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Abstract 

 
 This paper describes the design, analysis, and experimental evaluation of a spherical-grid-based localization 

algorithm that leverages quantization theory to bound navigation uncertainty. This algorithm integrates data from 

Light Detection And Ranging (LiDAR) and inertial measuring units (IMU) in an iterative extended Kalman filter to 

estimate the position and orientation of a moving vehicle. An analytical bound is derived on the vehicle’s state 

estimation error, which accounts for both the random measurement noise and the loss of localization information 

caused by gridding. The performance of the proposed approach is analyzed and compared with that of a brute-force 

spherical grid-based method and of a landmark-based method in an indoor environment. 

  

1 Introduction 

 

In this paper, we develop, implement, and evaluate a new point cloud (PC)-based localization algorithm 

integrating Light Detection And ranging (LiDAR) and inertial measuring units (IMU) using a signal quantizer and an 

iterative extended Kalman filter (IEKF).  In prior work [1], we introduced a spherical grid-based localization (SGL) 

method to estimate position and orientation (or pose) corrections between a measured three-dimensional PC and a 

map-based predicted PC.  These corrections were obtained by searching over candidate vehicle poses.  In this work, 

we achieve SGL using an IEKF, which enables tight integration of LiDAR PC with IMU and prediction of pose 

estimation uncertainty. We develop an automated approach that locally adjusts the size of the grid cells to minimize 

the information loss due to gridding. In addition, we derive an analytical bound on the spherical gridding error and 

evaluate its impact on pose estimation error. These methods are tested using experimental data collected in an indoor 

environment. 

   

This research is intended for autonomous ground, air and space vehicle navigation applications where localization 

uncertainty quantification is key.  In prior work [2, 3], we developed and evaluated a landmark-based localization 

(LL) method, which required two intermediary pre-processing steps: feature extraction (FE) and data association 

(DA). FE finds viewpoint-invariant landmarks in the LiDAR PC, and DA assigns these extracted landmarks to mapped 

ones. FE and DA are computationally expensive and prone to faults in cluttered environments [2, 4].  

 

LiDAR localization methods that do not require FE and DA include PC-matching algorithms, such as the widely-

implemented iterative closest point (ICP) [5, 6, 7].  ICP can be computationally expensive and does not enable reliable 

uncertainty prediction.  To mitigate the computational burden of handling a three-dimensional LiDAR PC’s thousands 

of high-update-rate data samples, we developed an SGL method.  The spherical grid in [1] is made of azimuth-

elevation bins at regular angular intervals.  In each bin, a point feature is selected and its distance to the spherical 

grid’s center point serves as range measurement.  This gridding process is also applied to a PC-map seen from the 

perspective of the LiDAR’s predicted pose. The measured PC can then be compared to the computed PC.  The SGL’s 

point-feature approach only provides a rough measure of navigation uncertainty [1].  Gridding and point selection can 

be improved, and rigorous error quantification has yet to be achieved.  

 

In this paper, we develop a new PC spherical gridding approach that leverages a signal quantization technique 

used in data compression [8].  This approach locally modifies grid spacing to reduce information loss and improve 

pose estimation without increasing computation cost. It also provides a deterministic bound on the range quantization 

error in each azimuth-elevation bin. In addition, we design an IEKF that tightly integrates IMUs with LiDAR SGL. 

The IMU facilitates matching of measured versus computed PC whereas the SGL helps correct accelerometer and 

gyro biases. We validate these methods using experimental data collected on a sensor platform moving in an indoor 

environment. 

 



The first part of the paper aims at developing an advanced LiDAR PC spherical gridding process. We leverage 

quantization theory which is a well-studied topic in data transmission, compression and classification [8, 9], 

information theory [10] and finite element method for mesh generation [11].  We use it here to rearrange a spherical 

grid’s discretized representation of the environment [12, 13].  The algorithm assigns a greater number of azimuth-bins 

to parts of the environment that show larger geometric variations.   

 

In the second part of the paper, we design an IEKF that incorporates the spherically gridded LiDAR PC, IMUs, 

and their error models for the estimation and uncertainty quantification of a moving platform’s pose, and of the IMU’s 

accelerometer and gyroscope biases.   

 

In the third part, we derive an upper-bound on the impact of quantization errors on pose estimation uncertainty. 

In this preliminary algorithm, the estimated-state-level bound is achieved using a batch algorithm.    

 

In the fourth part of the paper, we implement the IEKF-based IMU/LiDAR SGL algorithm by post-processing 

experimental data. All objects in the environment are static, but they can get occluded or can get out of the LiDAR’s 

field of view as the sensor-platform moves.  A probabilistic performance evaluation is conducted for the proposed 

IEKF-based SGL as well as for LL and brute-force SGL, to show the robustness of the new method in quantifying 

positioning uncertainty.  

  

2 Spherical gridding using signal quantization 

 

2.1 Quantization theory 

 

Quantization is a process in which a large number of values is represented by a much smaller set of values [8]. If 

the values that we are quantizing are scalar, the process is called scalar quantization. The quantizer design aims at 

minimizing information loss. Figure 1 shows the parameters of a scalar quantizer. 

  

 
Figure 1: Scalar quantizer parameters 

  

We define the following parameters: 

 

• Input: The input can be a set of deterministic or random values with an associated probability density 

function (PDF), i.e. 𝑅 with PDF 𝑓𝑅(𝑟). 

• Interval: The interval partitions the input into separate ranges of values ℐ = {ℐ𝑖 , for 𝑖 = 1, . . , 𝑚}. 
Intervals are also known as Voronoi regions or encoders. 

• Representation value:  The representation value is a single value selected for each interval.  It is the 

output of the quantizer.  Representation values are also known as decoders.  

• Decision Boundary: The limit value of an interval is a decision boundary.  The number of decision 

boundaries is 𝑚 + 1, where m is the number of intervals. 

 

The quantization process 𝑄(𝑟) for an input 𝑟 can be described as: 

 

 𝒹𝑖−1 < 𝑟 < 𝒹𝑖 ⟺  𝑄(𝑟) = 𝒶𝑖 (1) 

 

In this work, the performance measure used to reduce information loss between quantizer input and output is the 

quantization distortion 𝐷 defined as: 



 

 𝐷 =
1

𝑀
∑ ∑ (𝑟 − 𝒶𝑖)

2 
𝑟∈ℐ𝑖

𝑚
𝑖=1  (2) 

 

where the right-hand side of equation (2) is the sum of the squared errors in each interval ℐ𝑖 summed over all m 

intervals and divided by the total number of range measurements 𝑀.  The number 𝑀 is defined as 𝑀 = ∑ 𝑀𝑖
 𝑚

𝑖=1  where 

𝑀𝑖 is the number of range measurements per interval ℐ𝑖 , for 𝑖 = 1, . . , 𝑚. 

 

The quantization process can be described as follow.  Given an input 𝑟 and a number of intervals 𝑚, find the 

values of 𝒹𝑖 and 𝒶𝑖  in each interval ℐ𝑖 , for 𝑖 = 1, . . , 𝑚, that minimize the distortion 𝐷. There are two main categories 

of quantizers: uniform quantizers use fixed-size intervals, whereas non-uniform quantizers do not.   

 

In this paper, we use a Lloyd-Max quantizer, which is a practical non-uniform scalar quantizer.  We will use 

LiDAR range measurements as input 𝑟, as further explained in Section 2.2.  The Lloyd-Max quantization algorithm 

finds the values of 𝒶𝑖  and 𝒹𝑖 that minimize the distortion by taking the derivatives of 𝐷 with respect to these parameters 

and setting them equal to zero. The values of 𝒶𝑖  and 𝒹𝑖 for a set of inputs 𝑟 can be found using the following equations 

[12]: 

 

 𝒶𝑖 =
1

𝑀𝑖
∑ 𝑟 

𝑟∈ℐ𝑖
 (3) 

 

 𝒹𝑖 =
𝒶𝑖+1+𝒶𝑖

2
 (4) 

 

For a Lloyd-Max quantizer, the representation values 𝒶𝑖  in equation (3) are equal to the mean of the input values 

in interval 𝑖, and  𝒹𝑖 in equation (4) is the mid-point of two neighboring representation values. Considering initial 

values for 𝒹𝑖 and 𝒶𝑖 , the minimization of  𝐷 can be iteratively achieved [8, 12].  

 

2.2 Spherical grid design 

  

This section aims at applying quantization techniques to LiDAR PCs.  Data points are processed one elevation-

cone at a time using the approach described below.  Instead of the traditional Cartesian representation of a LiDAR 

PC, we consider a range-versus-bearing-angle representation for a single elevation angle, and for 360 degree azimuth 

angles – which we call a single frame at that elevation.  It is represented as a blue line in Figure 2, where the LiDAR 

scan (blue-colored curve) is interpreted as a range signal varying over azimuth angle.  

 

Then, we use quantization theory to find the optimal decision boundaries 𝒹𝑖 and representation values 𝒶𝑖 , for 𝑖 =
1, . . , 𝑚, which minimize the distortion 𝐷. These values are respectively represented in Figure 2 as horizontal dashed 

gray lines and red solid lines. The vertical solid gray lines show the boundaries of the azimuth bins, which are defined 

as bearing angle intervals with constant 𝒶𝑖- values (a change in 𝒶𝑖  defines a new azimuth bin, even if that 𝒶𝑖-value 

defined a previous azimuth bin). Figure 3 shows the quantizer parameters and the azimuth bins in a zoomed-in region 

of the LiDAR range-versus-bearing-angle curve.   

 

Figure 4 shows the output measurements in a cartesian coordinate system.  This output is obtained after minor 

data trimming to exclude azimuth bins containing less than a minimum number of data points (which only seemed to 

add computation cost). The solid gray lines intersecting at the origin correspond to the vertical gray lines in Figure 2.  

In Figure 4, the LiDAR scan is represented with a blue curve and the selected points after quantization are shown with 

red crosses. The zoomed-in window shows raw azimuth-range measurements in each bin and their corresponding 

quantized values.  

 

2.3 Quantization error 

 

The quantization error is defined as the difference between quantizer input 𝑟 and output 𝒶𝑖 . The quantization error 

𝑏𝑖, for 𝑖 = 1, . . , 𝑚, is defined as [8]: 

𝑏𝑖 = 𝒹𝑖−1 − 𝒹𝑖 (5) 

 



 
Figure 2: LiDAR scanned and quantized range measurements 

 

 

 
Figure 3: Quantizer parameter definition for LiDAR range vs. bearing angle measurements 

 

 

 
Figure 4: LiDAR scan and quantized signals 

 



The decision boundaries 𝒹𝑖 are given in equation (4).  Quantization theory ensures that the following inequality 

is always satisfied: 

 

|𝑟 − 𝒶𝑖| < 𝑏𝑖 (6) 

 

Figure 5 shows quantization errors (blue) and error bounds (red) for all intervals in a frame.  The red curve bounds 

the blue curve and is known. 

 

The range measurement quantization error’s bounding bias vector is defined as:  

 

 𝐛𝑘 = [𝑏1 ⋯ 𝑏𝑚 𝟎1×𝑚]𝑇 (7) 

 

where 𝑘 is time epoch and 𝑏𝑖 is a defined in equation (5).  Zeros in equation (7) correspond to bearing angle 

measurements, which are not quantized in this work.  

 

   
Figure 5: Quantization error and error bound for 360-degree measurements 

 

2.4 Applying spherical grid to the map  

 

We then apply the same spherical grid to the map PC. We first convert the map PC from the navigation frame to 

the sensor frame using the predicted state vector �̅� provided by the pose estimation algorithm. Then, in each azimuth-

elevation bin, we select the mapped point closest to the sensor. This approach automatically addresses occlusions of 

objects that may not be visible from the LiDAR’s current point of view. Figure 6 shows the LiDAR and map PCs after 

quantization. The azimuth bins are shown in gray.  

 

3 Localization and analytical uncertainty quantification 

 

In this section, we design an IEKF which uses the mapped and sensed PCs output by the spherical gridding 

process. We also design a batch algorithm to bound the impact of range quantizer errors on pose estimation.  

 

3.1 Vehicle linearized state propagation model 

 

The localization algorithm uses the IMU measurements and error model to propagate vehicle pose between two 

LiDAR updates. The IMU states consists of vehicle position, velocity, orientation, and IMU biases. This section 

describes the continuous-time linearized state propagation model. The complete nonlinear continuous and discrete-

time equations and sensor error models can be found in [2,14]. In the following equations, the notation ‘ δ ’ indicates 

deviations of the state parameters relative to reference values about which linearization is performed.  

 

 

δ�̇� = 𝐅 δ𝐱 + δ𝐰  (8) 

 

 

 δ [δ δ δ δ δ ]T T T T T

V V V g a=x x v e b b   (9) 

 



 
Figure 6: Applying the spherical grid to the map and selecting the points 
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where 

δ𝐱𝑉 is the vehicle position expressed in navigation frame ‘N’, 
δ𝐯𝑉 is the vehicle velocity with respect to earth expressed in frame N, 
δ𝐞𝑉   is the attitude of the vehicle with respect to earth expressed in body frame ‘B’, 

δ𝐛g, δ𝐛𝑎 are the gyroscope’s and accelerometer’s time-varying bias vectors in frame B respectively, 

V2TF  and 
H2VF  are defined in Appendix A, 

N IN
ω   is the angular velocity vector of the inertial frame ‘I’ with respect to the frame N expressed in frame N [3], 

N I
f   is the estimated specific force expressed in frame N, 

N

B
C  is the rotation matrix from frame B to frame-N [14], 

B I
f       is the measured specific force vector at the IMU axis center w.r.t. frame I expressed in frame B [14], 

B IB
ω  is the measured angular velocity vector of frame B w.r.t frame I expressed in frame B, 

g ,𝜏𝑎  are the gyro and accelerometer GMP time constants, 

𝐒g , 𝐒𝑎   are the estimated gyroscope and accelerometer scale factors in frame B, 

𝐌g ,𝐌𝑎 are the estimated gyroscope and accelerometer misalignment matrices in frame B, 

gυ , 𝛖𝑎 are the gyroscope and accelerometer measurement white noise error components expressed in frame B, 

gn ,𝐧𝐚  are the gyroscope and accelerometer GMP time-uncorrelated driving noise vectors. 

 

Considering the discrete-time expressions of the terms in equation (10) given in Appendix A, the discrete-time 

realization of equation (8) can be written as: 

  

 
1δ δ δk k k k+ = +x Φ x w   (11) 



 

where 
kΦ  is the state transition matrix between time steps ‘k’ and ‘k+1’ [15]. 

 

3.2 Measurement models 

 

In this section, we derive the nonlinear equations for the sensed and mapped PCs designed in Sections 2.2 and 

2.4. Each mapped data point in navigation frame ‘N’ 𝐩𝑗 
N = [𝑝𝐸,𝑗 𝑝𝑁,𝑗 𝑝𝑈,𝑗]𝑇 for 𝑗 = 1⋯ 𝑁𝑚, where 𝑁𝑚 is the 

total number of mapped points, is projected in sensor frame using the following equations: 

 

  𝐩𝑗 
S = 𝐂N

S ( 𝐩𝑗 
N − �̅�𝑉)      for 𝑗 = 1⋯𝑁𝑚 (12)  

 

where deviations on 𝐱𝑉 and 𝐞𝑉 appear in the state error equation (9), and 𝐩𝑗 
S = [𝑝1,𝑗 𝑝2,𝑗 𝑝3,𝑗]𝑇  is the mapped 

data point in sensor frame ‘S’, 𝐂N
S   is rotation matrix from navigation frame to sensor frame using �̅�𝑉.  We use the 

notations: �̅�𝑉 = [𝜙 𝛾 𝜓]𝑇  and �̅�𝑉 = [𝑥𝐸 𝑥𝑁 𝑥𝑈]𝑇. 

 

After applying the spherical grid to 𝐩𝑗=1⋯𝑁𝑚 
S , for each elevation range, we define the gridded points’ ranges �̅�𝑖 

and bearing angles �̅�𝑖, for 𝑖 ranging from 1 to 𝑚, as: 

 

  �̅�𝑖 = √𝑝1,𝑗
2 + 𝑝2,𝑗

2 + 𝜐𝑟 (13)  

 

  �̅�𝑖 = tan−1 (
𝑝2,𝑗

2

𝑝1,𝑗
2 ) + 𝜐𝜃  (14)  

 

where 𝜐𝑟 and 𝜐𝜃  respectively are random range and bearing angle measurement errors,  

 

We then stack the computed range and bearing angle measurements and define the mapped measurements at time 

step 𝑘 as: 

 

𝐡𝑘 
(�̅�𝑘) = [

�̅�
�̅�
] (15) 

 

�̅� = [�̅�1 ⋯ �̅�𝑚]𝑇 ,   �̅� = [�̅�1 ⋯ �̅�𝑚]𝑇  

 

The LiDAR range 𝑟𝑖 and bearing angle 𝜃𝑖 are provided in the sensor frame. The 2𝑚 sensed measurement vector 

can be written as:  

 

  �̂�𝑘 = 𝐡𝑘(𝐱𝑘) + 𝛖𝑘 (16)  

 

  �̂�𝑘 = [𝑟1 ⋯ 𝑟𝑚 𝜃1 ⋯ 𝜃𝑚]𝑇 (17)  

 

  𝛖𝑘 = [𝜐𝑟1 
⋯ 𝜐𝑟𝑚     𝜐𝜃1

⋯ 𝜐𝜃𝑚 ]
𝑇 (18)  

 

where  

𝐱𝑘 is the state vector whose error vector is defined in equation (9), 

𝛖𝑘 is the 2𝑚 × 1 measurement error vector modeled as a vector of zero-mean normally distributed random 

variables with covariance matrix kV .  We use the notation: ~ N( , )k kυ 0 V . 

We linearize equation (16) about our best pose prediction of the vehicle. The linearized range and angular 

measurement and measurement error vectors are respectively designated by δ𝐑, δ𝛉 and 𝛖𝑟 and 𝛖𝜃. The linearized 

LiDAR measurement equation can be written as:  

 



 [
δ𝐑
δ𝛉

]
𝑘

= [
𝐅𝑟,𝑥 𝟎 𝟎 𝟎 𝟎

𝐅𝜃,𝑥 𝟎 −𝐅𝜃,𝑒 𝟎 𝟎
]
𝑘

 

[
 
 
 
 
δ𝐱𝑉

δ𝐯𝑉

δ𝐞𝑉

δ𝐛g

δ𝐛𝑎]
 
 
 
 

𝑘

+ [
𝛖𝑟

𝛖𝜃
]
𝑘
 (19)  

 

where the coefficient matrices 𝐅𝑟,𝑥, 𝐅𝜃,𝑥 and 𝐅𝜃,𝑒 are determined using the state prediction vector as described in 

Appendix B. 

 

3.3 Model-based estimator design 

 

We develop an IEKF to tightly integrate LiDAR and IMU measurements and estimate vehicle pose. Figure 7 is a 

diagram of IEKF SGL including the spherical gridding and pose estimation processes. In the IEKF pose estimation 

block, the last term in the state vector estimation equation improves convergence of the iterative solution. The 

contribution to pose estimation error due to quantization is explained in section 3.4 .  

 

where 

�̅�𝑘 is the predicted state vector at time step 𝑘 

�̅�𝑘 is the predicted covariance matrix at time step 𝑘 

𝐏𝑘 is the estimated covariance matrix at time step 𝑘 

𝐇𝑘 is the observation matrix defined in equation (21) at time step 𝑘 

𝐊𝑘 is the Kalman gain at time step 𝑘 

�̂�𝑘 is the discrete-time state transition matrix at time step 𝑘 

 
Figure 7: IEKF spherical grid-based localization diagram 

 

 

3.4 Pose error due to quantization 

 

In this section, we determine the impact of the quantization bias vector on state estimation error [16]. The expected 

value of the Kalman filter error in the presence of the bias 𝐛𝑘 can be written as: 

 

 E[𝐱𝑘|𝑘] = (𝐈 − 𝐊𝑘𝐇𝑘)�̂�𝑘E[𝐱𝑘−1|𝑘−1] + 𝐊𝑘𝐛𝑘 (20) 

 

The impact of the quantization bias on the a-posteriori estimation of the state vector at time step 𝑘 is [17]: 

 

 E[𝐱𝑘] = [𝐀1𝑘 ⋯ 𝐀𝐾𝑘] [
𝐛1

⋮
𝐛𝑘

] = 𝐀K𝐛K   (21) 



where 

 

 𝐀𝑚𝑛 = {
(∏ (I + 𝐊𝑛𝐇𝑛

𝑇)�̂�𝑘,𝑚
𝑚+1
𝑡=𝑛 )𝐊𝑚 𝑖𝑓 𝑚 < 𝑛

𝐊𝑚 𝑖𝑓 𝑛 = 𝑚
   (22) 

 

In equation (21), bias vectors 𝐛𝑖, for 𝑖 = 1,… , 𝑘, are stacked from time step 1 to k in 𝐛K, where K designates time 

steps 1,…,k.  We can express the impact of the range quantization bias on a specific state of interest as: 

 

 𝑐𝑠,𝑘
2

 
= 𝐛K

𝑇𝐀K
𝑇 𝛂𝑠𝛂𝑠

𝑇𝐀K𝐛K (23) 

 

where  𝛂𝑠  is a vector that extracts the state of interest from 𝐱𝑘, i.e., consisting of a 1 for the desired state and zeros 

for all other states.  Calculating the 𝑐𝑠,𝑘 requires that we stack biases and estimator coefficients for time steps 1 to k. 

In future work, we will design a recursive approach to address this problem.   

 

The state estimation error variance for the state of interest is given by: 

 

 𝜎𝑠,𝑘
2 = 𝛂𝑠

𝑇𝐏𝑘𝛂𝑠
  (24) 

 

Both terms in equations (23) and (24) contribute to defining estimation error bounds for a desired confidence 

interval 𝓅 .  The estimation error bound on a state of interest is defined as: 

 

 𝐿𝓅,𝑠,𝑘 = 𝜆𝑐𝑠,𝑘 + 𝜅𝓅𝜎𝑠,𝑘   with   𝜆 = {
1 𝓅 ≥ 50%

−1 𝓅 ≤ 50%
 (25) 

 

where 𝜅𝓅 is a confidence multiplier for deviations with respect to median value (𝜅𝓅 = Φ−1(0.5 + 𝜆𝓅/2)  and  Φ−1( ) 

is the inverse of cumulative distribution function (CDF) for a standard normal distribution.   For example, for a 68% 

confidence interval (𝓅 = 0.68), we can determine the 84% and 16% quantiles of the estimation error bounds as: 

 

 𝐿84%,𝑠,𝑘 = 𝑐𝑠,𝑘 + 𝜎𝑠,𝑘 (26) 

 

 𝐿16%,𝑠,𝑘 = −(𝑐𝑠,𝑘 + 𝜎𝑠,𝑘) (27) 

 

where the impact of the quantization error 𝑐𝑠,𝑘 is accounted for in the worst-contributing manner to guarantee a bound 

on the actual error quantiles.  If 𝑐𝑠,𝑘 = 0, then the range 𝐿16%,𝑠,𝑘 to 𝐿84%,𝑠,𝑘 defines a 1-sigma (68%) error envelope. 

 

4 Experimental results of spherical grid-based localization  

 

4.1 Experimental testbed and settings 

 

To quantify pose estimation errors, we use a testbed described in [2] and shown in Figure 8.  It includes a sensor 

platform equipped with a Velodyne VLP-16 Puck LTE LiDAR, a NovAtel IMU-IGM-A1. Sixteen Optitrack Prime 

13W infrared (IR) motion capture cameras provide sub-centimeter-level positioning by tracking retro-reflective 

markers fixed on the rover. The platform moves on a figure-eight track. The IEKF SGL uses the LiDAR PC of the 

entire lab including vertical cylinders which serve as landmarks in the LL method. The settings for the experiment are 

shown in Table 1. Then, we are introducing two performance measures and comparing the IEKF SGL performance 

with a brute force SGL and a LL performance. 

 

4.2 IEKF SGL estimation performance over a single lap 

 

Figure 9 shows the top-view true versus estimated rover trajectories which overlap most of the time. The mapped 

PC is shown with blue x-markers (crosses).  A color-coded background is used to facilitate interpretation of subsequent 

figures over time: the upper loop’s background is shown in white, the lower loop in light gray, and the straight parts 

of the trajectory in dark gray.  



 
Figure 8. Testbed overview [2]. 

 

Table 1: Experiment settings 

Parameters Values Parameters Values 

Range measurement standard deviation 0.04 m Initial heading standard deviation 10 deg 

Bearing angle measurement standard deviation 3 deg Initial Roll/pitch standard deviation 1 deg 

Initial position standard deviation 0.5 m Number of iterations 5 

Initial velocity standard deviation 0.05 m/s   

 

 

 
Figure 9: IEKF spherical grid-based localization performance for a single lap estimation of ADS Position  

 



4.3 IEKF SGL estimation performance for 80 trajectory laps  

 

This section analyzes IEKF SGL performance using experimental data collected over 80 laps. Figure 10(a) shows 

the cross-track error over time. The sample cross track positioning error is color coded in shades of gray, from white 

to black as the rover travels from the first to the last lap –the experimental sensor system exhibits a warm-up behavior 

which shows slight differences in the early laps as compared to the later ones. The blue-colored envelope represents 

the error-bounds in equation (26) and (27), each of which covers an area defined by the minimum and maximum 

𝐿84%,𝑠,𝑘 and 𝐿16%,𝑠,𝑘 values over the 80 laps. The solid red line is the 68%-error envelope (i.e., the 84% and 16% 

sample quantiles), which is bounded by the analytical blue envelope for most of the 22 second-long trajectory. Figure 

11(b) shows the corresponding curves for the heading angle of the vehicle. In this case again, the analytical envelope 

bounds the sample error envelope for most of the trajectory.   

 

 
Figure 10: IEKF spherical grid-based localization error bounds for ADS (a) cross track error (b) heading error  

Estimation performance comparison  

 

In Table 2, we compare the performance of landmark-based localization (LL), brute-force spherical-grid-based 

localization (BF-SGL), and IEKF SGL. The performance measures for each approach include the maximum-over-the-

trajectory of the 84% quantile cross-track error bounds (equal to the 1-sigma bound when quantization/gridding errors 

are neglected) and the corresponding single-lap-computation time. Computation time was evaluated using a 4.00 GHz 

processor, 32 GB RAM and x64 windows.  The maximum error bound for LL is 5 cm:  LL requires feature extraction 

(FE) and data association (DA) that introduce additional risks [1,2], which are not easily captured using the metrics in 

Table 2, and are therefore not accounted for in Table 2.  The BF-SGL error bound is also 5cm: BF-SGL does not 

require FE and DA, but it only provides a 1-sigma bound with no means to account for gridding errors. Finally, the 

IEKF SGL provides a maximum 84% quantile bound of 8cm: in this case, spherical gridding errors are accounted for.  

 

The longest computation time is for BF SGL and is determined by the size and resolution of the vehicle pose 

candidate space, and by that of the fixed-size azimuth-elevation grid. The automated grid size/resolution selection of 

IEKF SGL reduces the computation load to half that of BF SGL. The LL has the lowest computation time because it 

only processes the few data points corresponding to the selected landmarks.  

 

 

 

 



Table 2: Comparison of performance measures for different localization algorithms 

Max of 1𝜎 Cross Track Error Bound Computation Time 

(single lap) Localization Methods Value 

Landmark-based 0.05 m* 4 s 

Brute Force SGB 0.05 m** 20 s 

IEKF SGB 0.08 m 9 s 

*   : does not account for feature extraction and data association errors 

** : does not account for gridding errors 

   

5 Conclusion 

 

In this paper, we developed a tightly-integrated, spherical-grid-based LiDAR/IMU localization algorithm which 

provides an analytical bound on the root-sum-squared positioning error.  The algorithm leverages signal quantization 

theory to limit the amount of LiDAR data processing while minimizing loss of information.  In addition, we designed 

an iterative extended Kalman filter (IEKF) to estimate vehicle pose and predict pose uncertainty. Experimental 

evaluation was performed in an indoor environment using data collected by a rover on tracks traveling 80 times along 

a same, repeated trajectory. Testing showed that IEKF spherical grid-based localization provides a more realistic 

positioning error bound than landmark-based and brute-force spherical grid localization approaches without causing 

significant additional computation costs.   

 

Appendix A –Discrete-Time Equations of IMU 

We use the Van Loan algorithm to determine the discrete-time state propagation matrix kΦ  based on the 

continuous-time matrices F  and w  [15].  The following equations are the discrete-time form of terms in equation 

(10). 
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Appendix B – Linearized IMU and LiDAR Measurement Equations Coefficients  

The coefficient matrices corresponding to IMU measurements in equation (10) can be defined as [14]:  
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 𝐅𝐻2𝑉 = [

0 0 0
0 0 0

0 0
2g0

𝑅

] (B.2) 

 

where 

R   is the earth’s radius, 

h    is the vehicle’s altitude, 

    is the vehicle’s latitude   

0g   is the acceleration of gravity at zero altitude. 

 

The coefficients matrices corresponding to the LiDAR measurements in equations (21) are: 
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where 𝐩 
N = [𝑝𝐸 𝑝𝑁]𝑇 and x̅𝐸𝑁 = [𝑥𝐸 𝑥𝑁]𝑇   

 

  𝐹𝜃,𝑒 = [
0 0 1
 ⋮  
0 0 1
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𝑚×3
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