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ABSTRACT
The baseline algorithm for horizontal advanced receiver autonomous integrity monitoring (HARAIM) provides one acceptable
means of computing a horizontal protection level (HPL) that meets the safety requirements for aircraft en-route navigation.
The baseline HARAIM algorithm iteratively solves for a single protection level across all hypotheses, which is equivalent
to optimally allocating the integrity risk requirement across all hypotheses for PL evaluation. This optimization process is
separately carried out twice, in the East and North directions. In this paper, we perform this iterative process only once: we
show that it is computationally more efficient and can provide a tighter bound on horizontal radial positioning errors than the
baseline HPL. We derive a generalized chi-square formulation of the HPL to quantify the tightness of both the baseline and
the proposed HPL bounds. We conduct a worldwide risk analysis to compare baseline, and new HPL approaches in terms of
coverage of 100% availability.

I. INTRODUCTION
The advanced receiver autonomous integrity monitoring (ARAIM) baseline algorithm provides probabilistic positioning error
bounds which account for the impact of both nominal errors and undetected faults (Working Group C (WGC), 2016).

These positioning error bounds come in the form of a horizontal protection level (HPL) for Horizonatal ARAIM (HARAIM)
and Vertical ARAIM (VARAIM) and a vertical protection level (VPL) for VARAIM. Together, HPL and VPL describe a
cylinder centered at the true user location and containing the estimated location with a very high confidence, for example
99.99999% (Working Group C (WGC), 2022). The baseline algorithm was developed over the last decade with an initial
focus on VARAIM for vertical guidance of aircraft during approach (Working Group C (WGC), 2016) that shifted towards
HARAIM for aircraft en route navigation (Working Group C (WGC), 2022). This paper addresses the HARAIM HPL. The
current ARAIM Algorithm Description Document (ADD) provides one acceptable means of computing an HPL that meets
safety requirements (Working Group C (WGC), 2022). While alternative HPL equations exist (Walter and Enge, 1995; Ober,
1997; Jiang and Wang, 2016), they are not as tightly bounding, nor as computationally efficient as the ARAIM baseline algorithm.

According to the Satellite Based Augmentation Systems (SBAS) Minimum Operational Performance Standards (MOPS) for
GPS, the HPL is defined as the horizontal radius of a circle, centered at the true position, which is expected to contain the
estimated horizontal position at a probability defined by the integrity and continuity requirements (Radio Technical Commission
for Aeronautics (RTCA) Special Committee 159, 2009). We denote the two-dimensional horizontal positioning error (HPE)
vector as ε, and define the HPL as

P (∥ε∥ ≥ HPL ) = PAlloc (1)

where the parameter HPL is the radius of a circle such that the probability of the radial error, ∥ε∥ =
√
εTε, exceeding HPL is

equal to a predefined risk requirement allocation, PAlloc. This risk allocation is application-dependent, and is on the order of
10−7 for HARAIM.



The SBAS MOPS justifies deriving HPL from a 1D normal distribution along the worst-case horizontal direction. In contrast,
the baseline ARAIM algorithm evaluates two protection levels for two 1D normal distributions aligned to the East and North
directions respectively, and then combines the two PLs to conservatively produce an HPL (Working Group C (WGC), 2022;
Blanch et al., 2015).

In this paper, we point out one step in the baseline HPL computation that can be modified to increase the tightness of the bound
while reducing computation load. We first evaluate the tightness of the baseline HPL by comparing it to a tighter, generalized
chi-square HPL formulation. Then, we derive a new, more computationally-efficient, and tighter HPL. Finally, we quantify
ARAIM availability performance for both the baseline and the new HPL approaches.

II. HPL AND HPE FUNDAMENTALS
1. Baseline HPL Bound
The distribution of horizontal positioning error (HPE) samples
is represented in Fig. 1. The baseline ARAIM algorithm
computes East and North protection levels considering two 1D
normal distributions, where each direction is allotted half the
risk allocation. This approach can be expressed as:

P ( |εE | ≥ PLE) =
1
2
PAlloc (2)

P ( |εN | ≥ PLN ) =
1
2
PAlloc . (3)

The left-hand-side probabilities in Eq. 2 and 3 are represented
by two pairs of half planes in Fig. 1. The risk of being in
one or the other half-plane-pair is smaller than PAlloc because
the risks of being in any one of the four dark-gray quadrants is
double-counted. Figure 1: Example horizontal positioning error sample distribution

and baseline horizontal protection level

The baseline HPL is defined as: HPLBL =

√︃
PL2

E + PL2
N (Working Group C (WGC), 2016). Figure 1 shows that HPLBL is

bounding: if the probability of being outside the dashed rectangle is smaller than PAlloc, then the risk of being outside the circle
is even smaller. In mathematical terms, the probability of the radial HPE (

√︃
ε2E + ε2N ) exceeding HPLBL can be bounded by the

following expression:

P
(√︃

ε2E + ε2N ≥ HPLBL

)
< P (|εE | ≥ PLE) + P ( |εN | ≥ PLN ) . (4)

A tighter bound is possible as evidenced by the overlapping areas and by the regions that fall inside the HPLBL circle.

2. Horizontal Positioning Error Model
We model the two-dimensional horizontal positioning error (HPE) as:

ε = εa + εe . (5)

where εa and εe respectively are the aleatory and epsitemic error components. εa, captures uncertainty due to probabilistic
variations, including those caused by measurement errors and modeled using Gaussian overbounds. This error component is
modeled as

εa ∼ N

(
0 , P =

[
σ2E σEN
σEN σ2N

])
. (6)



εe, captures uncertainty due to lack of knowledge. It is used in ARAIM to account for undetected faults and nominal errors due
to signal deformation. This component can be bounded by the interval

−d ≤ εe ≤ d (7)

where d =
[
dE dN

]T. Equation (7) is an element-wise inequality, where the East and North epistemic error components are
bounded by dE and dN respectively. Taking the magnitude of both sides of Eq. (5), we can leverage the triangle inequality to
bound the radial error, as follows

∥ε∥ ≤ ∥εa∥ + ∥εe∥ (8)

where ∥εe∥2 = d2E + d2N . We choose to split the HPE into these two error components to aid in our derivation.

III. EVALUATING TIGHTNESS OF THE BASELINE HPL
1. Baseline HPL Notation
The baseline ARAIM algorithm assumes Gaussian overbounds in Eq. (2)-(3) and computes HPL using the following equations:

PLE = kσE + dE (9)
PLN = kσN + dN (10)

HPL2
BL = PL2

E + PLN
2 (11)

where k is the inverse of the tail probability of a standard normal distribution at a quarter of the risk allocation, that is
k = Q−1 ( 1

4PAlloc
)
. The first PAlloc-halving is due to equal risk allocation between East and North directions. The second halving

is to account for both tails of the normal distribution. (The baseline ARAIM algorithm has several refinements that are not
directly significant to this derivation (Working Group C (WGC), 2022).) Expanding Eq. (11) and rearranging terms, HPLBL
can be written as:

HPL2
BL = k2

(
σ2E + σ2N

)
+

{
2k (σEdE + σNdN ) + d2E + d2N

}
. (12)

The term in the squiggly brackets is an upper bound on ∥εe∥2. The remainder of Section III evaluates the tightness of HPLBL
considering its aleatory component defined as:

HPL2
BL,a = k2

(
σ2E + σ2N

)
(13)

2. Generalized Chi-Square-Based HPL
This section aims at showing that the squared radial HPE ∥εa∥2 follows a generalized chi-square distribution. While it may
be tempting to scale the East and North axes to obtain a chi-square distributed radial error distribution, the resulting HPL
would become an ellipse instead of a circle, which would not comply with the HPL definition (Radio Technical Commission
for Aeronautics (RTCA) Special Committee 159, 2009).

First, the eigen-decomposition of the covariance matrix P of the bivariate normal vector εa in Eq. (6) is given by:

P = U𝚲UT (14)

where U is an orthonormal matrix composed of the eigenvectors of the symmetric positive definite matrix P (i.e., U−1 = UT,
UTU = I), and 𝚲 is a diagonal matrix with diagonal elements the eigenvalues of P: λ21 , and λ22. We define vector v as:

v =

[
v1
v2

]
= UTP− 1

2 εa ∼ N (0, I ) (15)

where P− 1
2 is the inverse of the principal square root of the covariance matrix. We obtain the following expression:

∥εa∥2 = vT𝚲v = λ21 v
2
1 + λ22v

2
2 (16)



where we have leveraged the fact that εa = P
1
2 Uv, and 𝚲 = UTPU. Equation (16) is the expression of a generalized chi-square

distribution, which is a weighted sum of squares of independent normal variables. The HPL equation for the aleatory HPE
component becomes:

P
(
∥εa∥2 ≥ HPL2

χ̃2, a

)
= PAlloc (17)

where we use the entire risk allocation instead of halving it. This probability can be evaluated using numerical methods (Davies,
1980; Langel, 2021). HPLχ̃2, a provides a point of comparison to evaluate the tightness of HPLBL,a.

The same numerical methods are applied in Sec. V, where we account for both aleatory and epistemic HPE components, by
using Eq. (5) to form the complete HPL2

χ̃2 . In Sec. V, the generalized chi-square distribution is a weighted sum of independent,
non-zero mean, squared Gaussian variables.

3. Tightness of Baseline HPL for Any Satellite Geometry
We analyze tightness of the baseline HPL for different HPE covariance ellipses (satellite geometries), and different risk
requirements. A measure of HPLBL,a-tightness is given by the following ratio:

HPLBL,a

HPLχ̃2, a
(18)

which was shown in Fig.1 to be greater than 1, and approaches 1 when HPLBL,a is a tight HPE bound. In this section, we
evaluate Eq. (18) with respect to two parameters that characterize the range of HPE covariance ellipse geometries: eccentricity,
e (e =

√︃
1 − λ2

λ1 , where λ2 < λ1), and orientation, θ (θ is the angle between the ellipse semimajor axis and the East axis). We can
write the parametrized form of the covariance matrix as:

P = U𝚲UT =

[
− sin θ cos θ
cos θ sin θ

] [
λ21 0
0 λ22

] [
− sin θ cos θ
cos θ sin θ

]T
(19)

=

[
λ21 sin

2 θ + λ22 cos
2 θ

(
λ22 − λ21

)
sin θ cos θ(

λ22 − λ21
)
sin θ cos θ λ21 cos

2 θ + λ22 sin
2 θ

]
. (20)

The HPL ratio in Eq. (18) is evaluated for a set of eccentricity
and orientation values, e ∈ [0, 1), and θ ∈ [0, 90◦] respectively.
We compute HPLBL,a from Eq. (13), and numerically solve for
HPLχ̃2, a using Eq. (17) to get the results shown in Fig. 2.

The y-axis of Fig. 2 starts at zero eccentricity corresponding to
a circular HPE covariance ellipse, and approaches 1 as the HPE
covariance ellipse elongates. The x-axis on Fig. 2 captures
orientation of the ellipse, where 0◦, and 90◦ correspond to
uncorrelated errors, and anything in between 0◦, and 90◦
corresponds to correlated East-North errors.

Figure 2 shows contours of HPL ratios between baseline and
generalized chi-square. All HPL ratio contours have values
greater than 1, which is consistent with the proof in Fig. 1. The
baseline HPL is most conservative when the HPE covariance
ellipse is circular (e = 0). The baseline HPL bound then becomes
tighter as the HPE covariance ellipse elongates (e → 1). HPL
ratios are independent of HPE covariance ellipse orientation.
Further analytical evaluation can be found in Appendix A. Figure 2: Contours of HPL ratios Eq. (18) for the aleatory HPE

covariance ellipse, for a range of eccentricity, and orientation values.



4. Tightness of Baseline HPL for a Realistic Range of Risk Requirements
In this section, we assess the tightness of the baseline HPL with respect to varying risk allocations. Using fixed values for
eccentricity, we compute the HPL ratio in Eq. (18) for a set of risk allocations between 10−7 and 10−3.

HPLBL,a

HPLχ̃2, a

Figure 3: HPL ratios plotted with respect to increasing risk allocation, for different fixed values of eccentricity

Figure 3 shows that the baseline HPL is consistently bounding for the set of risk allocations considered, and that it is most
conservative at zero eccentricity (consistent with Fig. 2). At the 10−7 risk requirement, we see baseline HPL values that can be
around 10% looser for e = 0.9, and over 35% looser for e = 0.

IV. A TIGHTER AND MORE COMPUTATIONALLY EFFICIENT HPL
1. Baseline Multiple Hypothesis HPL Computation
The baseline ARAIM algorithm iteratively computes a single PL considering all hypotheses H (i) , for i = 1, ..., h where h is the
number of monitored hypotheses. This is equivalent to optimally allocating the integrity requirement across all h hypotheses
for PL evaluation. This process is performed twice, along the East and then North directions, to get the final baseline HPL from
Eq. (11). The baseline ARAIM PL equations are

1
2
PAlloc =

h∑︁
i=0

P
(
|ε(i)E | ≥ PLE ∩ H (i)

)
(21)

1
2
PAlloc =

h∑︁
i=0

P
(
|ε(i)N | ≥ PLN ∩ H (i)

)
(22)

where the right hand side takes the sum of risks of East/North errors exceeding their associated PL. Combining PLs optimized
for East and North directions separately is suboptimal with respect to the radial HPE.

2. New Multiple-Hypothesis HPL Computation
We develop a new approach where the HPL is directly derived from the radial HPE. Another way to express this idea is that
the optimal integrity risk allocation across hypotheses is directly performed for the HPE vector magnitude instead of for two
separate horizontal directions. Thus, we iteratively solve a single HPL equation instead of two. The new HPL equation is:

1
2
PAlloc =

h∑︁
i=0

P
(
|ε(i)new | ≥ HPLnew ∩ H (i)

)
. (23)



The proposed approach models the aleatory and epistemic components of the HPE magnitude εnew as follows:

εnew = εnew,a + εnew,e (24)
εnew,a ∼ N

(
0 ,

(
σ2E + σ2N

) )
(25)

|εnew,e | ≤
√︃
d2E + d2N . (26)

Instead of computing HPLBL using two optimized horizontal PL components, we directly bound the radial HPE parameters(
σ2E + σ2N

)
and (

√︃
d2E + d2N ), and then optimally allocate risk across hypotheses only once to compute an HPL. Proof that HPLnew

adequately bounds the HPE is in Appendix B. The difference between baseline and new approach is summarized in the figure
below.

Figure 4: Flowchart comparing baseline HPL approach with proposed new HPL approach

V. HARAIM HPL PERFORMANCE EVALUATION
This section compares HPLBL, HPLnew, and HPLχ̃2 , and the impacts of HPLBL and HPLnew on worldwide ARAIM availability
performance. We first consider one location at (50◦E, 40◦S). We simulate nominal 24-satellite GPS, and 24-satellite Galileo
constellations. HPL analysis is performed every minute over 24 hours for HARAIM parameters that can be found in the latest
ARAIM ADD (Working Group C (WGC), 2022). Measurement error models follow ED259a (EUROCAE, 2021). Figure 5 is
a plot of HPLBL, HPLnew, and HPLχ̃2 over twenty four hours. The figure confirms again that both the baseline HPL in gray, and
new HPL in black, are always bounding the generalized-chi-square HPL in blue. HPLnew actually provides a tighter bound than
HPLBL. For sections where HPLBL and HPLnew are equal, the new HPL is still more computationally efficient as indicated by
the run times in the legend of Fig. 5.

Figure 5: HPL over time at (50◦E, 40◦S). HPL analysis is performed every minute over 24 hours using 24-GPS, 24-Galileo, ED259a
measurement error models, and HARAIM parameters from ARAIM ADD. Simulated using MATLAB 2019a running on Intel(R) Xeon(R)
W-2125 CPU @ 4.00GHz, 32.0GB installed RAM, 64-bit operating system, x64-based processor.

We perform HPL analysis for a grid of locations on Earth. Availability is the percentage of time over 24 hours where the
computed HPL meets the horizontal alert limit (HAL). In Fig. 6, the color bar indicates a range of availability values from
93% in red to 100% in blue. The overall performance metric is coverage of 100% availability, which measures the fraction
of locations that achieves 100% availability. For the example 100-meter HAL used in Fig. 6, coverage increases from 67%



coverage for the baseline HPL, to 85% for the new HPL. HPLnew, which we have proven to be bounding HPLBL for a single
hypothesis (Appendix B), provides a tighter, more computationally efficient radial HPE bound over multiple hypotheses. Results
for other HARAIM HAL’s and coverage definitions are given in Table 1, where RNP stands for Required Navigation Performance.

Figure 5 compared HPL performance at (50◦E, 40◦S), which corresponds to the worst-case location (hottest point) on the left
plot of Fig. 6. At this location, the proposed new HPL can improve availability, e.g. after the 8h mark, and just before the 24h
mark, where the baseline HPL exceeds the HAL (dashed horizontal line).

Figure 6: Availability maps of baseline HPL and new HPL for a grid of locations at 10◦ × 10◦ latitude-longitude spacing. HPL analysis is
performed every 10 minutes over 24 hours using 24-GPS, 24-Galileo, ED259a measurement error models, and HARAIM parameters from
ARAIM ADD.

Table 1: Coverage Results for Baseline and New HPL Approaches at Different HARAIM Requirements

HAL = 100m RNP 0.1 (185m) RNP 0.3 (556m)
HPLBL HPLnew HPLBL HPLnew HPLBL HPLnew

Coverage of 95% Availability 100.00 100.00 100.00 100.00 100.00 100.00
Coverage of 99% Availability 88.8758 98.1997 98.9329 98.9329 99.8138 99.8138
Coverage of 99.5% Availability 66.6447 85.0126 86.3366 86.4197 95.3246 95.3246
Coverage of 100% Availability 66.6447 85.0126 86.3366 86.4197 95.3246 95.3246

VI. CONCLUSIONS
In this paper, we first analyzed the tightness of the baseline HPL as compared to the generalized chi-squared-derived HPL for
all HPE covariance ellipse geometries, and for a range of relevant risk allocations. Second, we derived a new HPL equation
that requires solving a single iterative HPL equations as opposed to two for the baseline HPL, which is computationally more
efficient and can provide a tighter bound. Lastly, we implemented a worldwide availability analysis and showed that the new
HPL can improve coverage of 100% availability from 67% using the baseline HPL to as much as 85% for an example 100-meter
horizontal alert limit.



APPENDIX A. ANALYTICAL TIGHTNESS EVALUATION FOR LIMIT CASES
1. Limit Case 1: λ1 = λ2 (e = 0)
Figure 7 illustrates the case where we have a circular HPE covariance ellipse. We compare the generalized chi-square HPL
with the baseline HPL. When λ1 = λ2, Eq. (16) divided by λ21 becomes a chi-square distribution with two degrees of freedom,
χ22 . Considering the inverse of the chi-square cumulative distribution function with two degrees of freedom, Eq. (17) has a
closed-form solution, and HPL2

χ̃2, a can be expressed as:

cdf χ22
(
HPL2

χ̃2, a/λ
2
1

)
= PAlloc . (27)

In parallel, for σE = σN , we get PLE,a = PLN,a, such that

Q
(
PLE,a

σE

)
=
PAlloc
4

. (28)

When σE = σN , the dashed rectangle in Fig.1 becomes a square,
i.e., HPLBL,a =

√
2PLE,a. A brief study of bivariate normal

distributions shows that for small PAlloc, only a small difference
exists betweenPLE,a andHPLχ̃2, a. This is because the probability
density at the intersection of the dashed square and the East
or North axis is much higher than near the square’s corners.
Further contributing to the small difference between PLE,a and
HPLχ̃2, a is the fact that, when building the dashed square, the
risk of being in the four dark gray quadrants is double-counted.
Therefore, for practical (small) PAlloc, we can write the following
approximation:

HPLBL,a ≈
√
2HPLχ̃2, a . (29)

Figure 7: Horizontal positioning error sample distribution given by
Eq. (20) for the case where λ1 = λ2 (e = 0), and any θ

2. Limit Case 2: λ2 = 0 (e → 1)
At the limit where e → 1, λ2 = 0. Equation (16) simplifies to:

∥εa∥2 = λ21 v
2
1 (30)

and the HPE distribution approaches a 1D normal distribution given by εa ∼ N
(
0, λ21

)
. Thus, the generalized chi-square HPL

becomes:

HPLχ̃2, a = Q−1
(
PAlloc
2

)
λ1 . (31)

Using the parametrized expression for the alleatory HPE covariance matrix in Eq. (20), the baseline HPL becomes:

HPLBL,a = Q−1
(
PAlloc
4

) √︃
σ2E + σ2N (32)

= Q−1
(
PAlloc
4

) √︃
λ21 sin

2 θ + λ22 cos2 θ + λ21 cos2 θ + λ22 sin
2 θ (33)

= Q−1
(
PAlloc
4

)
λ1 . (34)

Equations (31) and (34) show that, for practical (small) PAlloc, HPLχ̃2, a ≈ HPLBL,a.



APPENDIX B. NEW HPL PROOF OF BOUNDING
This appendix shows that for a single hypothesis, the following
inequality is always satisfied:

HPLBL ≤ HPLnew . (35)

HPLnew combines bounds on the aleatory and epistemic HPE
components in the worst conspiring manner, by taking the
sum of their magnitudes, i.e.,

HPLnew = k
√︃
σ2E + σ2N +

√︃
d2E + d2N . (36)

Figure 8 graphically shows the following inequality:√︃
(kσE + dE)2 + (kσN + dN )2

≤ k
√︃
σ2E + σ2N +

√︃
d2E + d2N . (37)

Figure 8: Graphical comparison of HPLBL in gray, and HPLnew in
black, for an example horizontal positioning error covariance ellipse
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