = 0, we find the following two conditions:

σ̂ 2
c τ − σ 2τ̂c ≥ 0, (17)

σ̂ 2
c τ̂c − σ 2τ ≥ 0, (18)

which can be rewritten as

σ̂ 2
c ≥ σ 2τ

τ̂c
, σ̂ 2

c ≥ σ 2τ̂c

τ
. (19)

These expressions must be satisfied ∀τ ∈ [τmin, τmax] and
∀σ 2 ∈ [σ 2

min, σ
2
max]. Both conditions are clearly more re-

strictive when σ 2 = σ 2
max. The first one is also more re-

strictive when τ = τmax, whereas the second one is more
restrictive when τ = τmin. Thus, when considering the en-
tire range of possible GMP model parameter values, (19)
becomes

σ̂ 2
c ≥ σ 2

maxτmax

τ̂c
, σ̂ 2

c ≥ σ 2
maxτ̂c

τmin
. (20)

Equation (12) expresses the fact that the tightest GMP bound
is the one that minimizes σ̂ 2

c . In (20), this is achieved at
equality, i.e., for the following equations:

σ̂ 2
c = σ 2

maxτmax

τ̂c
, σ̂ 2

c = σ 2
maxτ̂c

τmin
. (21)

Solving (21) for σ̂ 2
c and τ̂c gives (13). This ends the proof

for Theorem 1. �

COROLLARY 1.1 The estimated covariance matrix of a
continuous-time LDS estimator (e.g., a KF) whose mea-
surement and process noise are linear combinations of
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Fig. 1. PSD of stationary GMP with σ 2 ∈ [1, 10] and τ ∈ [10, 100]s,
GMP Bound in [23], and the new Tight Bound.

independent, stationary, first-order GMPs with uncertain
parameters σ 2 ∈ [σ 2

min, σ
2
max] and τ ∈ [τmin, τmax] can be

tightly bounded in a positive semidefinite sense by modeling
each independent GMP as a continuous-time, stationary,
first-order GMP model with parameters given in (13).

PROOF Theorem 1 establishes that the PSD of a GMP model
with the parameters given in (13) tightly upper bounds that
of a GMP with uncertain parameters σ 2 ∈ [σ 2

min, σ
2
max] and

τ ∈ [τmin, τmax]. In addition, Langel et al. [23] proved that,
for linear estimators, the state estimation error covariance
matrix is bounded if the PSDs of the measurement and pro-
cess noise models bound those of the actual, independent,
time-correlated processes. Therefore, under the assump-
tions made in this section, designing an LDS estimator (e.g.,
a KF) using continuous-time GMP models with parameters
given in (13) ensures a bounding state estimation error
covariance. �

C. Graphical Evaluation

We consider an illustrative example of an actual GMP
with variance ranging between 1 and 10 (units are arbitrary)
and time constant varying from 10 to 100 s. Fig. 1 shows the
PSD of the new, tight stationary GMP bound defined in (13)
as compared to the stationary bound derived in [21] and [23],
and to other possible realizations of the GMP within the
admissible range ofσ 2 and τ values. Fig. 1 illustrates the fact
that our new proposed bound is tighter at low frequencies
than the one in [23], and that it is the tightest possible bound
for actual, stationary GMPs when assuming a stationary
GMP model.

III. STATIONARY DISCRETE-TIME GMP MODEL

A. Problem Formulation

Discrete-time LDS models are often used in practi-
cal applications involving digital computers. They can be
described at a time epoch n ∈ Z ≥ 0 using the following
equations:

xn = �nxn−1 + wn, (22)

zn = Hnxn + vn, (23)

where � and w are the discrete-time transition matrix and
process noise vector, respectively. The vector x is the aug-
mented state vector such that xT = [ξT aT ] where ξ are the
original states of interest and a are the augmented states.
In the same manner as in Section II, GMP models can be
incorporated by state augmentation. A discrete-time GMP
model can be written as

an = α̂dan−1 +
√

σ̂ 2
d

(
1 − α̂2

d

)
wn, (24)

where α̂d = e
−�t
τ̂d , wn ∼ N (0, 1), and �t ∈ R>0 is the sam-

pling time interval. The quantities τ̂d ∈ R>0 and σ̂ 2
d ∈ R≥0,

respectively, are the time constant and variance used in the
discrete-time GMP model. We want to find a discrete-time
GMP model whose spectral density Ŝd is greater than or
equal to that of the actual GMP Sd, which is expressed as

Ŝd(ω) ≥ Sd(ω), ∀ω ∈
[
0,

π

�t

]
. (25)

Besides, we seek the GMP model that minimizes the total
power of the process, i.e., that minimizes σ̂ 2

d , while satisfy-
ing (25).

B. GMP Discrete-Time Model Parameters

THEOREM 2 Let an ∈ R be a discrete-time, stationary, first-
order GMP with uncertain variance σ 2 ∈ [σ 2

min, σ
2
max] and

correlation time constant τ ∈ [τmin, τmax]. The variance and
correlation time constant of a discrete-time, stationary, first-
order GMP model ân ∈ R that provides the tightest bound
on the PSD of the process an can respectively be expressed
as

σ̂ 2
d = σ 2

max

√
(1 − αmin)(1 + α max)

(1 + αmin)(1 − α max)
, and (26)

τ̂ d = −�t

[
ln

(
1 − √

	

1 + √
	

)]−1

, (27)

where

αmin = e− �t
τmin , α max = e− �t

τ max , and (28)

	 = (1 − αmin) (1 − α max)

(1 + αmin) (1 + α max)
. (29)

PROOF The spectral density of a generic discrete-time first-
order GMP can be expressed as [25]

Sd(ω) = σ 2�t
(
1 − α2

)
1 + α2 − 2α cos(ω�t )

, (30)

where α = e
−�t

τ . With the definition in (30), the condition
in (25) states that for all ω ∈ [0, π

�t ], we must satisfy the
inequality

σ̂ 2
d �t

(
1 − α̂2

d

)
1 + α̂2

d − 2α̂d cos(ω�t )
≥ σ 2�t

(
1 − α2

)
1 + α2 − 2α cos(ω�t )

. (31)

After bringing the right-hand-side term to the left, express-
ing the two fractions with a common denominator, and
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dividing both sides by �t , (31) becomes

σ̂ 2
d

(
1 − α̂2

d

) (
1 + α2 − 2α cos(ω�t )

)
(
1 + α̂2

d − 2α̂d cos(ω�t )
) (

1 + α2 − 2α cos(ω�t )
)

− σ 2
(
1 − α2

) (
1 + α̂2

d − 2α̂d cos(ω�t )
)

(
1 + α̂2

d − 2α̂d cos(ω�t )
) (

1 + α2 − 2α cos(ω�t )
) ≥ 0

∀ω ∈
[
0,

π

�t

]
. (32)

The second-order polynomials appearing in the denom-
inators are of the form x2 − 2x cos(ω�t ) + 1. That is,
they are parabolas that open up with a minimum value
of 1 − cos2 ω�t occurring at x∗ = cos ω�t . Given that
cos(ω�t ) ∈ [−1, 1], the minimum value of the parabola is
always nonnegative, and since the parabolas open up, it
must be that the denominators in (32) are also nonnegative.
The case of α = 1, which would cause the denominator in
(32) to be zero when cos2(ω�t ) = 1, is not possible since
�t > 0 and τ is finite. Therefore, (32) is satisfied if and only
if (IFF) the numerator is nonnegative, which, after factoring
out cos(ω�t ), can be written as

cos(ω�t )
(
σ 2(1 − α2)2α̂d − σ̂ 2

d (1 − α̂2
d )2α

)
+ σ̂ 2

d (1 − α̂2
d )(1 + α2) − σ 2(1 − α2)(1 + α̂2

d ) ≥ 0,

∀ω ∈ [0,
π

�t
]. (33)

Equation (33) is linear in cos(ω�t ), which can be writ-
ten independently of �t as cos(
) where 
 = ω�t,
∀
 ∈ [0, π ]. The term cos(ω�t ) is a monotonically de-
creasing function of ω�t for ω ∈ [0, π/�t]. Thus, showing
that the inequality in (33) is satisfied ∀ω ∈ [0, π

�t ] is equiv-
alent to showing that it is satisfied for the limit values of
cos(ω�t ). For cos(ω�t ) = 1, (33) becomes

σ̂ 2
d ≥ σ 2 (1 + α)(1 − α̂d)

(1 − α)(1 + α̂d)
. (34)

For cos(ω�t ) = −1, (33) becomes

σ̂ 2
d ≥ σ 2 (1 − α)(1 + α̂d)

(1 + α)(1 − α̂d)
. (35)

Equations (34) and (35) must be satisfied ∀σ 2 ∈
[σ 2

min, σ
2
max]. Choosing σ 2 = σ 2

max ensures that (34) and (35)
are satisfied for any other value of σ 2 within the admissible
range. In addition, (34) and (35) must hold for all values
of α, i.e., ∀ τ ∈ [τmin, τmax]. In (34), the maximum value
of the right-hand-side is for α = αmax, which maximizes
the numerator while minimizing the denominator because
0 < α < 1. Similarly, in (35), the maximum value of the
right-hand-side is for α = αmin. Furthermore, the tightest
PSD bound in (25) is found when σ̂ 2

d is minimized, which
is achieved at equality in (34) and (35). We obtain the
following two equations:

σ̂ 2
d = σ 2

max
(1 + αmax)(1 − α̂d)

(1 − αmax)(1 + α̂d)
, (36)

σ̂ 2
d = σ 2

max
(1 − αmin)(1 + α̂d)

(1 + αmin)(1 − α̂d)
. (37)

Solving for α̂d and σ̂ 2
d in (36) and (37), we find a PSD-

bounding, discrete-time, stationary, first-order GMP model
with the variance and time constant parameters in (26) and
(27). This ends the proof for Theorem 2. �

COROLLARY 2.1 The estimated covariance matrix of a
discrete-time LDS estimator (e.g., a KF) whose measure-
ment and process noise are linear combinations of inde-
pendent, stationary, first-order GMP with uncertain param-
eters σ 2 ∈ [σ 2

min, σ
2
max] and τ ∈ [τmin, τmax] can be tightly

bounded in the positive semidefinite sense, in the discrete-
time domain, by modeling each independent GMP with a
stationary, first-order GMP model with parameters given in
(26) and (27).

PROOF Theorem 2 establishes that the PSD of a discrete-
time GMP model with parameters in (26) and (27) bounds
that of an uncertain GMP with uncertain parameters
σ 2 ∈ [σ 2

min, σ
2
max] and τ ∈ [τmin, τmax]. The proof in [23]

establishes that bounding the individual PSD of independent
and time-correlated process and measurement noises in an
LDS provides an estimation error covariance that bounds
the true error covariance. Therefore, using a discrete-time
GMP model with the parameters in (26) and (27) in an LDS
estimator (e.g., a KF) ensures that the modeled estimation
error covariance upper bounds the actual estimation error
covariance. �

C. Using Discrete-Time Models With Parameter Values
Derived in Continuous-Time

At the limit when �t tends to 0, the expressions of
σ̂d and τ̂d in (26) and (27) approach their continuous-time
equivalents in (13), i.e.,

lim
�t→0

σ̂d = σ̂c, (38)

lim
�t→0

τ̂d = τ̂c. (39)

These equations can be derived, for example, using series
expansions of the exponential terms in (26)–(29). Interme-
diary results to achieve (39) include

lim
�t→0

√
	 = ωd�t, (40)

where ωd = (2
√

τminτmax)−1; the argument of the natu-
ral logarithm in (27), therefore, approaches e−2ωd�t when
�t → 0. The remainder of the derivation is straightforward,
and is omitted to limit the length of this article.

The expressions of σ̂ 2
c and τ̂c in (13) for continuous-

time GMP models are more compact than their discrete-time
equivalents σ̂ 2

d and τ̂d in (26) and (27). There are precedents
for using continuous-time parameter values in discrete-time
models, e.g., in continuous to discrete-time transformations
in [24].

THEOREM 3 Let an ∈ R be a discrete-time, stationary, first-
order GMP model with variance and correlation time con-
stant defined using (26) and (27). The PSD of a discrete-
time, stationary, first-order GMP model with variance and
correlation time constant defined using (13) upper bounds
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that of the PSD of an regardless of the sampling time
interval.

PROOF Theorem 3 can be written in mathematical terms as

σ̂ 2
c �t

(
1 − α̂2

c

)
1 + α̂2

c − 2α̂c cos(ω�t )
≥ σ̂ 2

d �t
(
1 − α̂2

d

)
1 + α̂2

d − 2α̂d cos(ω�t )
, ∀�t ≥ 0

(41)

where the left-hand side was obtained by substituting σ̂ 2
c

for σ 2 and τ̂c for τ in the definition of Ŝd(ω) in (30), the
right-hand side was obtained by substituting σ̂ 2

d for σ 2 and

τ̂d for τ in Ŝd(ω), and α̂c = e
−�t
τ̂c .

The inequality in (41) is of the same form as that in (31).
Thus, following the same steps as in (31) to (35), we can
show that (41) is true IFF the following two inequalities are
satisfied for all �t ≥ 0:

σ̂ 2
c

(1 + α̂c)

(1 − α̂c)
≥ σ̂ 2

d
(1 + α̂d)

(1 − α̂d)
, (42)

σ̂ 2
c

(1 − α̂c)

(1 + α̂c)
≥ σ̂ 2

d
(1 − α̂d)

(1 + α̂d)
. (43)

Substituting the expressions of σ̂ 2
d in (36) and (37) into (42)

and (43), respectively, using the definition of σ̂ 2
c in (13) and

dividing both sides by σ 2
max, the last two inequalities become√

τmax

τmin

(1 + α̂c)

(1 − α̂c)
≥ (1 + αmax)

(1 − αmax)
, (44)√

τmax

τmin

(1 − α̂c)

(1 + α̂c)
≥ (1 − αmin)

(1 + αmin)
. (45)

Multiplying both sides of these inequalities by√
τmaxτmin = τ̂c, bringing all terms to the left-hand

side, expanding, factoring out (τmax − τ̂c) and (τmax + τ̂c),
and rearranging, we obtain the following left-hand-side
expressions of (44) and (45), respectively:

f1(�t ) = (τmax − τ̂c) (1 − αmaxα̂c)

+ (τmax + τ̂c) (α̂c − αmax), (46)

f2(�t ) = (τmax − τ̂c) (1 − αminα̂c)

+ (τmax + τ̂c) (αmin − α̂c) . (47)

Substituting the definitions of α̂c, αmin, and αmax into the
abovementioned two expressions, the following limits are
found:

lim
�t→0

f1(�t ) = 0, lim
�t→0

f2(�t ) = 0. (48)

Thus, we have shown that (41) is satisfied IFF
f1(�t ) ≥ 0 and f2(�t ) ≥ 0, ∀�t ≥ 0. Given (48), this is
equivalent to showing that f1(�t ) and f2(�t ) are monoton-
ically increasing, i.e., that their derivatives are nonnegative
for all �t ≥ 0.

First, the derivative of f1(�t ) can be written as

f ′
1(�t ) = (τmax − τ̂c)(τmax + τ̂c)

τmaxτ̂c
e− �t

τmax e− �t
τ̂c

+ (τmax + τ̂c)

τmaxτ̂c

(
τ̂ce− �t

τmax − τmaxe− �t
τ̂c

)
≥ 0. (49)

Dividing both sides of the inequality by the nonnegative
factor (e− �t

τmax e− �t
τ̂c

τmax+τ̂c
τmax τ̂c

) and rearranging, the left-hand
side in (49) becomes

f1,1(�t ) = τ̂c

(
e

�t
τ̂c − 1

)
− τmax

(
e

�t
τmax − 1

)
. (50)

To show that f1,1 is nonnegative, we consider the facts that

lim
�t→0

f1,1(�t ) = 0 (51)

and that the derivative of f1,1 is positive, i.e.,

f ′
1,1(�t ) = e

�t
τ̂c − e

�t
τmax ≥ 0, ∀�t ≥ 0 (52)

because τmax ≥ τ̂c. This proves that f ′
1(�t ) is nonnegative.

Second, the derivative of f2(�t ) is

f ′
2(�t ) = (τmax − τ̂c)(τmin + τ̂c)

τminτ̂c
e− �t

τmin e− �t
τ̂c

+ (τmax + τ̂c)

τminτ̂c

(
τmine− �t

τ̂c − τ̂ce− �t
τmin

)
≥ 0. (53)

Dividing both sides of the inequality by the nonnegative

factor (e− �t
τmin e− �t

τ̂c
1

τmax τ̂c
) and rearranging, the left-hand side

in (53) becomes

f2,1(�t ) = τmaxτmin

(
e

�t
τmin + 1

)
− τmaxτ̂c

(
e

�t
τ̂c − 1

)
+ τ̂cτmin

(
e

�t
τmin − 1

)
− τ̂ 2

c

(
e

�t
τ̂c + 1

)
≥ 0. (54)

To show that f2,1 is nonnegative, we consider the facts that

lim
�t→0

f2,1(�t ) = 2τmaxτmin − 2τ̂ 2
c = 0, (55)

and that the derivative of f2,1(�t ) is

f ′
2,1(�t ) = (τmax + τ̂c)

(
e

�t
τmin − e

�t
τ̂c

)
≥ 0, (56)

because τmin ≤ τ̂c. This proves that f ′
2(�t ) is nonnegative.

The facts that f ′
1(�t ) and f ′

2(�t ) are nonnegative for
all �t ≥ 0 and that the limits of f1(�t ) and f2(�t ) as
�t → 0 are nonnegative prove that f1(�t ) ≥ 0
and f2(�t ) ≥ 0, ∀�t ≥ 0, which ultimately proves
Theorem 3. �

COROLLARY 3.1 The PSD of a discrete-time, station-
ary, first-order GMP model with variance and correlation
time constant defined using (13) upper bounds that of a
discrete-time, stationary, first-order GMP with uncertain
variance σ 2 ∈ [σ 2

min, σ
2
max] and correlation time constant

τ ∈ [τmin, τmax].

PROOF For clarity and conciseness, we use the notation
Sd(ω, σ 2, τ ) rather than Sd(ω) in (30) to designate the
discrete-time PSD of the first-order GMP with variance σ 2

and time constant τ . Theorem 2 shows that Ŝd(ω, σ̂ 2
d , τ̂d) ≥

Sd(ω, σ 2, τ ), ∀σ 2 ∈ [σ 2
min, σ

2
max], ∀τ ∈ [τmin, τmax]. Theo-

rem 3 shows that Ŝd(ω, σ̂ 2
c , τ̂c) ≥ Ŝd(ω, σ̂ 2

d , τ̂d).
Therefore, it must be that Ŝd(ω, σ̂ 2

c , τ̂c) ≥ Sd(ω, σ 2, τ ),
∀σ 2 ∈ [σ 2

min, σ
2
max], ∀τ ∈ [τmin, τmax]. �
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Fig. 2. Discrete-time PSD of stationary GMP with σ 2 ∈ [1, 10] and
τ ∈ [10, 100]s, and new tight bound.

Fig. 3. Discrete-time PSD for first-order GMP models, assuming
τ ∈ [1, 100] s, σ 2 ∈ [1, 1] (fixed, unitless), for varying values of �t
given in legend (in seconds), using discrete-time parameters (solid)

versus continuous-time parameters (dashed).

COROLLARY 3.2 The estimated covariance matrix of a
discrete-time LDS estimator (e.g., a KF) whose measure-
ment and process noise are linear combinations of indepen-
dent, stationary, first-order GMPs with uncertain parameters
σ 2 ∈ [σ 2

min, σ
2
max] and τ ∈ [τmin, τmax] can be upper bounded

in the positive semidefinite sense by modeling each inde-
pendent GMP with a stationary, first-order, discrete-time
GMP model with parameters given in (13).

PROOF Corollary 3.1 establishes that the PSD of a discrete-
time GMP model with parameters given in (13) upper
bounds that of an actual discrete-time GMP with uncertain
parameters σ 2 ∈ [σ 2

min, σ
2
max] and τ ∈ [τmin, τmax]. Langel

et al. [23] proved that, for linear estimators, the state esti-
mation error covariance matrix is bounded in the positive
semidefinite sense if the PSDs of the measurement and pro-
cess noise models bound those of the actual, independent,
time-correlated processes. Therefore, designing a KF us-
ing first-order, discrete-time GMP models with parameters
given in (13) ensures a bounding state estimation error
covariance. �

Fig. 3 illustrates Theorem 3 for an example discrete-
time, first-order GMP described in the figure caption. We

assume that τmin = 1 s, and we consider sampling intervals
�t varying between 0.001 s and 10 s. Using the nota-
tions introduced in Corollary 3.1, the solid curves represent
Ŝd(ω, σ̂ 2

d , τ̂d) and the dashed curves are Ŝd(ω, σ̂ 2
c , τ̂c). For

consistency of representation between discrete-time PSDs
with varying �t , the x-axis is displayed in terms of an-
gular frequency 
 = 2π f �t , where f is the frequency in
Hertz. As demonstrated in Theorem 3, the dashed curves in
Fig. 3 upper bound their corresponding solid curves at all
frequencies. In addition, it is worth noticing that for values
of �t greater than τmin, the dashed curves of Ŝd(ω, σ̂ 2

c , τ̂c)
only provide a loose bound on the solid curves representing
Ŝd(ω, σ̂ 2

d , τ̂d). Since �t and τmin are known, a KF designer
can make an informed decision on whether to use the
GMP parameter expressions in (13) or the ones in (26) and
(27) in order to ensure a tightly PSD-bounding model. In
many practical problems, �t is much smaller than τmin. For
example, in [17], the τmin-values of the time-correlation
of satellite orbit and clock errors for GPS and Galileo,
respectively, are found to be 4 h and 2 h, while GNSS-based
transportation operations require �t-values lower than 1 s.
Therefore, the compact continuous-time GMP parameters
in (13) can be both useful and accurate when used in
discrete-time models.

IV. NONSTATIONARY CONTINUOUS-TIME GMP
MODEL

Theorem 1 and Corollary 1.1 show that an LDS esti-
mator’s covariance can be upper bounded by modeling the
independent GMP errors as stationary GMPs with param-
eters defined in (13). However, (13) also shows that the
GMP model variance is inflated as compared to the upper
bound on the actual process’ steady-state variance σ 2

max: this
indicates that the stationary approach is overly-conservative
at GMP model initiation. In response, in this section, we
derive a nonstationary model that produces the same esti-
mation error covariance bounds at steady state, but tighter
bounds during the transient phase. In this sense, the process
is nonstationary since its initial variance is different from
its steady-state variance and it is changing over time during
the transient phase. Appendix D provides more details about
the time evolution of the variance for a nonstationary GMP.

THEOREM 4 The estimation error covariance matrix of a
continuous-time LDS estimator (e.g., a KF) whose mea-
surement and process noise are linear combinations of inde-
pendent, stationary, first-order GMPs with uncertain param-
eters σ 2 ∈ [σ 2

min, σ
2
max] and τ ∈ [τmin, τmax] can be tightly

bounded in a positive semidefinite sense by modeling each
independent GMP with a continuous-time, nonstationary,
first-order GMP model with steady-state parameters given
in (13) and with initial variance defined as

σ̂ 2
c,0 = σ 2

max
2

1 +
√

τmin
τ max

. (57)

PROOF In order to show that (57) guarantees a bound on
the estimation error covariance, we use the KF sensitivity
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analysis described in [23]. The prediction step of a KF for
the LDS in (1)–(9) can be written as

˙̂x = F̂x̂, (58)
˙̂�x = F̂�̂x + �̂xF̂T + Q̂, (59)

where x̂ is the estimated augmented state vector such that

x̂T = [ξ̂
T

âT ]. In this proof, we must distinguish true vectors
and matrices from the ones assumed by a KF designer.
Matrices F̂ and Q̂ are the KF designer’s assumed time
propagation matrix and process noise covariance matrix,
respectively. If F̂ = F and Q̂ = Q, then the estimated KF
state covariance matrix matches the true one, i.e., �̂x = Px.
If F̂ and Q̂ are not the true matrices, the propagation of
true errors can be expressed using the following differential
equation [23]:[

ė
ȧ

]
=
[

F̂ �F
0 L

] [
e
a

]
+
[−w

u

]
, (60)

where the true error is defined as e � x̂ − x and
�F � F̂ − F. The difference �F between designed and true
F is caused by the unknown correlation time constant τ ∈
[τmin, τmax] in (7). Therefore, we can write �F � [0T �LT ]T

where �L � L̂ − L. Matrices L̂ and L, respectively, are the
designed and true matrices of the GMP time propagation
model in (7). The KF true error covariance matrix associated
with (60) is

Ṗ =
[

F̂ �F
0 L

]
P + P

[
F̂ �F
0 L

]T

+ Q. (61)

To be able to compare (61) with the error covariance of the
designed KF, we can extend (59) as

�̇ =
[

F̂ 0
0 L

]
� + �

[
F̂ 0
0 L

]T

+
[

Q̂ 0
0 Q̄

]
, (62)

where � is a block diagonal matrix including the designed
KF covariance matrix in the upper left block

�̇ =
[
�̇x 0
0 �̇a

]
, (63)

where �̇a is the covariance matrix of the augmented states
and �̇ is of the same dimensions as Ṗ in (61). The assumed
error covariance matrix bounds the true error’s in a positive
semidefinite sense IFF � − P ≥ 0, which is equivalent to
guaranteeing the following two inequalities [23]:

�̇ − Ṗ ≥ 0, �(0) − P(0) ≥ 0. (64)

We can derive tight GMP bounds using nonstationary GMP
models with initial variance lower than that of the stationary
model, but still satisfying the second inequality in (64).
Using the expression of � derived in [23], this second
inequality is satisfied IFF⎡
⎣�ξ (0) − Pξ (0) 0 0

0 �̂a(0) − Pa(0) Pa(0)
0 Pa(0) �̄a(0) − Pa(0)

⎤
⎦ ≥ 0

(65)

where �̂a(0) is the designed KF’s initial GMP covariance
matrix and �̄a(0) = �̄a is the covariance of the stationary
GMPs propagated in the lower right block of � in (62). Both
�̂a(0) and �̄a are determined below to ensure that (64) is
satisfied. It is worth noticing that Pa(0) = Pa since the true
GMP processes are assumed to be stationary. Without loss
of generality on the impact of uncertain time correlation,
we can assume that the KF designer’s unaugmented state
covariance initialization ensures that ���ξ (0) − Pξ (0) ≥ 0.
Therefore, the need to satisfy (65) reduces to showing that
the following inequality holds:[

�̂��a(0) − Pa Pa

Pa �̄��a(0) − Pa

]
≥ 0. (66)

All four matrix blocks in (66) are diagonal since they capture
the initial variance of independent GMP processes. There-
fore, for a 2 × 2 block corresponding to a single independent
process, (66) can be rewritten as[

σ̂ 2
c,0 − σ 2 σ 2

σ 2 σ̄ 2
c − σ 2

]
≥ 0, (67)

which imposes the following lower bound on σ̂ 2
c,0

σ̂ 2
c,0 ≥ σ 2 + σ 4

σ̄ 2
c − σ 2

. (68)

Equation (68) must be valid for any value of the unknown
parameters σ 2 and τ . This is ensured, first, by choosing
σ 2 = σ 2

max. Then, σ̄ 2
c depends on σ 2 and τ : we can find the

minimum value of σ̄ 2
c ensuring that (68) is satisfied for any

values of σ 2 and τ . In Appendix A, an expression of σ̄ 2
c,min is

derived from the first inequality in (64). Appendix A shows
that, for the bounds in (13), σ̄ 2

min can be expressed as

σ̄ 2
c,min = 2σ 2

max
τmax

τmax − τ̂
. (69)

Substituting (69) into (68), we obtain

σ̂ 2
c,0 ≥ σ 2

max + σ 4
max(τmax − τ̂ )

2σ 2
maxτmax − σ 2

max(τmax − τ̂ )
. (70)

Using τ̂ = √
τminτmax from (13) and rearranging, the tight-

est bound on σ̂ 2
c,0 is found at equality, which is (57). �

V. NONSTATIONARY DISCRETE-TIME GMP MODEL

A. Analytical Solution

THEOREM 5 The estimation error covariance matrix of
a discrete-time LDS estimator (e.g., a KF) whose mea-
surement and process noise are linear combinations of
independent, stationary, first-order GMPs with uncertain
parameters σ 2 ∈ [σ 2

min, σ
2
max] and τ ∈ [τmin, τmax] can be

tightly bounded in a positive semidefinite sense by modeling
each independent GMP with a discrete-time, nonstationary,
first-order GMP model with steady-state parameters given
in (26) and (27) and with initial variance defined as

σ̂ 2
d,0 = σ 2

max
1

1 − 2(α̂d − α max)2

(1 − α̂2
d )(1 − α2

max)(kd − 1)

(71)

4354 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 59, NO. 4 AUGUST 2023

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on February 16,2024 at 20:11:52 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 4. Initial variance of nonstationary GMP bounding model for
different τ -ranges and σ 2

max = 1.

where

k d =
√

(1 − αmin)(1 + α max)

(1 + αmin)(1 − α max)
. (72)

PROOF We follow an approach similar to that in the
continuous-time case in Section IV. In [23], the authors
showed that the discrete-time KF estimation error vari-
ance could be bounded if the following inequalities were
satisfied:

�k|k−1 − Pk|k−1 ≥ 0, ∀k ∈ [1, ∞)

�0 − P0 ≥ 0. (73)

The conditions in (73) are the discrete-time versions of
(64). And they are also introduced in Appendix B. While
still satisfying bounding conditions at steady state, it is
possible to design a KF filter incorporating nonstationary
GMPs to provide a tighter estimation error bound during
the initial transient phase. The initialization state estimation
error bound is imposed by the second condition in (73),
which can be written similar to (65) as⎡

⎣�ξ,0 − Pξ,0 0 0
0 �̂a,0 − Pa,0 Pa,0

0 Pa,0 �̄a,0 − Pa,0

⎤
⎦ ≥ 0 (74)

Following the same reasoning as in Section IV, for each
GMP under consideration, (74) reduces to

σ̂ 2
d,0 ≥ σ 2 + σ 4

σ̄ 2
d − σ 2

. (75)

Appendix B shows that, for the GMP parameters in (26) and
(27), the minimum stationary variance σ̄ 2

d that guarantees
(75) for the range of possible values of σ̄ 2

d , and therefore,
σ 2 and τ can be expressed in the discrete-time case as

σ̄ 2
d,min = (1 − α̂2

d )(1 − α2
max)

2(α̂d − αmax)2

(
σ̂ 2

d − σ 2
max

)
. (76)

Using (26) and (27) and substituting (76) into (75) leads to
(71), where σ 2 = σ 2

max has been chosen to guarantee (75)
for any possible value of σ 2. �

Fig. 4 shows values of σ̂ 2
d,0 for example ranges of τ -

values over sampling time intervals �t ranging from 0.01 s

to 100 s. When �t � τ the minimum initial variance
converges to a single value. In the case that the time interval
approaches the value of the time-correlation constant, it is
possible to reduce the minimum initial variance. This is due
to the whitening effect of lower sampling frequencies on the
processes.

B. Discrete Nonstationary Model Using Parameters De-
rived in Continuous-Time

THEOREM 6 The estimation error covariance matrix of
a discrete-time LDS estimator (e.g., a KF) whose mea-
surement and process noise are linear combinations of
independent, stationary, first-order GMPs with uncertain
parameters σ 2 ∈ [σ 2

min, σ
2
max] and τ ∈ [τmin, τmax] can be

tightly bounded in a positive semidefinite sense by modeling
each independent GMP with a discrete-time, nonstationary,
first-order GMP model with steady-state parameters given
in (13) and with initial variance values defined in (57).

PROOF Theorem 3 establishes that, at steady state, the GMP
parameter values derived in the continuous-time domain
can be used in discrete-time models to provide an error-
variance-bounded KF solution. This implies that using (13)
in discrete-time models satisfies the first condition in (73).
Theorem 6 extends the use of parameter values derived in
the continuous-time domain to nonstationary discrete-time
GMP models. The proof reduces to showing that the second
condition in (73) holds when the initial variance value in
(57) is used. This is equivalent to showing that σ̂ 2

c,0 in (57)
is larger than or equal to σ̂ 2

d,0 when the parameter values
derived in the continuous-time domain [see (13)] are used,
i.e.,

σ̂ 2
c,0 ≥ σ̂ 2

d,0(σ̂ 2
c , τ̂c), ∀�t > 0. (77)

Comparing the expressions of σ̂ 2
c,0 and σ̂ 2

d,0 in (68) and (75),
(77) holds IFF the minimum values of σ̄ 2 satisfy

σ̄ 2
c,min ≤ σ̄ 2

d,min(σ̂ 2
c , τ̂c) ∀�t > 0. (78)

Proof of (78) is given in Appendix C. It ensures that (77)
holds and, therefore, proves Theorem 6. �

C. Numerical Solution for Finite Filter Duration

Section V provides an expression for the initial vari-
ance of a nonstationary discrete-time GMP bounding pro-
cess. This GMP model ensures an upper bound on the
KF variance regardless of the filtering duration, including
for infinite horizons. In some applications, time-correlated
measurements can only be used over a finite duration; for
example, a GPS satellite is visible for no longer than 12
h at a time at a static ground receiver location. In this
section, we provide an alternative approach to compute
the initial variance of a discrete-time nonstationary GMP
model whose use is expected to be limited in time. The
new numerically computed initial variance provides an even
tighter nonstationary GMP bound than in Section V. This
new model still matches the stationary GMP at steady
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state, but provides a tighter estimation error variance bound
during the transient period.

We start by deriving, in Appendix D, the autocovariance
rnp of a nonstationary discrete-time GMP between any
two time steps n and p where n ∈ Z ≥ 0, p ∈ Z ≥ 0, and
p ≥ n. rnp. As a function of the initial variance σ 2

0 , rnp can
be expressed as

rnp = E
[
anaT

p

] = α̂n+pσ 2
0 + σ̂ 2(1 − α̂2n)α̂p−n, (79)

where α̂ = e
−�t

τ̂ , a0 ∼ N (0, σ 2
0 ) , and wn ∼ N (0, 1). With-

out loss of generality the values of α̂ and σ̂ 2 can be either
the ones derived in the continuous or in the discrete-time
domain as summarized in Table I.

We use a numerical approach to find the minimum value
of σ 2

0 that guarantees an upper bound on the estimation error
variance. σ 2

0 only needs to be determined once for each noise
component, i.e., for each range of σ 2 ∈ [σ 2

min, σ
2
max] and τ ∈

[τmin, τmax]. This process can be performed offline prior to
KF initialization and does not cause extra computational
load when running the KF.

The autocovariance matrix (ACM) of size N (maximum
epoch duration of the time-correlated process in the filter)
of the bounding nonstationary GMP model is

R̂(N ) =

⎡
⎢⎢⎢⎣

r00 r01 · · · r0 N

r01 r11 · · · r1 N
...

...
. . .

...
r0 N r1 N · · · rNN

⎤
⎥⎥⎥⎦ . (80)

The actual, unknown stationary GMP ACM is expressed as

R(N ) =

⎡
⎢⎢⎢⎣

σ 2 ασ 2 · · · αNσ 2

ασ 2 σ 2 · · · αN−1σ 2

...
...

. . .
...

αNσ 2 αN−1σ 2 · · · σ 2

⎤
⎥⎥⎥⎦ . (81)

Equation (81) is obtained by setting σ 2
0 = σ 2 and by replac-

ing σ̂ 2 = σ 2 and α̂ with α = e
−�t

τ in (79), and substituting
the result into (80).

In [15], the authors show that overbounding the KF
estimation error in the presence of time-correlated process
and measurement errors can be achieved by finding an ACM
R̂ such that the difference between R̂ and R is positive
semidefinite. Therefore it must be ensured that

�R = R̂ − R = R̂ − σ 2R̄ ≥ 0, (82)

where σ 2 has been factored out from R in (81) and R̄
is the autocorrelation matrix. Matrix �R in (82) must be
positive semidefinite for all values of σ 2 ∈ [σ 2

min, σ
2
max] and

τ ∈ [τmin, τmax]. If �R is positive semidefinite for σ 2 =
σ 2

max, then it is positive semidefinite for all possible values
of σ 2.

Using σ 2 = σ 2
max and the notation σ̂ 2 = σ 2

maxk, where
k is either the multiplier in (13) or the one in (26), and
introducing the notation σ 2

0 = σ 2
maxk0, (82) can be expressed

over a finite number of time epochs N as

�R(N, k0)

= σ 2
max

⎡
⎢⎣

k0 − 1 · · · α̂n−1k0 − αN−1

...
. . .

...
· · · · · · α̂2 N k0 + k

(
1 − α̂2 N

)− 1

⎤
⎥⎦ .

(83)

The minimum acceptable value of k0 is the smallest one
guaranteeing that �R is positive semidefinite [23]. In order
to find k0, we use the fact that the eigenvalues of a real
symmetric matrix are real, and that the matrix is positive
semidefinite IFF its minimum eigenvalue is nonnegative.
For the symmetric matrix �R(N ) with minimum eigenvalue
λmin, we must ensure that λmin(N ) ≥ 0, ∀N ∈ Z≥0. The
numerical search for σ 2

0 can be expressed as

σ 2
0 = σ 2

max · arg min
kx

{λmin(�R(N, kx )) ≥ 0} . (84)

A good initialization point for the numerical search is pro-
vided in Appendix E. It ensures that the first 2×2 leading
principal minor of �R is positive semidefinite.

VI. SUMMARY OF THE KF DESIGN

Let us consider a discrete-time state-augmented LDS
model expressed as[

ξn
an

]
=
[
�n Ew

0 Ln

] [
ξn−1
an−1

]
+
[
ηn
un

]
,

zn = [Hn Ev
] [ξn

an

]
+ νn, (85)

and let us make the following definitions:

xn =
[
ξn
an

]
, An =

[
�n Ew

0 Ln

]
, Cn = [Hn Ev

]
,

Qn = E

[[
ηn
un

] [
ηT

n uT
n

]] =
[

Nn 0
0 Un

]
. (86)

GMP matrices L and U, and hence, A and Q, are uncertain.
In previous sections, we derived expressions for the param-
eters in L̂ and Û that account for that uncertainty. The KF
can therefore be written as

xn|n−1 = Ânxn−1|n−1, (87)

P̂n|n−1 = ÂnP̂n−1|n−1ÂT
n + Q̂n, (88)

K̂n = P̂n|n−1ĈT
n

(
ĈnP̂n|n−1ĈT

n + Rn
)−1

, (89)

xn|n = xn|n−1 + K̂n
(
zn − Ĉnxn|n−1

)
, (90)

P̂n|n = (I − K̂nĈn
)

P̂n|n−1. (91)

In the case where Â = A and Q̂ = Q, the KF state covari-
ance matrix coincides with the true error covariance, i.e.,
P̂ = P. We designed L̂ and Û, and hence, Â and Q̂, such
that P̂ ≥ P. We then tightened the bound on P considering
a nonstationary GMP model implemented using the initial
KF covariance matrix P̂0. Matrices L̂, Û, and P̂0 can be
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TABLE I
Summary of GMP Bounding Model Parameters

expressed as

L̂ = diag
[
e−�t/τ̂1, . . . , e−�t/τ̂l

]
, (92)

Û = diag
[
σ̂ 2

1

(
1 − e− 2�t

τ̂1

)
, . . . , σ̂ 2

l

(
1 − e− 2�t

τ̂l

)]
, (93)

P̂0 =
[
Pξ,0

P̂a,0

]
, (94)

with

P̂a,0 = diag
[
σ̂ 2

0,1, . . . , σ̂
2
0,l

]
, (95)

where for independent GMPs i = 1, . . ., l , τ̂i, σ̂ 2
i , and σ̂ 2

0,i
can be computed using the expressions in Table I.

VII. EXAMPLE KF IMPLEMENTATION

In order to evaluate the new GMP models, we con-
sider the motivational example described in [23], where the
initial position and constant velocity of a vehicle moving
along a one-dimensional trajectory is estimated using time-
correlated ranging signals. The LDS includes an augmented
state to account for measurement error time-correlation. The
LDS is described by the following equations:⎡
⎣p0,n

vn

an

⎤
⎦ =

⎡
⎣ 1 0 0

0 1 0
0 0 α

⎤
⎦
⎡
⎣p0,n−1

vn−1

an−1

⎤
⎦+

⎡
⎣ 0

0√
qdwn

⎤
⎦ ,

(96)

zn = [1 n�t 1
]⎡⎣ p0,n

vn

an

⎤
⎦+ νn, (97)

with

α = e
−�t

τ ,

qd = σ 2
a (1 − e

−2�t
τ ),

and
wn = N (0, 1),
νn = N (

0, σ 2
ν

)
,

(98)

Fig. 5. KF estimated error versus true error (position) (τmax = 100,
τmin = 10, τtrue = 50, and �t = 1 s).

where p0, v are the initial position and speed of the vehicle
and a is the augmented state. z is the ranging measurement.

τ is only known to be in the range τ ∈ [10, 100]s,
σ 2

ν = 1, and σ 2
a = 1. The initial estimate error covariance

matrix P0 is diagonal with nonzero elements of 10 m2 for
the position state, 1 m2/s2 for the speed state. The initial
variance for the augmented state depends on the model
under evaluation.

Fig. 5 shows the difference between the standard devia-
tion of the position estimated using a KF and that of the true
estimation error. For computation of the true estimated error
of a discrete-time KF, the reader may consult [22, Appendix
B]. Fig. 5 displays the stationary and nonstationary GMP
models derived in [23] and those derived in Sections III and
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Fig. 6. KF standard deviation (Position) (τmax = 100, τmin = 10,
τtrue = 50, and �t = 1s).

V of this article. Positive values of the curves mean that the
GMP models all produce upper bounds on the positioning
variance. If the simulation time was long enough, we would
see positioning deviations using the nonstationary GMP
models converge towards their corresponding stationary
GMP models.

We focus on the transient period. We can see that over
the first 300 s of simulation time, the nonstationary GMP
model in [23] provides a tighter positioning deviation bound
than the stationary model in this article. But, as filtering
approaches steady-state, our proposed stationary model in
Section III provides a tighter bound on the true error stan-
dard deviation. The nonstationary GMP model in Section
V achieves the tightest positioning error bound.

In addition, Fig. 6 shows the KF positioning standard
deviations for the new GMP models as compared to those
in [23], and to the KF standard deviation obtained if we
knew the true value of correlation time constant. This fig-
ure illustrates the inflation in standard deviation that we
endure for lack of knowledge of the actual error correlation
time constant, and the tightness of the positioning variance
bounds obtained using the proposed GMP models.

VIII. CONCLUSION

In this article, we derived the stationary GMP model
that guarantees the tightest upper bound on linear estimation
error variance in the presence of uncertain time-correlated
measurement and process errors with first-order Gauss–
Markov structure. We analyzed the PSD of GMPs to obtain
stationary models in both continuous-time and discrete-time
domains. The stationary models were improved upon us-
ing continuous-time and discrete-time nonstationary GMP
models, which provide tighter estimation error variance
bound during the transient period. These GMP models can
easily be implemented in linear dynamic estimators such
as KFs. We used an example positioning application to
illustrate the fact that the proposed estimation error bounds

can be significantly tighter than those described in prior
publications.

APPENDIX A
DERIVATION OF �̄ IN CONTINUOUS-TIME DOMAIN

This Appendix aims at deriving an expression for the
diagonal elements of matrix �̄a in (65). The derivation eval-
uates the first inequality in (64) using the continuous-time
stationary bounds in (13). The first condition in (64) is

�̇ − Ṗ ≥ 0. (99)

Because (62) does not have the same propagation matrices
as (61), we first rewrite (62) as

�̇ =
[

F̂ �F
0 L

]
� + �

[
F̂ �F
0 L

]T

+
[

Q̂ −�F�a

−�a�FT Q̄

]
. (100)

Substituting (61) and (100) into (99) and using the notation
� = � − P leads to

�̇ =
[

F̂ �F
0 L

]
� + �

[
F̂ �F
0 L

]T

+
⎡
⎣ Q̂ξ − Qξ 0 0

0 Q̂a − Qa −�L�a + Qa

0 −�a�LT + Qa Q̄a − Qa

⎤
⎦ .

(101)

Equation (99) is satisfied if �(0) ≥ 0 and if the last matrix
in (101) is positive semidefinite. The process noise of the
unaugmentated states can be chosen by the KF designer
to ensure Q̂ξ − Qξ ≥ 0. Therefore ensuring the matrix ex-
pression in (101) is positive semidefinite narrows down to
showing that[

Q̂a − Qa −�L�a + Qa

−�a�LT + Qa Q̄a − Qa

]
≥ 0. (102)

Because we are assuming that the individual noise processes
are mutually uncorrelated, the four blocks in (102) are di-
agonal and the condition in (102) for each noise component
can be written as[

q̂ − q −δlσ̄ 2 + q
−δlσ̄ 2 + q q̄ − q

]
≥ 0, (103)

where

δl = 1

τ
− 1

τ̂
, q = 2σ 2

τ
, q̂ = 2σ̂ 2

τ̂
, and, q̄ = 2σ̄ 2

τ
.

(104)

Using Schur complements to force the off-diagonal terms
to be zero, (103) becomes[

q̂ − q − (q − δlσ̄ 2)2(q̄ − q)−1 0
0 q̄ − q

]
≥ 0. (105)

Since (105) is diagonal, it will be positive semidefinite if
the diagonal elements are nonnegative. Using (104), the
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first diagonal element can be expressed as

q̂ − q −
(

q + τ

2

(
1

τ̂
− 1

τ

)
q̄

)2

(q̄ − q)−1 ≥ 0. (106)

Multiplying both sides of the inequality by the positive
quantity (q̄ − q) leads to

q̂q̄ − q̂q − q̄q − τ

(
1

τ̂
− 1

τ

)
qq̄ − τ 2

4

(
1

τ̂
− 1

τ

)2

q̄2 ≥ 0.

(107)

Grouping terms in q̄, we can write the following quadratic
equation:

−τ 2

4

(
1

τ̂
− 1

τ

)2

q̄2 +
(

q̂ − τ

τ̂
q
)

q̄ − q̂q ≥ 0. (108)

Using (104), the previous inequality becomes

−
(

1

τ̂
− 1

τ

)2

σ̄ 4 +
(
σ̂ 2 − σ 2

)
τ̂

4

τ
σ̄ 2 − 4σ̂ 2σ 2

τ̂ τ
≥ 0,

(109)

which represents the positive values of a parabola of the
form y(x) = ax2 + bx + c where x = σ̄ 2. For given values
of σ 2 and τ , there is a range of solutions for σ̄ 2. However,
we must find a value of σ̄ 2 that is always a solution, for
any value of σ 2 and τ within the admissible range. We use
the parameters in (13) for σ̂ 2 and τ̂ , and we known that
σ̂ 2 ≥ σ 2, ∀σ 2 ∈ [σ 2

min, σ
2
max].

Both the quadratic polynomial parameters b and c in
the inequality of (109) reduce with increasing values of
σ 2. This results in the parabola shifting down and hence
reducing the range of possible solutions for σ̄ 2. Therefore,
carrying out the derivation for σ 2 = σ 2

max ensures the most
restrictive solution interval for σ̄ 2, which then guarantees a
possible solution for other values of σ 2. In addition, with
respect to τ , the most restrictive range of σ̄ 2-solutions is
found when there is a single possible solution. This solution
can be found by ensuring that the polynomial in (109) has a
single, repeated root. Forσ 2 = σ 2

max, (109) has the following
solutions at equality:

σ̄ 2 =
− 4(σ̂ 2−σ 2

max )
τ̂ τ

±
√(

4(σ̂ 2−σ 2
max )

τ̂ τ

)2
− 16

(
1
τ̂

− 1
τ

)2 σ̂ 2σ 2
max

τ̂ τ

−2
(

1
τ̂

− 1
τ

)2
(110)

which simplifies to

σ̄ 2 = 2τ̂ τ
σ̂ 2 − σ 2

max ±
√

σ̂ 4 + σ 4
max − σ̂ 2σ 2

max
τ 2+τ̂ 2

τ̂ τ

(τ − τ̂ )2
.

(111)

Equation (111) has a single value when the argument under
the square root is zero. This happens whether we choose
τ = τmin or τ = τmax. We find the following expression for
σ̄ 2:

σ̄ 2
min = 2σ 2

max

(τmax − τ̂ ) τ

(τ̂ − τ )2 , ∀τ = {τmin, τmax}. (112)

For instance for τ = τmax, (112) becomes

σ̄ 2
min = 2σ 2

max
τmax

τmax − τ̂
. (113)

APPENDIX B
DERIVATION OF �̄ IN DISCRETE-TIME DOMAIN

A discrete-time LDS error-state space realization cap-
turing the uncertainty in time-correlated GMP models by
state augmentation can be expressed as [23][

ek

ak

]
=
[

F̂ �F
0 L

] [
ek−1

ak−1

]
+
[−wk

uk

]
. (114)

The associated predicted covariance matrix is given by

Pk|k−1 =
[

F̂ �F
0 L

]
Pk−1|k−1

[
F̂ �F
0 L

]T

+ Qk. (115)

The state-augmented KF covariance matrix can be written
as

�k|k−1 =
[

F̂ 0
0 L

]
�k−1|k−1

[
F̂ 0
0 L

]T

+
[

Q̂k 0
0 Q̄k

]
,

(116)

where � is a block diagonal matrix. In order to compare
(115) and (116), we introduce off-diagonal matrix blocks
in (116) and rewrite the covariance matrix propagation
equation as

�k|k−1 =
[

F̂ �F
0 L

]
�k−1|k−1

[
F̂ �F
0 L

]T

+
[

Q̂k − �F�a�FT −�F�aLT

−L�a�FT Q̄k

]
. (117)

An expression for Q̄k can be obtained by considering the
first condition in (73). Using the notation � = � − P, the
difference between (115) and (117) is

�k|k−1 =
[

F̂ �F
0 L

]
�k−1|k−1

[
F̂ �F
0 L

]T

+⎡
⎣Q̂ξ,k − Qξ,k 0 0

0 Q̂a − �L�a�LT − Qa −�L�aLT + Qa

0 −L�a�LT + Qa Q̄k − Qa

⎤
⎦

(118)

where �L � L̂ − L. Since �0 ≥ 0 (as ensured in Sec-
tion V), �k|k−1 ≥ 0, ∀k ≥ 1 if the last matrix in (118) is
positive semidefinite. For the states of interest ξ , we can
assume that the process noise covariance matrix is designed
such that Q̂ξ,k − Qξ,k ≥ 0. Therefore, the desired condition
(�k|k−1 ≥ 0, ∀k ≥ 1) is satisfied if the matrix component
made of the 2 × 2 lower right blocks of the rightmost matrix
in (118) is positive semidefinite. Since the measurement
error GMPs are assumed to be mutually independent, this
is equivalent to satisfying the following inequality for each
independent GMP:[

q̂ − (α̂ − α)2σ̄ 2 − q −(α̂ − α)ασ̄ 2 + q
−(α̂ − α)ασ̄ 2 + q q̄ − q

]
≥ 0, (119)
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where q̄ = σ̄ 2(1 − α2), q = σ 2(1 − α2) and q̂ = σ̂ 2(1 −
α̂2). This inequality is satisfied if the matrix determinant
is nonnegative, which can be written as

− (α − α̂)2σ̄ 4 + (1 − α2)(1 − α̂2)(σ̂ 2 − σ 2)σ̄ 2

− σ̂ 2σ 2(1 − α2)(1 − α̂2) ≥ 0. (120)

Similar to the continuous-time case in Appendix A, we
can solve this quadratic polynomial in σ̄ 2. The smallest σ̄ 2

satisfying (120) for the stationary model parameters in (26)
and (27), and valid for all σ s and τ s, is the value achieved
when assuming σ 2 = σ 2

max and either α = αmin or α = αmax.
For α = αmax, the minimum solution of σ̄ 2 is

σ̄ 2
d,min = (1 − α̂2

d )(1 − α2
max)

2(α̂d − αmax)2

(
σ̂ 2

d − σ 2
max

)
. (121)

APPENDIX C
PROOF OF THEOREM 6

This appendix aims at proving (78), which can be rewrit-
ten as

σ̄ 2
d,min(σ̂ 2

c , τ̂c) − σ̄ 2
c,min ≥ 0, ∀�t > 0. (122)

Appendix A gives the following expression of σ̄ 2
c,min:

σ̄ 2
c,min = 2σ 2

max
τmax

τmax − τ̂c
. (123)

In order to obtain σ̄ 2
d,min(σ̂ 2

c , τ̂c), we consider the quadratic
condition on σ̄ 2 in (120). Similar to Appendix A, we are
interested in finding the maximum of the quadratic function
in (120), which is

σ̄ 2 = (1 − α)(1 − α̂2)(σ̂ 2 − σ 2)

2(α − α̂)2

+
{

(1 − α2)(1 − α̂2)2(σ̂ 2 − σ 2)2−
2(α − α̂)2

4(α − α̂)2σ̂ 2σ 2(1 − α2)(1 − α̂2)
}1/2

2(α − α̂)2
. (124)

In the case where α̂ = α̂c (i.e., τ̂ = τ̂c) and σ̂ 2 = σ̂ 2
c , the

term under the square root in (124) is not zero in general, but
it must be a positive value, which we note ε ≥ 0. σ̄ 2

d (σ̂ 2
c , τ̂c)

can then be written as

σ̄ 2
d

(
σ̂ 2

c , τ̂c
) = (1 − α)

(
1 − α̂2

c

) (
σ̂ 2

c − σ 2
)

2(α − α̂c)2
+ ε. (125)

This expression can be minimized while accounting for all
possible values of σ and τ when setting σ 2 = σ 2

max, and
when either α = αmin or α = αmax. Substituting (125) and
(123) into (122), it becomes

(1 − α)(1 − α̂2
c )(σ̂ 2

c − σ 2
max)

2(α − α̂c)2
+ ε − 2σ 2

max
τmax

τmax − τ̂
≥ 0.

(126)

Substituting σ̂ 2
c in (13) into (126), factoring σ 2

max out, and
rearranging the two fractions, we obtain the following in-
equality:

σ 2
max

⎡
⎢⎣ (τmax − τ̂c)(1 − α)(1 − α̂2

c )
(√

τmax
τmin

− 1
)

2 (α − α̂c)2 (τmax − τ̂c)

− 4τmax(α − α̂c)2

2(α − α̂c)2(τmax − τ̂c)

]
+ ε ≥ 0. (127)

Since τmax ≥ τ̂c, the denominator is larger than zero and the
condition in (127) reduces to ensuring that the numerator is
larger than or equal to zero. This is the case because: (a) at
the limit, the numerator approaches zero when �t → 0 and
(b) the numerator is a monotonically increasing function of
�t independent of the actual value of τ . We can prove this
by taking the derivative of the numerator, which is given by

(τmax − τ̂c)(kc − 1)

[
2(1 − e

−�t
τ )e

−2�t
τ̂c

τ̂c
+ e

−�t
τ (1 − e

−2�t
τ̂c )

τ

]

− 8τmax

(
e

−�t
τ − e

−�t
τ̂c

)(e
−�t
τ̂c

τ̂c
− e

−�t
τ

τ

)
≥ 0. (128)

Since kc =
√

τmax
τmin

≥ 1, and since the exponentials with

negative exponents have values ranging between 0 and 1,
the first term in (128) is always positive. The second term
with a (−8) multiplier can be rewritten as

−8
τmax

τ̂cτ

(
e

−�t
τ − e

−�t
τ̂c

)
e

−�t
τ̂c e

−�t
τ

(
τe

�t
τ − τ̂ce

−�t
τ̂c

)
≥ 0.

(129)

If τ < τ̂c, (e
−�t

τ − e
−�t
τ̂c ) < 0 and (τe

�t
τ − τ̂ce

−�t
τ̂c ) > 0, then

(129) is positive. If τ > τ̂c, (e
−�t

τ − e
−�t
τ̂c ) > 0 and (τe

�t
τ −

τ̂ce
−�t
τ̂c ) < 0, then (129) is also positive. In the case where

τ = τ̂c, (129) is zero. This proves that (128) is nonnegative,
ultimately proving (122).

APPENDIX D
NONSTATIONARY GMP COVARIANCE OVER TIME

This Appendix provides an expression for the auto-
covariance of a general nonstationary discrete-time GMP
between two time steps. The first three samples of the
discrete-time GMP sequence can be expressed with respect
to the initial GMP sample a0 as

a1 = αa0 +
√

σ 2(1 − α2)w1,

a2 = α2a0 + α
√

σ 2(1 − α2)w1 +
√

σ 2(1 − α2)w2,

a3 = α3a0 + α2
√

σ 2(1 − α2)w1 + α
√

σ 2(1 − α2)w2

+
√

σ 2(1 − α2)w3,

... (130)

where

α = e
−�t

τ , and wi ∼ N (0, 1), ∀i ∈ Z > 0. (131)

4360 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 59, NO. 4 AUGUST 2023

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on February 16,2024 at 20:11:52 UTC from IEEE Xplore.  Restrictions apply. 



A general, compact form of these equations can be written
for any time step n as

an = αna0 +
√

σ 2(1 − α2)
n−1∑
i=0

αiwn−i. (132)

Since the expected value of a GMP is zero for any time
step (E [an] = 0, ∀n ≥ 0), the autocovariance of this non-
stationary process between any two time steps n ∈ Z and
p ∈ Z with p ≥ n is

E [anap]

= E

[(
αna0 +

√
σ 2(1 − α2)

n−1∑
i=0

αiwn−i

)

×
⎛
⎝αpa0 +

√
σ 2(1 − α2)

p−1∑
j=0

α jwp− j

⎞
⎠
⎤
⎦ . (133)

Using the notation E [a2
0] = σ 2

0 , the fact that E [a0wi] =
0, ∀i ∈ Z > 0, and rearranging, (133) becomes

E [anap] = αnαpσ 2
0

+ σ 2(1 − α2)
n−1∑
i=0

p−1∑
j=0

αiα jE [wn−iwp− j]. (134)

Because the driving noise wi is a white sequence, the
expectation function under the double summation in (134)
is nonzero only if n − i = p − j, which is expressed as

E [wiwi] = 1, ∀i > 0,

E [wiw j] = 0, for i 
= j. (135)

Therefore, we can make the change of variable: j = p −
n + i to get rid of one of the two summations

E [anap] = αnαpσ 2
0 + σ 2(1 − α2)

n−1∑
i=0

α2i+p−n. (136)

Recognizing a geometric series, (136) becomes

E [anap] = αnαpσ 2
0 + σ 2(1 − α2)

(α2n − 1)αp−n

α2 − 1
(137)

which finally leads to

E [anap] = αn+pσ 2
0 + σ 2(1 − α2n)αp−n, ∀p ≥ n.

(138)

It is worth noting that if the process is stationary (i.e., σ 2
0 =

σ 2), then (138) expectedly reduces to

E [anap] = σ 2αp−n, ∀p ≥ n. (139)

The correlation between two time steps is the same regard-
less of the order of indices, that is: E [anap] = E [apan]. With
this in mind, we can give an expression that does not specify
which of n or p is larger

E [anap] = αn+pσ 2
0 + σ 2(1 − α2 min(n,p) )α|p−n|. (140)

APPENDIX E
APPROXIMATE NONSTATIONARY INITIAL VARIANCE
INFLATION FACTOR

In order to support the numerical search of k0, we can use
the fact that the impact of k0 on the positive semidefiniteness
of �R is most significant on the first leading principal
minors. A first good approximation of k̃0 can, therefore,
be obtained by considering the first 2 × 2 leading principal
submatrix. This is obtained by considering N = 2, n = 0,
and p = 1 in (83), which reduces to

σ 2
max

[
k0 − 1 α̂k0 − α

α̂k0 − α α̂2k0 + k
(
1 − α̂2

)− 1

]
� 0. (141)

This inequality leads to the following condition on k̃0:

k̃0 ≥ k
(
1 − α̂2

)− 1 + α2

k
(
1 − α̂2

)− 1 − α̂2 + 2αα̂
. (142)

The right-hand side of (142) is larger when τ = τmin. There-
fore, the most restrictive condition on k̃0 is

k̃0 ≥
k
(

1 − e− 2�t
τ̂

)
− 1 + e− 2�t

τmin

k
(

1 − e− 2�t
τ̂

)
− 1 − e− 2�t

τ̂ + 2e
−�t

(
1
τ̂
+ 1

τmin

) . (143)

The value in (143) has been observed to be very close to
the minimum condition on k0. It is a good initialization
value for the search of k0. It is noteworthy in this discrete
time expression that the minimum value of k0 depends on
the values and range of τ and on the sample interval �t .
The impact of �t becomes significant when �t approaches
τmin.
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