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Abstract
In this paper, we evaluate the performance of a carrier-phase-based sequential implementation of Advanced Receiver Autonomous
Integrity Monitoring (ARAIM). In particular, we analyze the robust modeling of measurement error dynamics over time, which
is a major challenge in the design and evaluation of high-integrity sequential estimators and detectors. Two classes of methods
were recently developed to rigorously account for time-correlated measurement errors: time-domain bounding [1, 2, 3, 4], and
frequency-domain bounding [5, 6, 7]. We implement two of these methods [4, 7], analyze their di�erences with an illustrative
example, and evaluate their integrity and continuity performance for an example ARAIM application.

1. Introduction
This work focuses on safety critical navigation applications where integrity is of primary concern. Integrity is a measure of trust in
sensor information, and integrity risk is the probability of a system providing errors that are out of tolerance without timely warning.
Advanced Receiver Autonomous Integrity Monitoring (ARAIM) is under development for Global Navigation Satellite Systems
(GNSS)-based aircraft navigation. ARAIM is a self-contained method to check measurement consistency, which is used to protect the
user from rarely occurring satellite and constellation faults. The European Union and the U.S. have joint initiatives through Working
Group C, that aim at evaluating the potential of multi-constellation GNSS to achieve worldwide en route positioning (Horizontal
ARAIM, or H-ARAIM) and vertical guidance of aircraft (Vertical ARAIM, or V-ARAIM) [8, 9, 10].

The baseline snapshot V-ARAIM algorithm, which uses carrier-smoothed code measurements at one instant in time, achieves high
availability under nominal conditions. However, cases were found where this is not true, for example during satellite outages, i.e.,
under depleted GPS and/or Galileo constellations [9]. Sequential ARAIM can potentially mitigate this availability risk by processing
measurements over time at the cost of a slightly higher computational load [11]. However, for sequential ARAIM to be a valid
alternative, measurement error time-correlation models must be derived. While snapshot error models for GPS and Galileo are
established using overbounding theory and many years of GPS and Galileo data analysis [12, 13], error dynamics over time has not
been as thoroughly evaluated, until recently.

Langel et al. [1, 5] propose new error modeling methods that could rigorously account for uncertain time correlation in measurement
errors, and for its impact on estimation errors. The proposed methods were analytically proven to be bounding. Years of GPS and
Galileo data were processed [3, 6] to derive measurement error models. However, it remains unclear under which circumstances
estimation error bounds are tighter using frequency-domain versus time-domain methods.

In response, for fair comparison between the two approaches, we implement the error bounding procedures in [4, 7]. We incorporate
the resulting error time-correlation models into a sequential implementation of ARAIM, and perform a worldwide availability and
coverage analysis using GPS and Galileo.
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The error bounding procedures in [4] and [7] are not the focus of this paper. Rather, we provide but a short description of the
two methods in Section 2. We then focus on comparing the estimation error bounds using the theorems in [1, 5]. Performance is
evaluated using an illustrative example estimator in Section 3, and then using a worldwide integrity and continuity analysis in Section
4. For operations over the same fixed interval, we determine which of the time-domain versus frequency-domain error bounding
methods provides a tighter integrity risk bound.

2. Error Bounding Methods
In high integrity applications, we must upper bound the probability of the estimation error exceeding predefined limits without an
alert. Therefore, to be safe, we want to design measurement error models that produce state estimation error variances guaranteed
to bound the true state estimation error variances. Several bounding schemes have been developed in recent years [1, 2, 14, 3, 4, 5,
6, 15, 16, 17, 18, 19, 20, 21, 7]. These can be broadly classified into two classes: time-domain bounding, and frequency-domain
bounding. In both classes, a two-parameter (variance and time constant) first order Gauss Markov process (FOGMP) can be used as
measurement error time-correlation bounding function because it is easily incorporated in linear estimators.

2.1. Time-Domain Error Bounding Method
Real measurement errors rarely behave like an FOGMP [3, 22, 23]. To address this issue, Langel, et al. developed a method that uses
a pair of FOGMP autocorrelation functions (ACFs) to lower and upper bound the unknown, non-FOGMP error ACF [1].

In order to derive bounding FOGMP model in the time domain, we leverage the method developed in [4]. Instead of bounding
measurement error ACFs, we bound the distribution of measurement error lagged products over all lag times. The lagged products
distribution quantile bounding process is described in [4].

2.2. Frequency-Domain Error Bounding Method
The Wiener-Khintchine theorem states that the power spectral density (PSD) and the ACF are a Fourier transform pair [24]. The
frequency-domain method uses this theorem, and uses sample PSD upper-bounding to model measurement error time-correlation.
Based on [17, 20], a time-correlation model whose PSD upper-bounds the measurement error PSD, guarantees an upper bound
on the state estimation error variance. The methods proposed in [17] and [20] estimate measurement error PSDs from data, and
upper bound these PSD estimates with a FOGMP PSD. With this approach, the upper bounding PSD is determined by the worst
measurement error PSD estimate, which can lead to conservative time-correlation models [7].

The PSD bounding method in [17, 20] is refined in [7], where instead of bounding measurement error PSD estimates, it bounds
quantiles of the distribution of measurement error scaled periodograms. This approach leverages the fact that the mean of the scaled
periodogram distribution is the PSD, and an upper bound on the scaled periodogram distribution is guaranteed to upper bound the
PSD [7]. We use the process in [7] for frequency-domain error-bounding.

2.3. Error Bounding Example Using Simulated Data
We simulated measurement errors using 2000 sample paths (i.e., sample fixed-interval measurement sequences), each 100 seconds in
length, generated from a FOGMP with unit variance and time constant of 50 seconds. We use this example data set to illustrate the
bounding methods in a controlled scenario, where the only source of uncertainty stems from the limited number of data samples.
If errors were actually FOGMP processes, and if we had an infinite number data samples, the time-domain and frequency-domain
models would converge. Actual data are impacted by other sources of uncertainty including the fact that empirical stochastic processes
are not FOGMPs and are not startionary over long time periods [3, 6].

Note that ACF and PSD estimation is more of an art, and is inexact for finite data. There is often a tradeo� between model fidelity to
data, and noisiness of the estimate [7]. To reduce the uncertainty associated with ACF and PSD estimation, we use the streamlined
time-domain bounding process in [4] and frequency-domain bounding process in [7].

The time-correlation models for time-domain and frequency-domain methods are respectively shown in Figures 1 and 2. In Fig. 1, the
upper and lower bounding FOGMP models are displayed on the top and bottom plots, respectively. The figures show measurement
error lagged products in gray: for each sample path, the sample lagged products (v0vτ) are the measurement error at time 0 (v0)
multiplied by the measurement error at a later time-epoch (vt a u ), for τ ranging from 0 to the length of the sample path. The solid
black lines represent quantiles of the lagged product distribution at lag times τ. For example, the topmost solid black line on the top
plot of Fig. 1 represents the 95% percentile of the sample lagged products at t a u values ranging from 0 to 100 seconds. The dashed
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black lines represent theoretical quantiles of the model’s FOGMP lagged product distribution. The FOGMP model was chosen such
that all its quantile curves (including the ones displayed: 5%, 32%, 68%, 95%) upper bound the sample quantiles (solid black lines)
for all τ. A similar approach is used to lower-bound the FOGMP model [4].

Figure 1: Time-domain bounding produces upper and lower
bounding FOGMP lagged products distribution that upper and lower
bound the measurement error lagged products distribution at four
quantiles.

Figure 2: Frequency-domain bounding produces a FOGMP scaled
periodogram distribution that upper bounds the measurement error
scaled periodogram distribution at four quantiles.

The frequency-domain model derivation is illustrated in Fig. 2. Scaled periodograms for each sample path are shown in gray. The
solid black lines represent sample quantiles of the error data scaled periodogram distribution over the frequency range of interest (the
x-axis is expressed in terms of circular frequency [7]). The dashed black lines indicate quantiles of the upper bounding FOGMP
model’s scaled periodogram distribution over all frequencies. The plot shows that at the example quantiles, the FOGMP scaled
periodogram distribution upper bounds the sample measurement error scaled periodogram distribution.

In time domain, the upper bounding FOGMP is described by its time constant Tmax = 100 s, and standard deviation σmax = 1.15,
while the lower bounding FOGMP is described by Tmin = 100 s, and σmin = 1. For frequency domain, the upper bounding FOGMP
model is described by Tfreq = 50 s, and σfreq = 1.3. Throughout our analysis, we observed that these six parameters typically satisfy
the following inequalities

σmin ≤ σmax ≤ σfreq (1)

Tmin ≤ Tfreq ≤ Tmax . (2)

We use these model parameters in an example estimator in the next section.

3. Error Models Implemented in a Batch Least Squares Estimator
Given the discussion in Section 2, it is not clear which of the two methods will perform better. On one hand, time-domain bounding
is tailored to the estimated state of interest, and uses two more parameters, i.e., σ2

min, Tmin,σ2
max , Tmax , to model the dynamics of the

measurement error time-correlation. On the other hand, frequency-domain bounding is independent of the estimator. In addition,
time-domain bounding is restricted to fixed-interval implementations due to the cumulative sizes of matrices that need to be stored,
while frequency-domain bounding is compatible with recursive estimators such as Kalman filters. To be fair, we compare these two
bounding methods when used for over a same fixed interval. In a fixed-interval implementation, neither method needs to assume a
structure for the error time-correlation. They will be compared firstly, in the context of a simple least squares estimation example,
and later in the context of a batch implementation of ARAIM.

Consider the following scalar least squares estimation example, where measurements at time 0 and a later time τ are used to estimate
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the state x . The batch measurement equation is given by
�

z0
zτ

�

=
�

h0
hτ

�

x +
�

v0
vτ

�

→ z = hx + v (3)

where the measurement errors are zero-mean with unknown distribution v ∼ (0,σv ). The objective of this section is to derive an
expression for the state estimation error that would allow a proper comparison between the two error bounding methods. The least
squares solution for the measurement vector in Eq. (3) is x̂ =

�

hTh
�−1 hTz. The state estimation error is given by

εx̂ = x̂ − x =
�

hTh
�−1

hT (hx + v)− x =
�

hTh
�−1

hTv (4)

=
h0

h2
0 + h2

τ
︸ ︷︷ ︸

v0 +
hτ

h2
0 + h2

τ
︸ ︷︷ ︸

vτ (5)

= s0 v0 + sτ vτ (6)

= sTv (7)

where s =
�

s0 sτ
�T is a vector of estimator coe�cients, whose dot product with the measurement vector returns the error in the

state of interest x . We define an estimator matrix M, and compute for the measurement error covariance matrix V to arrive at

M = ssT =
�

s 2
0 s0 sτ

s0 sτ s 2
τ

�

, V = E
�

vvT
�

= E
�

v 2
0 v0vτ

v0vτ v 2
τ

�

=





σ2
v E

�

v0vτ
�

E
�

v0vτ
�

σ2
v



 . (8)

We can compute the state estimation error variance using σ2
ε = E

�

ε2
�

. Alternatively, we can use the matrices in Eq. (8) to express
the state estimation error variance as

σ2
x̂ =

2
∑

i=1

2
∑

j=1
(M ◦ V) = M1,1V1,1 +M2,1V2,1 +M1,2V1,2 +M2,2V2,2 (9)

where ◦ denotes element-wise matrix multiplication. Let the measurement errors be modeled as a zero-mean first-order Gauss-Markov
process (FOGMP) with the following autocorrelation function (ACF)

rv(τ) = E
�

v0vτ
�

= σ2
v e−τ/T (10)

which is expressed as a function of the time di�erence between two measurements τ. T is the Markov process correlation time
constant, and σ2

v is the Gauss-Markov process variance. The state estimation error assuming a FOGMP measurement error model
therefore becomes

σ2
x̂ =

2
∑

i=1

2
∑

j=1

�

�

s 2
0 s0 sτ

s0 sτ s 2
τ

�

◦
�

σ2
v σ2

v e−τ/T

σ2
v e−τ/T σ2

v

��

(11)

where the element-wise products of M and V are combined depending on the sign of elements in M. Note that the diagonal elements
of M are always positive, while the o�-diagonal elements can have either sign.

3.1. Example Implementation of Time-Domain Model
The state estimation error variance using the time-domain models is computed in the following manner. We first define the following
matrices

V+ = σ
2
max

�

1 e−τ/Tmax

e−τ/Tmax 1

�

, M+ where [M+]i , j =

(

[M+]i , j if [M+]i , j ≥ 0
0 otherwise

(12)

V− = σ
2
min

�

1 e−τ/Tmin

e−τ/Tmin 1

�

, M− where [M−]i , j =

(

[M−]i , j if [M−]i , j < 0
0 otherwise

(13)

and then solve for

σ2
x̂ =

2
∑

i=1

2
∑

j=1
(M+ ◦V+ +M− ◦V−) . (14)
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Equation (14) combines the measurement error contributions in the worst conspiring manner by using σmax , Tmax when the estimator
coe�cients are positive, and using σmin, Tmin when the estimator coe�cients are negative. If the estimator coe�cients are of the same
sign, i.e., s0, sτ ≥ 0 or s0, sτ < 0, Eq. (14) becomes

σ2
x̂ ,time,++ =

2
∑

i=1

2
∑

j=1

�

�

s 2
0 s0 sτ

s0 sτ s 2
τ

�

◦
�

σ2
max σ2

max e−τ/Tmax

σ2
max e−τ/Tmax σ2

max

�

+
�

0 0
0 0

�

◦
�

σ2
min σ2

mine−τ/Tmin

σ2
mine−τ/Tmin σ2

min

��

(15)

=
2
∑

i=1

2
∑

j=1

�

�

s 2
0 s0 sτ

s0 sτ s 2
τ

�

◦
�

σ2
max σ2

max e−τ/Tmax

σ2
max e−τ/Tmax σ2

max

��

. (16)

Otherwise, the estimator coe�cients are of opposite signs, i.e., s0 ≥ 0, sτ < 0 or s0 < 0, sτ ≥ 0, and then

σ2
x̂ ,time,+− =

2
∑

i=1

2
∑

j=1

�

�

s 2
0 0
0 s 2

τ

�

◦
�

σ2
max σ2

max e−τ/Tmax

σ2
max e−τ/Tmax σ2

max

�

+
�

0 s0 sτ
s0 sτ 0

�

◦
�

σ2
min σ2

mine−τ/Tmin

σ2
mine−τ/Tmin σ2

min

��

(17)

=
2
∑

i=1

2
∑

j=1

�

�

s 2
0 s0 sτ

s0 sτ s 2
τ

�

◦
�

σ2
max σ2

mine−τ/Tmin

σ2
mine−τ/Tmin σ2

max

��

. (18)

3.2. Example Implementation of Frequency-Domain Model
The state estimation error variance using the frequency-domain-derived models is simply

σ2
x̂ ,freq =

2
∑

i=1

2
∑

j=1





�

s 2
0 s0 sτ

s0 sτ s 2
τ

�

◦





σ2
freq σ2

freq e−τ/Tfreq

σ2
freq e−τ/Tfreq σ2

freq







 . (19)

3.3. Elliptical Representation of Each Method’s Measurement Error Covariance Matrix

We leverage the fact that the left hand side matrices in Eq.
(16)-(19) are consistent all throughout, and compare error
models in the measurement domain using the measurement
error covariance matrices. We plot an elliptical representation
of each method’s measurement error covariance, i.e., the right
hand side matrix in Eq. (16), (18), and (19). These matrices are

Vtime =



















σ2
max

�

1 e−τ/Tmax

e−τ/Tmax 1

�

if
s0, sτ ≥ 0 or
s0, sτ < 0

�

σ2
max σ2

mine−τ/Tmin

σ2
mine−τ/Tmin σ2

max

�

if
s0 ≥ 0, sτ < 0 or
s0 < 0, sτ ≥ 0

(20)

Vfreq = σ
2
freq

�

1 e−τ/Tfreq

e−τ/Tfreq 1

�

. (21)

We plot the corresponding measurement covariance ellipses at
lag times τ = 5, 30, 76.22, 120, 300 seconds. Consider the plot
on Fig. 3. The x -axis represents measurement z0, and the y -
axis represents measurement zτ . A pair of estimator coe�cients
[s0, sτ] describes a line that passes through the origin, with slope
sτ/s0 as shown on Fig. 3. Figure 3: Measurement error covariance ellipse representation based on

Eq. (20)-(21) for τ = 5 s

Like-signed estimator coe�cients combine measurements z0 and zτ in such a way that the state estimation error variance bound (solid
blue ellipse) can lie in quadrants one and three only, while the state estimation error variance bound for oppositely-signed estimator
coe�cients (dashed blue ellipse) can lie in quadrants two and four. The frequency-domain ellipse is shown in magenta. Figures 3-4
show that at τ = 5 s and τ = 30 s, time-domain bound is tighter for like-signed estimator coe�cients than the frequency-domain
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bound. On the other hand, for oppositely signed estimator coe�cients, the frequency-domain bound is tighter. At τ = 76.22 s, on
Fig. 4 where the dashed blue and magenta ellipses intersect, we see equal performance between the two methods for certain pairs of
estimator coe�cients lying along the sτ/s0 = −1 line.

Figure 4: Measurement error covariance ellipse representation based on Eq. (20)-(21) for τ = 30, 76.22, 120, and 300 s

Plotting the covariance ellipses at τ values greater than 76.22 s on Fig. 4 shows that the time-domain model is tighter. This exercise
shows how either method could perform better when the time di�erence between measurements τ is less that the true error time
constant T = 50 s. However, at τ values much larger than T , there is little time-correlation between measurements.Sources of error
for which τ is more than twice T are typically treated as uncorrelated, even in high-integrity applications. Thus, the time-domain
model performs better than the frequency-domain model for a limited range of sampling times that are longer than the measurement
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error correlation time constant T , but not much longer than twice T . When τ < T , the result is estimator dependent, but the
larger T is relative to τ, the more conservative the time-domain approach becomes for estimator coe�cients in the o�-diagonal (±)
quadrants. Thus, we may find tighter positioning error variance bounds for frequency domain versus time-domain if τ � T . We
consider a more realistic example using an ARAIM simulation.

4. VARAIM Application of Error Models
We now compare the time-domain and frequency-domain bounding methods in a carrier-phase-based implementation of Advanced
Receiver Autonomous Integrity Monitoring (ARAIM). Ionosphere-free GPS and Galileo code and carrier measurements are filtered
to simultaneously estimate three-dimensional position, receiver clock biases, and floating-valued cycle ambiguities. The integrity risk
bound is calculated using a multiple hypothesis solution separation approach, where we use an optimal, risk-minimizing estimator
[10], and account for the number of e�ectively independent samples when evaluating risk over time [25]. Our batch implementation
of fault detection and exclusion closely follow the algorithm in [26], except that we compute integrity risk directly instead of protection
levels [27].

4.1. Nominal Measurement Error Models Accounting for Time-Correlation
The linearized ionosphere-error-free carrier phase and code measurement equations for satellite i at time k respectively are

iφk = −ieT
k xk + τk +

iη+ iEE ,k +
iET,k +

iEM ,φ,k +
iER ,φ,k

iρk = −ieT
k xk + τk + iEE ,k +

iET,k +
iEM ,ρ,k +

iER ,ρ,k
(22)

where iφk is the carrier phase measurement, iρk is the code phase measurement, iek is the 3×1 line-of-sight vector from the satellite
to the user in North-East-Down (NED), xk is the user position with respect to the linearization point, τk is the receiver clock o�set
(one for each constellation), iη is the carrier phase cycle ambiguity (there is no subscript k because it is constant over time), iEE ,k
is the satellite orbit and clock ephemeris error, iET,k is the residual tropospheric error, iEM ,k is the multipath error, and iER ,k is the
receiver noise error. Each measurement error source was modelled in same way as in [27], and only briefly summarized here.

Satellite Orbit and Clock Ephemeris Error
The error due to satellite orbit and clock ephemeris for satellite i at time k is modelled as an FOGMP of the form iEE ,k =
e −Ts/TE iEE ,k−1+ νE ,k , with GMP variance σ2

E , correlation time constant TE , driving noise νE ,k , and sampling interval Ts = tk − tk−1.
We assume no correlation between measurements from di�erent satellites [28, 29, 30].

Residual Tropospheric Error
The bulk of the tropospheric delay error is removed using standard models of the troposphere [31]. We model the residual tropo-
spheric error as an FOGMP scaled by an elevation-dependent mapping function [32]

icT,k =
1.001

Æ

0.002001+ (sin(iθk [rad]))2
(23)

for satellite elevation angles iθk ≥ 4◦. The resulting error contribution for satellite i at time k is given by iET,k =
icT,k

iζT,k where the
residual tropospheric error at zenith is modeled as iζT,k = e −Ts/TT iζT,k−1 + νT,k .

Multipath Error
Multipath error is modeled as an FOGMP, multiplied by an elevation-dependent mapping function

icM ,k = cIF

�

0.13+ 0.53 e (−
iθk [deg]/10)� (24)

where cIF =
q

�

f 4
L1 + f 4

L5

� �

f 2
L1 − f 2

L5

�−2, and fL1 and fL5 are the frequencies for L1 and L5 respectively [31]. The multipath error
contribution for satellite i at time k , for carrier and code measurements respectively are iEM ,φ,k =

icM ,k
iζM ,φ,k and iEM ,ρ,k =

icM ,k
iζM ,ρ,k . The parameters are listed in Table 1, where the two orders of magnitude di�erence in multipath error between code

and carrier is accounted for.

Receiver Noise Error
Receiver noise is modeled as Gaussian white noise such that the error contribution for carrier and code measurements respectively
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are iER ,φ,k ∼N (0, iσ2
R ,φ), and iER ,ρ,k ∼N (0, iσ2

R ,ρ), where the elevation-dependent standard deviations are formulated as [32]
iσR ,ρ,k = cIF

�

0.11+ 0.13 e (−
iθk [deg]/6.9)� (25)

iσR ,φ,k =
� 1

100

�

cIF

�

0.11+ 0.13 e (−
iθk [deg]/6.9)� . (26)

Measurement Error Parameters
To keep to the controlled manner of comparison between time-domain and frequency-domain bounding, where the only uncertainty
is finiteness of data, we keep using simulated data. A Monte Carlo simulation is used to generate measurement error time histories
for ephemeris orbit and clock, trophospheric delay, multipath, and receiver noise. The FOGMP parameters used to generate the
true error time histories are given in Appendix A. The resulting FOGMP error model parameters for time and frequency-domain
bounding are given in Table 1.

Table 1: Summary of Error Parameters

Time-Domain Frequency-Domain
Error Source Mapping Function σmin σmax Tmin Tmax σfreq Tfreq

Ephemeris (GPS) 2.4 m 2.6 m 900 min 2500 min 2.7 m 1500 min
Ephemeris (Galileo) 6.0 m 6.2 m 700 min 2000 min 7.2 m 1070 min

Troposphere Eq. (23) 0.12 m 0.13 m 20 min 50 min 0.14 m 25 min
Code Multipath Eq. (24) 0.83 m 0.9 m 300 s 915 s 2.2 m 420 s

Carrier Multipath Eq. (24) 0.0083 m 0.009 m 300 s 915 s 0.022 m 420 s
Receiver Code Noise Eq. (25)

Receiver Carrier Noise Eq. (26)

Figure 5: Comparison of time-domain and frequency-domain bounding for one location over 24 hours.

4.2. Batch Measurement Equation
A batch weighted least squares algorithm is used to simultaneously estimate the three-dimensional user position and receiver clock
o�sets at every time step, and the floating valued carrier phase cycle ambiguities that are constant over time, as long as the carrier is
continuously tracked. For practical applications, this method can be implemented sequentially in a sliding window mechanism,
as long as adequate receiver memory is available to store current and past measurements. Using a batch lets us forgo making
an assumption on the structure of the actual measurement error time-correlation for the time-domain approach, and therefore
enables a fair comparison between time-domain bounding and frequency-domain bounding. The batch measurement equation and
measurement error covariance is derived in Appendix B.
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4.3. Local Availability Analysis
The example uses a 10-minute batch. Within the batch, measurements are sampled every 5 minutes for the batch estimator. This
10-minute batch is evaluated repeatedly at regular 5-minute intervals over 24 hours at a reference location 0◦N 0◦W 0m altitude.
Note that we are sampling measurements at 5 minutes, which is much less than the dominating error source time constant, i.e., the
ephemeris error time constant. We plot the fault free user position standard deviation at current time, in North, East, Down, as well
as the number of satellites in view for GPS and Galileo on Fig. 5. We see that the frequency-domain model in magenta, gives better
performance than the time-domain model in blue.

Figure 6 compares the integrity risk (probability of hazardously misleading information, PHMI ) of time-domain and frequency-
domain bounding for the same location over 24 hours. The parameters used for fault detection, exclusion, and integrity risk evaluation
is given Appendix Appendix C. We see that frequency-domain bounding performs better than time-domain bounding for the entire
simulation period, which is not unexpected based on the analysis in Section 3 because TE � TS .

Figure 6: Comparison of time-domain and frequency-domain bounding for one location over 24 hours.

4.4. Global Availability Analysis
We extend our analysis to a worldwide grid of locations and evaluate integrity performance for all locations. A 10-minute batch is
simulated at regular 30-minute intervals for 24 hours. Measurements are sampled for the estimator every five minutes. Reference
locations were simulated on a 10◦×10◦ latitude-longitude grid. Constellations in use were 24-satellite GPS and 24-satellite Galileo.

Figure 7: Time-domain bounding provides 50.52% coverage of
100% availability for example ARAIM simulation using Table 1 and
Appendix C parameters.

Figure 8: Frequency-domain bounding provides 100% coverage of
100% availability for example ARAIM simulation using Table 1 and
Appendix C parameters.

The color bars on Fig. 7-8 indicate availability, which is the fraction of time over 24 hours, that the integrity risk bound is below the
integrity risk requirement. The frequency-domain model provides better 100% availability coverage than the time-domain models.
Although our example is ARAIM-based, the application of these error bounding methods can extend to many integrity-dependent
applications that process measurements over time in sequential estimators.
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5. Conclusions
In this paper, we analyzed the performance of time-domain versus frequency-domain bounding methods used to model time-
correlated measurement errors in high-integrity sequential navigation applications. We first compared the tightness of the estimation
error variance bounds in the context of a two-measurement scalar least squares estimation problem, where we used a measurement
error covariance ellipse representation, to show that: (1) when the time di�erence τ between measurements is larger than the
dominating error correlation time constant T but no more than twice T (i.e., T < τ < 2T ), then time-domain bounding can
perform better, and (2) when the time di�erence between successive measurements is much less than the error correlation time
constant (τ � T ), frequency-domain bounding can perform better.

We incorporated these new bounding methods into a sequential implementation of ARAIM, and performed a worldwide availability
and coverage analysis using GPS and Galileo. We produced availability maps to capture the integrity and continuity performance
of both methods. Based on this preliminary analysis, frequency-domain bounding can provide tighter integrity risk bounds than
time-domain bounding. Thus, this paper provides a first look into the integrity performance of time-domain and frequency-domain
bounding methods.

Appendix A. Monte Carlo Simulation of FOGMP Error Time Histories
The following table lists the FOGMP parameters used to generate the true measurement error time histories for ephemeris orbit
and clock error, tropospheric error, and multipath error. A Monte Carlo simulation was implemented for each time-correlated error
source by generating FOGMP’s using σ and T .

Table 2: FOGMP Parameters Used in Monte Carlo Simulation of Measurement Error Time Histories

Error Source σ T
Ephemeris (GPS) 2.4 m 1620 min

Ephemeris (Galileo) 6.0 m 1200 min

Troposphere 0.12 m 30 min

Code Multipath 0.83 m 455 s
Carrier Multipath 0.0083 m 455 s

To generate the measurement error time history for each error source used in the ARAIM simulation, we start with an FOGMP
time series 9000T long, where T is the last column on Table 2. For time-domain bounding we partition the 9000T long data into
sample paths that are 3T long, giving us 3000 sample paths. We use sample paths 3T in length for time-domain modeling, because
measurements made more than 3T apart can be considered uncorrelated [33]. For frequency-domain bounding, we partition the
data into 1000 sample paths, each 9T long. For a fixed amount of data, longer sample path lengths ensures accuracy of the quantiles,
but at the same time reduces model fidelity (a noisier estimate). On the other hand, using shorter path lengths to increase the number
of sample paths, can produce smoother estimates, but can make the quantiles inaccurate [7]. We arrived at 9T -long sample paths
after tuning.

Appendix B. Batch Measurement Equation and Measurement Error Covariance
Starting with the linearized measurement equations for ionosphere-error-free carrier and code measurements Eq. (22), we can derive
a batch measurement equation of the form z =H x+ v by first defining

uk =
�

xT
k τGPS,k τGalileo,k

�T
, (27)

igT
k =

�

−ieT
k 1 0

�

if satellite i is a GPS satellite, and (28)
igT

k =
�

−ieT
k 0 1

�

if satellite i is a Galileo satellite. (29)

We stack the measurements over time for each satellite i for time instances 1 through K . The resulting geometry matrix, carrier and
code measurements, carrier and code measurement noise vectors, and user states are respectively expressed as

iG =









igT
1 0

. . .
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(30)
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Measurements get stacked with carrier phase measurements first, followed by code measurements to get
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where nsat is the total number of visible satellites. The stack of measurements can be compactly written as
�

ϕ
ρ

�

=
�

Gφ HN
Gρ 0

�

�

u
η

�

+
�

vφ
vρ

�

. (32)

The batch measurement error covariance matrix accounting for measurement error time correlation is given by

V =
�

VE +VT VE +VT
VE +VT VE +VT

�

+
�

Vφφ,M +Vφφ,R 0

0 Vρρ,M +Vρρ,R

�

(33)

where VE is the ephemeris error covariance, VT is the tropospheric error covariance, VM is the multipath error covariance, and VR
is the receiver noise error covariance. The covariance matrix captures the fact that VE and VT are common to code and carrier
measurements, while VM and VR are di�erent for code and carrier measurements. For each satellite i these covariances are

iVE = σ
2
E exp

�

− Ts
TE

B
�

,

iVT = σ
2
T

icT
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. (34)

The matrix B is a Toeplitz matrix which arises from computing the cross-correlation terms between separate times whilst having a fixed
sampling period. The symbol "◦" indicates element-by-element multiplication of matrices, whereas "exp(·)" means element-wise
exponential function applied to the matrix in parentheses. For error source ε, σ2

ε is the FOGMP variance, icε is the vector of
elevation-dependent coe�cients stacked at all times for satellite i , Tε is the Markov process correlation time constant, and Ts is the
sampling interval. A derivation of these time-correlated measurement error covariance matrices is described in the Appendix of [34].

Appendix C. Parameters for ARAIM Simulations

Table 3: Parameters for Detection, Exclusion, and Integrity Risk Evaluation

Description Value
Ireq total integrity budget 10−7/approach [26]

Creq continuity risk requirement to limit probability of false alarms 10−7/approach [26]

Psat probability of single satellite fault (GPS, Galileo) 10−5, 10−5 [10]

Pconst probability of constellation fault (GPS, Galileo) 10−8, 10−4 [10, 35]

VAL vertical alert limit 100 m
HAL horizontal alert limit 100 m
TEXP,int exposure time for integrity 150 s [26]

TEXP,cont exposure time for continuity 150 s [26]

TTA time-to-alert 150 s [26]

MTTN mean-time-to-notify 1 h [10, 25, 26, 35]

NES,int number of e�ective samples for integrity 1 [25, 26]

NES,cont number of e�ective samples for continuity 1 [25, 26]
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