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environment.
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I. INTRODUCTION

This paper describes the design, analysis, and testing
of a new integrity risk monitoring method for laser-based
feature extraction (FE) and data association (DA). FE and
DA are preestimator measurement processing functions that
are implemented in laser-based navigation applications [1]–
[15]. The methods developed in this paper provide the
means to quantify safety risks involved with FE and DA,
which is not fully addressed in the literature. This will help
ensure navigation safety in life-critical applications, includ-
ing in highly-automated vehicle (HAV) localization.

Currently, the most publicized efforts to demonstrate
HAV safety are Waymo’s (formerly Google’s) and Tesla’s
approaches to have HAVs drive millions of miles with min-
imal human intervention. At this time, Waymo cars have
autonomously travelled an impressive three million miles
in urban areas [16]. Tesla’s autopilot is reported to have
driven more than 130 million miles—-on highways only—
-before it caused a fatality in May 2016 [17], [18]. In par-
allel, the National Highway Traffic Safety Administration
(NHTSA) reports about one fatality in traffic accidents per
100 million mile driven by human drivers in the U.S. [19],
[20]. But, this number accounts for incidents on all roads, in
all weather conditions, and for all vehicle ages and types.
Thus, a purely experimental, complete proof that HAVs
match the level of safety of human driving would require
billions of miles driven [21]. This is assuming that no fatal-
ities occur during that time, that no major HAV upgrade is
performed, and that the testing environment is representa-
tive of all U.S. roads. Clearly, other methods must also be
employed to ensure HAV safety.

As a complement to testing, this paper leverages prior
analytical work carried out in civilian aviation naviga-
tion (as recently suggested in [22]), where safety is as-
sessed in terms of integrity. Integrity is a top-level, quan-
tifiable performance metric, which is sensor-independent
and platform-independent. It can be used to set certifiable
requirements on individual system components to achieve
and prove an overall level of safety. Integrity is a measure
of trust in sensor information: integrity risk is the probabil-
ity of undetected sensor errors causing unacceptably large
positioning uncertainty [23]. Loss of integrity can place the
HAV in hazardous situations.

Several methods have been established to predict
the integrity risk in Global Navigation Satellite Sys-
tems (GNSS)-based aviation applications, which are
instrumental in ensuring the safety of pilots and crew
[23]–[26]. Unfortunately, the same methods do not directly
apply to HAVs, because ground vehicles operate under
sky-obstructed areas where GNSS signals can be altered
or blocked by buildings and trees.

HAVs require sensors in addition to GNSS, including
laser scanners, cameras, or radars. This paper focuses on
laser scanners because of their prevalence in HAVs, of their
market availability, and of our prior experience. A raw laser
scan is made of thousands of data points, each of which
individually does not carry any useful information. Raw
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Fig. 1. Three step estimation process for laser or radar-based
navigation.

measurements must be preprocessed before they can be
used for navigation [8], [27]–[28]. A first class of algo-
rithms establishes correlations between successive scans to
estimate sensor changes in “pose” (i.e., position and orienta-
tion) [29]–[32]. These procedures can become inaccurate or
cumbersome for HAVs moving over multiple time epochs.
A second class of algorithms provides sensor localization
by tracking recognizable, static features in the perceived
environment.

Features can include, for example, lines or planes cor-
responding to building walls in two- or three-dimensional
(2D or 3D) scans, respectively. Extracted feature param-
eters, such as current-time coordinates in a local East–
North-Up navigation frame of the vector normal to line-
or plane-features, are noted ẑ in Fig. 1. Features that can be
exploited in this research not only include position and ori-
entation, but also landmark size, surface color, reflectivity,
roughness, or any other measurable characteristic. Previ-
ous knowledge of feature parameters (noted z̄i in Fig. 1)
can be provided either from a landmark map or from past-
time estimation in simultaneous localization and mapping
(SLAM) [27], [28]. The resulting information can then be
iteratively processed using sequential estimators (e.g., Ex-
tended Kalman filter or EKF), which is convenient in many
practical applications [8], [27], [28]. The problems that FE
and DA are addressing are the following [2], [5], [7], [8].

First, raw laser observations of landmarks do not come
with a label or “name tag” like a GNSS satellite sig-
nal’s pseudo random noise number, for example. Thus,
FE aims at finding the few most consistently recognizable,
viewpoint-invariant landmarks in the raw sensor data. The
extracted features must not only be identifiable over re-
peated observations, but must also be distinguishable from
one landmark to another. Features that are difficult to distin-
guish or “poorly separated” are easily found, but are likely
to be incorrectly associated, which will impact integrity.

Second, lasers provide pose estimation by comparing
current-time landmark feature measurements ẑ to prior
knowledge of these features z̄i [27], [28]. z̄i assumes an
ordering of landmarks designated by subscript i (there are
many possible orderings). DA aims at assigning the land-
mark features ẑ to the corresponding feature parameters
assumed in the estimation process, i.e., at finding the or-
dering of landmarks i in z̄i that matches the ordering of
landmarks in ẑ over successive observations [4]. Incorrect
association (IA) is a well-known problem that can lead to
large navigation errors [33], thereby representing a threat
to navigation integrity.

FE and DA can be challenging in the presence of sen-
sor uncertainty. This is why many sophisticated algorithms
have been devised [1]–[15]. But, how can we prove whether
these FE and DA methods are safe for life-critical HAV nav-
igation applications, and under what circumstances?

These research questions are mostly unexplored. The
most relevant publications are found in literature on mul-
titarget tracking. For example, in [1], an innovation-based
nearest-neighbor DA criterion is introduced, which serves
as basis in many practical implementations. Bar-Shalom
et al. in [34] provides a detailed derivation of the probability
of correct association (CA) given measurements. However,
this Bayesian approach is not well suited for safety-critical
applications due to the lack of risk prediction capability,
and to the problem of bounding the a posteriori probability
of association (a similar issue is encountered in [35]). An-
other insightful approach is followed in [36]. However, it
makes approximations that do not necessarily upper-bound
risks, hence, do not guarantee safe operation, and it presents
exact solutions that could only be evaluated using compu-
tationally expensive numerical methods, not adequate for
real-time navigation. Also, the risk of FE is not addressed.
Overall, research on navigation integrity using FE and DA
is sparse.

In response, in this paper, a new, computationally effi-
cient integrity risk prediction method is developed to ensure
safety of localization using laser-based FE and DA.

The paper does not present a landmark selection
method, but is a key step toward extracting the set of fea-
tures that maximizes safety performance [37], [38]. The
paper assumes either a preestablished map, or prior ob-
servations of static landmark features. Many sophisticated
algorithms have been devised to extract such features [1]–
[15]. For clarity of exposition, the description of the method
assumes that each landmark is associated with exactly one
extracted feature, and that the number of landmarks in view
is constant. Specifics on the FE implementation used in
simulation and testing, for extracting point-features and
for handling landmarks coming in and out of view, can
be found in [39]. In practice, misleading-feature detection
and exclusion methods must be used to deal with miss-
extracted, nonstatic, and non repeatedly identified features
that are not addressed in this paper [38]. Thus, this paper
makes assumptions that are not always valid in realistic, un-
structured HAV environments, but allow preliminary testing
under specific conditions. The starting point of the paper
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is that a matching set of the few most reliably recogniz-
able features are extracted from both current and previous
data (or map), with a feature estimation error that can be
stochastically bounded using [40], [41].

In Section II of this paper, we develop a multiple-
hypothesis innovation-based DA method, which provides
the means to predict the probability of IAs considering all
potential landmark permutations [42]. In Section III, we
derive a probabilistic lower bound on the minimum fea-
ture separation, which is guaranteed, at FE, with predefined
integrity risk allocation. As compared to our previous con-
ference paper in [42], this new derivation is simpler, and the
resulting separation bound is no longer a function of an em-
pirically defined design parameter. In addition, a graphical
representation is introduced, which illustrates this proba-
bilistic bound in a normalized separation space. The sepa-
ration bound is then incorporated in the integrity risk equa-
tion. This new method is analyzed and tested in Sections IV
and V to quantify the impact of IAs on integrity risk (results
are updated as compared to [42]). The following key safety-
tradeoff is illustrated: the more measurements are extracted,
the lower the integrity risk contribution is under the CA hy-
pothesis, but the higher the other integrity risk contributions
become because the risk of IAs increases in the presence
of cluttered, poorly distinguishable landmarks. Also, being
surrounded by many landmarks increases the probability
of continuous, uninterrupted navigation. Concluding notes
are given in Section VI.

II. INTEGRITY RISK EVALUATION FOR NAVIGATION
USING DATA ASSOCIATION

This section presents a new multiple-hypothesis in-
tegrity risk evaluation method for navigation using DA. The
integrity risk is first defined in Section II-A: this provides
an outline for the remainder of the section, where partial
integrity risk contributions are individually evaluated. The
“fault-free” component of the integrity risk is derived in
Section II-B, assuming CAs. The DA “fault” model is de-
veloped in Section II-C, and is used Section II-D to establish
an analytical upper bound on the integrity risk accounting
for all possible IAs. For readers interested in directly imple-
menting the integrity risk evaluation method, a summary is
provided later, in Section III-D.

A. Overall Integrity Risk Equation

Considering the mutually exclusive, exhaustive hy-
potheses of CA and IA, the probability of hazardous mis-
leading information (HMI) or integrity risk P (HMIk) at
time epoch “k” can be expressed using the law of total
probability as follows:

P (HMIk) = P (HMIk, CAK ) + P (HMIk, IAK )

= P (HMIk|CAK )P (CAK )

+ P (HMIk|IAK )[1 − P (CAK )]

≤ 1 − [1 − P (HMIk|CAK )]P (CAK ) (1)

where

CAK is the correct association hypothesis for all land-
marks at all times.

IAK is the event regrouping IA hypotheses for any land-
mark at any past or current time.

We use the notation “capital letter K” to designate a
range of indices: K ≡ {0, ..., k}. In (1), P (HMIk|IAK )
is safely upper-bounded by P (HMIk|IAK ) = 1. This is a
tight bound when the number of extracted landmarks is low
because the probability of an IA causing HMI is high.

The DA process is carried out over multiple epochs, all
of which are included in the CAK -event. Let us consider at
each time j , for j = 0, ..., k, the probability of CA assum-
ing that past associations are all correct: P (CAj |CAJ−1).
When using SLAM, we define P (CA0) ≡ 1 because there
is no association with previous observations at time zero.
P (CAK ) can then be iteratively evaluated, without having
to make an assumption on the independence of events CAj ,
as follows:

P (CAK ) = P (CA0, CA1, ..., CAk) =
k∏

j=1

P (CAj |CAJ−1).

(2)
Ultimately, the safety criterion is that P (HMIk) must

meet a predefined integrity risk requirement IREQ,k , which
is set by a certification authority (similar to requirements
set for aviation applications in [23]). The integrity risk re-
quirement may be expressed as follows:

P (HMIk) ≤ IREQ,k. (3)

The next sections provide a method to evaluate
P (HMIk) in (1): P (HMIk|CAK ) is obtained in Sec-
tion II-B using the estimation error covariance matrix,
and we derive an analytical expression for P (CAK ), or
P (CAj |CAJ−1), for j = 0, ..., k, in (2), in Sections II-C
and II-D.

B. Integrity Risk Under Correct Association

1) Measurement Model and Fault-Free Estimation:
Let nL be the total number of visible landmarks, and mF the
number of estimated feature parameters per landmark. Fea-
ture parameters can include landmark position, orientation,
surface properties, etc. (in theory, they can include any prop-
erty whose measurement error distribution can be modeled
using [40], [41]). The total number of feature parameters
within the visible landmark set is: n ≡ nLmF . We can stack
the actual (true) values of the extracted feature parameters
for all landmarks in an n × 1 vector zk . Let ẑk be an estimate
of zk . We assume that the cumulative distribution function
of ẑk can be bounded by a Gaussian function with mean
zk and covariance matrix Vk [40], [41]. (For example, ẑk

may comprise laser ranging and bearing measurements—
-or linear combinations thereof—-whose distributions are
assumed mutually independent and individually bounded.)
We use the notation: ẑk ∼ N(zk, Vk).

For the CA (indicated by the subscript 0) where the
ordering of state coefficients matches that of the measure-
ments, the nonlinear measurement equation can be written

JOERGER AND PERVAN: QUANTIFYING SAFETY OF LASER-BASED NAVIGATION 275

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on August 17,2020 at 19:20:58 UTC from IEEE Xplore.  Restrictions apply. 



in terms of the system state parameter vector xk as follows:

ẑk = h0,k(xk) + vk (4)

where
xk is the state vector, which includes vehicle pose param-

eters, and may also include constant landmark feature
parameters when using a SLAM-type approach [2], [8],
[27], as will be the case in Sections IV and V. Let m

be the number of state parameters to be estimated. xk

is an m × 1 vector.
vk is the extracted measurement noise vector: vk ∼

N(0n×1, Vk), where 0a×b is an a × b matrix of zeros.
It is worth noting that, under the CA hypothesis, the

mean of ẑk is: zk = h0,k(xk). Therefore, we can write

ẑk ∼ N
(
h0,k(xk), Vk

)
. (5)

Equation (4) can be linearized about an estimate x̄k

of xk

ẑk = h0,k(xk) + h0,k(x̄k) − h0,k(x̄k) + vk

≈ h0,k(x̄k) + Hk(xk − x̄k) + vk (6)

where Hk ≡ ∂h0,k(xk)
∂xk

|x̄k
,

Hk(xk − x̄k) ≈ h0,k(xk) − h0,k(x̄k). (7)

Subscript 0 is not added to Hk , which always assumes
CA.

In addition, a linear model is assumed for the propaga-
tion of state parameters over time

xk = �k−1xk−1 + wk−1. (8)

The following assumption is made for the process noise
wk−1: wk−1 ∼ N(0, Wk−1).

For the system model described in (4) and (8), an EKF
is used to estimate xk . The state prediction vector, predic-
tion error covariance matrix, state estimate vector, and state
estimate error covariance matrix are, respectively, given by
the following:

x̄k = �k−1x̂k−1, P̄k = �k−1P̂k−1�
T
k−1 + Wk−1 (9)

x̂k = x̄k + Kkγ0,k, P̂k = (I − KkHk) P̄k (10)

where Kk is the Kalman gain, Kk = P̄kHT
k (HkP̄kHT

k +
Vk)−1, and γ0,k is the n × 1 innovation vector, under the
CA hypothesis (subscript 0)

γ0,k ≡ ẑk − h0,k(x̄k). (11)

The estimation error is defined as follows:

ε̂k ≡ x̂k − xk. (12)

Let us define the hazard state as the element, or linear
combination of elements in xk , that is, of primary concern
for navigation safety. For example, for steering a vehicle to
remain within a lane on a highway, the focus is placed on
the positioning error in the direction perpendicular to the
lane. The estimation error ε̂k for the state of interest is given
by the following:

ε̂k ≡ αT ε̂k (13)

where α is a vector of predefined coefficients, for example,
all zeros and a one for the East position coordinate when
travelling on a North–South road. Let σ 2

k be the estimation
error variance for the state of interest, under the CA hy-
pothesis: ε̂k ∼ N(0, σ 2

k ). The challenge in this paper is to
evaluate the impact on ε̂k of errors in FE and DA.

2) Integrity Risk Under Correct Association: Under
the CA hypothesis, the integrity risk can be directly derived
from σ 2

k . The integrity risk is defined as the probability
of the estimation error ε̂k exceeding a predefined limit of
acceptability, also called alert limit � (as specified, for ex-
ample, in [23] for aviation applications)

P (HMIk) ≡ P (|ε̂k| > �) . (14)

We have seen that under the CA hypothesis, the
distribution of ε̂k is known: ε̂k ∼ N(0, σ 2

k ). Therefore,
P (HMIk|CAK ) is given by the following:

P (HMIk|CAK ) = P (|ε̂k| < � | CAK )

≤ Q

(
�

σk

)
+ 1 − Q

(−�

σk

)
(15)

where Q() is the tail probability function of the standard
normal distribution.

The variance σ 2
k is often used to evaluate laser-based

navigation system performance (e.g., in [8]). Equation (1)
shows that σ 2

k is an insufficient metric in safety-critical ap-
plications because P (CAK ) must be accounted for. Evalu-
ating P (CAK ) is challenging, and is the focus of the rest of
this section.

C. The Incorrect Association Problem and the Relevance
of the Innovation Vector

The IA differs from other fault modes in sensor-based
navigation (such as, for example, GPS satellite clock faults
causing ranging errors of all magnitudes) in that there is
only a finite number of ways the DA process can fail. We can
exploit this characteristic in a multiple hypothesis approach.

At the FE step, all feature measurements ẑk at time-
index “k” are known for an arbitrary ordering of the land-
marks. If nL landmarks are extracted at time k, there are
(nL!) potential landmark permutations, i.e., (nL!) ways to
arrange the measurement (4), which we call (nL!) candidate
associations. (Following the assumptions made in Section I,
the total number of mapped landmarks—-or of previously
observed landmarks when using SLAM—- is also the num-
ber nL of extracted landmarks.) Landmark selection [37],
[38] can be implemented to limit nL.

IA occurs when the ordering of measurements in ẑk does
not match the assumed ordering of landmarks in z̄i,k , which
in SLAM is simply: z̄i,k = hi,k(x̄k). Subscript i designates
association hypotheses, for i = 0, ..., h, where h = nL! −
1. We define i = 0 the fault-free, CA hypothesis, the other
h hypotheses are IA.

DA impacts the EKF estimation process in (10) through
the innovation vector γi,k defined in (11) for the CA-case.
γi,k is an effective indicator of CA because it is zero mean
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only if the CA was selected (recall that the mean of ẑk in
(5) is h0,k(xk)).

In all IA cases, the mean of γi,k is not zero, and is
expressed in terms of n × n permutation matrices Ai,k , for
i = 1, ..., h, as follows:

γi,k = ẑk − hi,k(x̄k)

= h0,k(xk) + vk − hi,k(x̄k) + hi,k(xk) − hi,k(xk)

≈ yi,k + vk − Ai,kHkε̄k (16)

where

hi,k ≡ Ai,kh0,k (17)

yi,k ≡ Bi,kh0,k(xk), y0,k = 0 (18)

Bi,k ≡ In − Ai,k

ε̄k ≡ x̄k − xk (19)

and where Ia is the a × a identity matrix.
As an illustrative example, consider the case where IA

hypothesis “i = 1” designates the event where landmark
“1” is mistaken for landmark “2.” Ai,k and Bi,k take the
following forms (where mF is the number of feature pa-
rameters per landmark):

A1 =
⎡

⎣
0mF ×mF

ImF
0mF ×(n−2mF )

ImF
0mF ×mF

0mF ×(n−2mF )

0(n−2mF )×mF
0(n−2mF )×mF

In−2mF

⎤

⎦

B1,k =
⎡

⎣
ImF

−ImF
0mF ×(n−2mF )

−ImF
ImF

0mF ×(n−2mF )

0(n−2mF )×mF
0(n−2mF )×mF

0(n−2mF )×(n−2mF )

⎤

⎦

Equation (16) shows that an IA simultaneously affects
multiple measurements, and that it causes a shift yi,k in the
mean of γi,k as compared to γ0,k , as well as a modification
of the random errors from Hkε̄k for CA to AiHkε̄k for IA.

D. Data Association Criterion

To lighten notations in Sections II-D and in Sections III-
A–III-C, we drop the time subscript k. We also drop the
conditional ‘|CAK−1’ in (1) and (2), with the understanding
that probabilities of correct and IAs at time k, P (CA) and
P (IA), assume that all prior associations are correct.

1) Data Association Criterion: The nearest neighbor
association criterion [1] is defined by the minimum norm
of innovation vector γi , weighted by the inverse innovation
covariance matrix Y−1

i , over all possible landmark permu-
tations i = 0, ..., h. The association criterion is expressed
as follows:

min
i=0,...,h

‖γi‖Y−1
i

(20)

where ‖γi‖Y−1
i

=
√

γ T
i Y−1

i γi, Yi = AiHP̄HT AT
i + V.

(21)

The weighted norm operator ‖‖	 with weighting matrix
	 is used throughout the remainder of the paper.

2) Example Innovation Space Representation: To il-
lustrate the criterion in (20), we use the one-dimensional
(1D) example displayed in Fig. 2.

Fig. 2. Illustrative one-dimensional example of a sensor (at location x

in reference R) providing observations to three landmarks. The sensor
is at location x in reference frame R, and the three landmarks are at

locations pA, pB , and pC . Sensor to landmark measurements
are noted z1, z2, and z3.

Fig. 3. Innovation-space representation of the assoication process. The
ratio of blue samples over the total number of samples is the probability

of correct association.

The problem in Fig. 2 is to estimate the position x of the
sensor (upward pointing triangle) on a 1D navigation ref-
erence axis R, given the positions pA, pB, and pC of three
landmarks on R (black circles), and using a set of noisy
relative measurements z1, z2, and z3 between sensor and
landmarks. The challenge of DA is, in the presence of sen-
sor errors, to find the ordering of landmarks {pA, pB, pC}
corresponding the ordering of measurements {z1, z2, z3}.

In this instance, the number of landmarks is nL = 3,
and the number of possible permutations is (nL!) = 6, i.e.,
we consider six innovation vectors γi . Vector γi is zero-
mean only for the CA i = 0, which is why the association
criterion in (20) selects the minimum norm ‖γi‖Y−1

i
.

The DA criterion is represented in innovation space
in Fig. 3. In this example, the number of features per
landmark is mF = 1, and the innovation space is 3D
(n = nLmF = 3). The impact of DA on the mean normal-
ized innovation vectors




yi ≡ Y−1/2
i yi can be represented for

all six landmark permutations, for i = 0, ..., 5. Vectors



yi

lay in a space of dimension n − mF , in this case, in a plane,
and




y0 is at the origin.
In addition, in Fig. 3, 10 000 random samples of mea-

surements z1, z2, and z3 were simulated. Equation (20) was
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used to distinguish correctly associated samples in blue,
from incorrectly associated samples in red. The probability
of CA P (CA), which we are trying to determine, is ratio
of blue samples over the total number of samples. The next
paragraphs provide an analytical expression for P (CA).

3) Probability of Correct Association: IA occurs if,
for any i other than 0, the following inequality is verified:

‖γi‖Y−1
i

≤ ‖γ0‖Y−1
0

. (22)

Anticipating the fact that the correlation between γi and
γ0 has to be accounted for, (16) is rewritten as follows:

γi = yi + [
I −AiH

] [v
ε̄

]
= yi + MT

i r (23)

where

Mi ≡
[

I
−AiH

]
, r ≡

[
v
ε̄

]
(24)

r ∼ N

(
0, R ≡

[
V 0
0 P̄

])
. (25)

Substituting (23) into (22), we can write the following
inequality:

‖yi‖Y−1
i

− ∥∥MT
i r
∥∥

Y−1
i

≤ ∥∥MT
0 r
∥∥

Y−1
0

(26)

because it is always true that

‖yi‖Y−1
i

− ∥∥MT
i r
∥∥

Y−1
i

≤ ∥∥yi + MT
i r
∥∥

Y−1
i

. (27)

Equation (26) is equivalent to

‖yi‖Y−1
i

≤ ∥∥MT
0 r
∥∥

Y−1
0

+ ∥∥MT
i r
∥∥

Y−1
i

. (28)

Let us define the (n + m) × 1 vector of indepen-
dently, identically distributed random variables q ≡
R−1/2r. We have: q ∼ N(0(n+m)×1, In+m). Also, let λ2

MAX,i

and λ2
MAX,0, respectively, be the maximum eigenvalues of

R1/2(MiY−1
i MT

i )R1/2 and R1/2(M0Y−1
0 MT

0 )R1/2. We use
an upper-bound for the right-hand side of (28)

‖yi‖Y−1
i

≤
√

qT q
(
λMAX,i + λMAX,0

)
. (29)

The appendix shows that λ2
MAX,i = 1 and λ2

MAX,0 = 1,
so that (29) is equivalent to

q2 ≥ y2
i

4
(30)

where

q2 ≡ qT q , y2
i ≡ ‖yi‖2

Y−1
i

(31)

where q2 is chi-squared distributed with n + m degrees of
freedom (DOF) (where n + m is the number of measure-
ments n plus the number of states m, i.e., the length of v
plus length of ε̄).

It follows that the probability of CA P (CA) can be
lower-bounded using the following inequality:

P (CA) = 1 − P (IA)

= 1 − P

(
h⋃

i=1

‖γi‖2
Y−1

i

≤ ‖γ0‖2
Y−1

0

)

≥ 1 − P

(
h⋃

i=1

q2 ≥ y2
i

4

)

≥ 1 − P

(
q2 ≥ min

i=1,...,h

(
y2

i

4

))
. (32)

Substituting (32) into (2) for P (CAj |CAJ−1), and the
result into (1), provides an upper-bound on the integrity risk
P (HMIk).

Equation (32) is expressed in terms of the norm squared
y2

i of the mean normalized innovation vectors



yi represented
in Fig. 3. However, in practice, we do not know




yi ; all we
are given is one sample of γi . Fortunately, FE provides a
means to establish a lower bound on y2

i .

III. EXTRACTED FEATURE SEPARATION MEASURE

Our approach to bound P (HMIk) leverages the FE
step to ensure that landmark features (position, orienta-
tion, reflectivity, . . . ,) are distinguishable, hence, easier to
associate. The objective is to guarantee, with quantifiable
integrity, that there is a minimum separation between land-
mark features.

The minimum separation can be computed at FE with-
out requiring DA. Within a set of features, this minimum
separation is determined by considering all possible permu-
tations. This multiple-hypothesis approach purposely mir-
rors that used in Section II, and is adopted to exploit the
relationship between mean separation vectors and mean
EKF innovation vectors.

Section III-A first describes a normalized measure
of separation between landmark features. A probabilistic
lower-bound on this separation is given in Section III-B,
and mapped to innovation space in Section III-C to assess
the impact of feature separation on integrity. Section III-D
summarizes the entire integrity risk evaluation method, as
described in Sections II and III.

A. Feature Separation Measure

The minimum feature separation is evaluated us-
ing mapped (or previously observed) features z̄. Under
Section I’s assumption that extracted landmarks match
mapped landmarks, we will show that this minimum sepa-
ration provides a lower-bound on mean innovation vectors
(in Section III-C). Cases where Section I’s assumption is not
satisfied will be addressed in future work by FE algorithm
design and by misleading-feature detection/exclusion.

To lighten notations, in Sections III-A–III-C, we have
dropped subscripts for time (k) and for the ordering-with-
respect-to-ẑ (i), which are not relevant at the FE step, so that
z̄ = z̄i,k . Vector z̄ is an n × 1 vector obtained by stacking
all previously observed feature parameters: z̄ ∼ N(z, V̄).
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We consider a comprehensive set of nonidentity land-
mark permutation matrices, so that matrices Bl ≡ In − Al,k ,
for l = 1, ..., h, can be computed. The set of Al matrices is
the same as the set of Ai,k in (16), but we are excluding the
identity permutation noted A0 for l = 0. For a permutation
l, the landmark “separation” vector is defined as follows:

d̄l ≡ Bl z̄ and d̄l ∼ N(yl , Dl) (33)

where

yl = Blz in (18) , and Dl ≡ BlV̄BT

l . (34)

It is worth noting that Bl is rank deficient, with rank
values ranging from mF to n − mF depending on how many
landmarks are involved in permutation l, for l = 1, ..., h.
Let rl be the rank of Bl . An orthogonal decomposition of
the symmetric positive semi definite matrix Dl is expressed
as follows:

Dl = [
Ul Ul,0

] [Sl 0
0 0

] [
UT

l

UT
l,0

]
= UlSlUT

l (35)

where Sl is a rl × rl diagonal matrix of non-zero singular
values, and Ul is a n × rl matrix such that UT

l Ul = Irl
.

For each permutation, we can define the rl × 1 normalized
separation vector η̄l as follows:

η̄l ≡ S−1/2
l UT

l d̄l (36)

η̄l ∼ N(ηl, Irl
), where ηl ≡ S−1/2

l UT
l dl . (37)

The norm squared d̄2
l of η̄l is a measure of separation

for permutation l, and can be written as follows:

d̄2
l ≡ η̄T

l η̄l = d̄T
l UlS−1

l UT
l d̄l . (38)

Using the norm operator, d̄l can be expressed as:
d̄l = ‖η̄l‖ (the weighting matrix is Irl

). d̄2
l is noncentrally

chi-square distributed with rl DOF and with noncentrality
parameter d2

l defined as: d2
l ≡ ‖ηl‖2. We use the notation:

d̄2
l ∼ χ2(rl, d

2
l ).

Finally, the overall landmark separation metric is the
minimum feature separation defined as follows:

d̄ ≡ min
l=1,..,h

(d̄l). (39)

B. Lower-Bound on Feature Separation

1) Lower Bound Derivation: This subsection aims at
establishing an integrity bound LD on the true minimum
separation between landmarks d, given an estimate d̄ ob-
tained from prior information z̄. In mathematical terms, we
want to find a LD to satisfy the following:

P (d < LD|d̄) ≤ IFE,ALLOC (40)

where IFE,ALLOC is a small portion of the overall integrity
risk requirement IREQ allocated to the bound LD at FE
(IFE,ALLOC << IREQ). LD and d are unknown, but IFE,ALLOC

and d̄ are given and d̄ provides a noisy measure of d. It is
worth noting that d̄ is considered “prior knowledge” in the
sense that it is not derived from current measurements (d̄
can be obtained from a map). The following probabilities
are expressed given d̄ to remind ourselves that d̄ is known

Fig. 4. One-degree-of-freedom representation for the derivation of LD .
Given a sample estimate d̄ , our knowledge of d is uncertain; this

uncertainty is represented with a Gaussian shell.

while d is not, but these probabilities are not Bayesian, i.e.,
not based on current measurements.

The risk P (d < LD|d̄) is bounded using the following
inequalities:

P (d < LD|d̄) = P (d̄ − d > d̄ − LD|d̄)

≤ P
(‖η̄‖ − ‖η‖ > d̄ − LD|d̄)

≤ P
(‖η̄ − η‖ > d̄ − LD|d̄)

≤ P
(
ε̄D > d̄ − LD|d̄) (41)

where
ε̄D ≡ ‖η̄ − η‖ and η̄ ≡ η̄lMIN

for lMIN ≡ arg min
l=1,..,h

(d̄l)

and where we used the reverse triangle inequality

d̄ − d = ‖η̄‖ − ‖η‖ ≤ | ‖η̄‖ − ‖η‖| ≤ ‖η̄ − η‖ .

Fig. 4 provides an illustration of the variables in (41) for
a hypothetical single- DOF distribution of d-given-d̄ , noted
d|d̄ , whose probability density function can be represented
as a Gaussian function. We determine LD such that the
probability of d|d̄ lower than LD’ is equal to IFE,ALLOC.

There can be cases where landmarks are not reliably
distinguishable, i.e., where d̄ is small so that there is no
positive LD that achieves P (ε̄D > d̄ − LD|d̄) ≤ IFE,ALLOC.
Such cases can be easily and unambiguously identified, and
therefore pose no threat to integrity. They may cause loss of
navigation availability or continuity (as defined in [23] for
aviation applications), which can be mitigated by relaxing
the requirement IFE,ALLOC, or by landmark clustering and
selection as described in [38]. With regard to integrity, we
choose to proceed only if we can find LD such that d̄ −
LD > 0. It follows that (41) can be further bounded by

P (d < LD|d̄) ≤ P
(
ε̄2
D > (d̄ − LD)2|d̄) . (42)

The separation error ε̄2
D is centrally chi-square dis-

tributed with a number of DOF r: mF ≤ r ≤ n − mF . It
is conservative with respect to integrity risk to assume
ε̄2
D ∼ χ2(mF , 0). Thus, the lower bound LD is determined

using the equation

P
(
ε̄2
D > (d̄ − LD)2|d̄) =

∫ +∞

(d̄−LD)2
χ2

α(mF , 0)dα

= IFE,ALLOC. (43)

LD can also be expressed as: LD = d̄ −√
χ−2

mF
(1−IFE,ALLOC),

where χ−2
mF

() is the inverse chi-square distribution with mF

DOF. d̄ being too small can yield negative LD-values, which
we exclude. d̄ being too large as compared to d can yield
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Fig. 5. Separation-space representation of separation vectors for the
illustrative one-dimensional example described in Fig. 2.

misleadingly large LD-values, which can cause loss of in-
tegrity, but will occur with probability lower than IFE,ALLOC.

2) Example Separation-Space Representation: The
1D three-landmark example shown in Fig. 2 is used here
again to illustrate the separation bound derived in (33)–
(43). Because the normalized separation vectors η̄l are of
different dimensions, we introduce a normalized separation
vector d̄N,l defined as: d̄N,l ≡ UT

l η̄l .
Fig. 5 shows the mean normalized vectors dN,l , for

l = 1, ..., 5, in 3D separation space (represented with black
dots). Their spatial distribution is similar to that of the mean
innovation vectors in Fig. 3. We will rigorously explore this
relationship in Section III-C. In addition, Fig. 5 presents
10 000 samples of d̄N,l , for l = 1, ..., 5. As expected from
the dimensions of η̄l , sample separation vectors for per-
mutations involving two landmarks (labeled “1,” “2,” and
“5”) lay along lines, whereas separation vectors for the two
triple-landmark permutations (“3” and “4”) lay on a plane.

Fig. 5 also shows color-coded sample data points, and
two spheres of radius

√
χ−2

mF
(1−IFE,ALLOC) centered at the ori-

gin and at the smallest mean separation vector dN,1. As
explained above, cases where the norm of d̄N,l is too small
can cause LD to be negative, and can simply be excluded.
These data points are shown in green. In parallel, cases
where the norm of d̄N,l is significantly larger than that of
dN,l can cause misleadingly large separation bound LD .
These data points shown in red can cause loss of integrity,
but occur with a probability lower than IFE,ALLOC.

C. Incorporating the Separation Bound Into the Integrity
Risk Equation

First, we use the law of total probability to express
the integrity risk as (we drop the condition “|d̄” to lighten
notations)

P (HMIk) ≤ P (HMIk, d < LD) + P (HMIk, d ≥ LD)

≤ P (d < LD) + P (HMIk|d ≥ LD)P (d ≥ LD)

≤ IFE,ALLOC,k + P (HMIk|d ≥ LD)

where we used (40). We can determine P (HMIk|d ≥ LD)
using (1) with the knowledge that the unknown d is larger
than LD . Therefore, we can find P (CA) in (32) given that

d ≥ LD (to lighten notations, we do not explicitly include
condition “|d ≥ LD”).

Then, (33)–(43) can be used to address the fact that y2
i

in (32) is unknown. y2
i , which is defined in (31), is rewritten

by pre and postmultiplying the weighting matrix Y−1
i by the

identity matrix (UiS
−1/2
i UT

i )(UiS
1/2
i UT

i )

y2
i = yT

i UiS
−1/2
i UT

i (UiS
1/2
i UT

i Y−1
i UiS

1/2
i UT

i )UiS
−1/2
i UT

i yi

(44)
y2

i can be lower-bounded using the following inequality:

y2
i ≥ yT

i UiS−1
i UT

i yiλ
2
MIN,i (45)

where λ2
MIN,i is the minimum eigenvalue of (UiS

1/2
i

UT
i Y−1

i UiS
1/2
i UT

i ).
In addition, without loss of generality since we consider

all nonidentity permutations, and to avoid introducing a
new notation, let us assume that the ordering of landmark
features in z̄ in (33) and ẑ in (4) is the same, so that their
mean vector z is identical. The mean innovation vector
under IA hypotheses in (16) and the mean separation vector
in (33) are identical, but with different indices

yi ≡ Biz for i = 1, ..., h and yl ≡ Blz for l = 1, ..., h.

Thus, (43) establishes with probability larger or equal
to 1 − IFE,ALLOC that the following bound holds:

d2
i = yT

i UiS−1
i UT

i yi ≥ d2 ≥ L2
D. (46)

Substituting, (46) into (45), y2
i can be further lower-

bounded by

y2
i ≥ L2

Dλ2
MIN,i . (47)

Equation (47) is used to establish an analytical bound
on P (CA) in (32), which is now expressed in terms of all
known quantities as follows:

P (CA) ≥ 1 − P

(
q2 ≥ min

i=1,...,h

(
L2

Dλ2
MIN,i

4

))
. (48)

D. Summary: Analytical Bound on Integrity Risk Ac-
counting for Probability of Correct Association

In this section, we have established an analytical bound
on the integrity risk that accounts for the risk of IA. The
integrity risk is expressed as follows:

P (HMIk) ≤1−[1−P (HMIk|CAK )]
k∏

j=1

P (CAj |CAJ−1)

+ IFE,ALLOC,k (49)

with

P (HMIk|CAK ) = Q
(
�
/

σk

)+ 1 − Q
(−�

/
σk

)
(50)

P (CAj |CAJ−1) ≥ 1 − P

(
q2

j ≥ min
i=1,...,h

{
L2

D,jλ
2
MIN,i,j

/
4
})

(51)
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where
k is an index identifying a time step.
Q() is the tail probability function of the standard

normal distribution.
� is the specified alert limit that defines a haz-

ardous situation.
σk is the standard deviation of the estimation er-

ror for the vehicle state of interest.
IREQ,k is the overall integrity risk requirement.
IFE,ALLOC,k is a predefined integrity risk allocation at FE,

chosen to be a small fraction of IREQ,k .
q2

j is a chi-square distributed random variable
with a number of DOF that is the sum of the
number of measurements and of states at time
step j.

L2
D,j can be determined at FE, and is defined in

(43), and represents the minimum value of
the mean landmark feature separation at time
step j .

λ2
MIN,i,j can be determined at DA, and is defined in

(45) to account for the worst-case projection
of the FE’s separation vector into the DA’s
innovation space.

The analytical integrity risk bound in (49)–(51) is im-
plemented, analyzed, and tested in the next two sections.

IV. COVARIANCE ANALYSIS AND DIRECT SIMULA-
TIONS

In this section, two example simulations first analyzed
in [33] and [39] are modified to evaluate (49)–(51). The
first scenario is an illustrative 2D, two-landmark problem.
Simulation results identify cases where the estimation error
covariance is not an accurate measure of safety perfor-
mance. In contrast, the integrity risk bound derived in this
paper does account for potential IAs.

A second scenario is simulated under more realistic as-
sumptions, using a multisensor laser/GPS system onboard
a vehicle roving across a GPS-denied area, and navigat-
ing using static landmarks. This direct simulation scenario
helps quantify the significant impact of IA on P (HMIk),
and is used to outline the next steps of this research, i.e., the
need for landmark selection and continuity risk evaluation
methods.

A. Illustrative Two Landmark Scenario

Figs. 6 and 8 represent a vehicle designated by an up-
ward pointing triangle roving between two landmarks rep-
resented by black-shaded circles. The vehicle starts at an
initial, known position at point (0, 0) in a local East–North
reference frame, and uses measurements from a laser or
radar to estimate its position. In this example, vehicle orien-
tation is known (as if given by another sensor, e.g., a perfect
inertial navigation system). While roving along the North
axis, the vehicle passes by two point-feature landmarks.
The actual landmark locations are initially unknown to the
navigation system. Landmark locations are simultaneously

Fig. 6. Covariance analysis for the illustrative two distinguishable
landmark scenario.

TABLE I
Simulation Parameters

estimated with vehicle pose in a SLAM-like approach. Sim-
ulation parameters are listed in Table I.

Positioning errors at consecutive sample updates are
represented by covariance ellipses in Figs. 6 and 8, for the
locations of the vehicle (red ellipses) and landmarks (blue
ellipses). These ellipses assume consistently successful FE
and DA. We focus on the East–West positioning error, per-
pendicular to vehicle’s straight line trajectory. Cross-track
errors are of primary concern for navigation safety, and
the cross-track direction is where errors are the largest. A
cross-track drift over distance travelled is observed, which
is typical of SLAM [14], [43], [44].

1) Case of Two Distinguishable Landmarks: In a first
case, the actual landmark locations are at (−5, 15) and
(5, 15). This relatively large separation makes them easy to
distinguish, as suggested by the fact that the blue covariance
ellipses for the left and right landmarks do not overlap.

Fig. 7 shows the integrity risk bound labeled P (HMIk),
represented with a red curve, versus northward travel dis-
tance as the vehicles passes by the two landmarks. The
bound is always larger than IFE,REQ,k = 10−9, which is our
choice of an example integrity risk requirement allocation.
As captured in (49), this P (HMIk)-bound is loose when
P (CAK ) ≈ 1 and P (HMIk|CAK ) << 10−9, which is the
case in Fig. 7 for travel distances smaller than 30 m. The
P (HMIk)-bound captures the risk involved in FE, and is a
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Fig. 7. Integrity risk bound for the illustrative two distinguishable
landmark scenario.

Fig. 8. Covariance analysis for the illustrative two
difficult-to-distinguish landmark scenario.

practical bound when trying to achieve an overall example
requirement of IREQ,k = 10−7.

In parallel, the black curve in Fig. 6 represents the bound
on P (HMIk|CAK ), which is fully determined by the alert
limit � and the vehicle positioning covariance. This curve
represents a vehicle navigation performance metric often
used to evaluate laser-based navigation systems [14], [43],
[44]. The black curve converges with our integrity risk
bound (red curve) for travel distances larger than 30 m.
In this example, the black curve adequately captured the
safety risk, because P (CAK ) ≈ 1. But, the next section
will show that it is not always the case.

2) Case of Two Difficult-to-Distinguish Landmarks:
In this second case, the two landmark locations represented
in Fig. 8 are at (−3.3, 15) and (3.3, 15), which makes them
more difficult to distinguish than in Fig. 6. The blue covari-
ance ellipses for the two landmarks do overlap with each
other.

Fig. 9 displays the P (HMIk)-bound in red, and the
P (HMIk|CAK )-bound in black, versus travel distance.
Both curves are orders of magnitude higher than in Fig. 7.
This is because the change in geometry between vehicle
and landmarks provides less information on vehicle cross-

Fig. 9. Integrity risk bound for the illustrative two
difficult-to-distinguish landmark scenario.

track deviation in Fig. 8 than it did in Fig. 6. This can also
be seen with the red ellipses, which are horizontally more
elongated in Fig. 8 compared to Fig. 6.

The P (HMIk)-bound shows the impact of possible IAs
on the integrity risk. It can be noted that there is a sub-
stantial difference between the red and black curves, es-
pecially for a travel distance of 15 m where the vehicle
is right between landmarks. In this case, the covariance-
based P (HMIk|CAK )-bound is two-orders of magnitude
below the P (HMIk)-bound. From a safety perspective, the
covariance is a misleading navigation performance metric.

B. Vehicle Roving Through a GPS-Denied Area

This analysis investigates the safety performance of a
multisensor GPS/laser system embedded on a vehicle rov-
ing through a forest. GPS signals are blocked by the tree
canopy, and low-elevation satellite signals do not penetrate
under the trees. Tree trunks are used as landmarks by the
laser-based SLAM-type algorithm. Additional information
on the procedures used to extract point-features and to deal
with landmarks coming in and out of view can be found
in [39].

The measurement vector ẑk in (4) is augmented with
GPS code and carrier measurements, and the state vector
xk is augmented to include an unknown GPS receiver clock
bias and initially known carrier phase cycle ambiguities.
Time-correlated GPS signals and nonlinear laser data are
processed in a unified time-differencing EKF derived in
[33] and [39]. The simulation parameter values are listed in
Table I, and a standard differential GPS measurement error
model is used, which is described in [39]. In this scenario,
GPS and lasers essentially relay each other with seamless
transitions from open-sky through GPS-denied areas where
landmarks modeled as poles with nonzero radii are visible.

Fig. 10 illustrates the interactions between the two sen-
sors, while the GPS/laser-equipped vehicle roves through
the GPS-denied area. Three successive snap-shots (a, b, and
c) of a direct simulation are presented. On the upper part,
azimuth-elevation plots and simulated laser scans present,
respectively, the GPS satellite sky blockage within the ob-
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Fig. 10. Direct simulation of the GPS/Laser algorithm in the GPS-denied area scenario. (a) The vehicle started in the GPS-available area
(yellow-shaded) and enters the transitional GPS-and-laser-available area (green) where absolute landmark position is being estimated. (b) The vehicle
is in the middle of the GPS obstruction and relies on laser/radar-only (blue-shaded area), so that the vehicle pose estimation error increases with travel

distance. (c) The vehicle is back into a GPS available area (yellow), and the cross-track positioning drift is stopped.

struction, and the landmarks within range of the laser. The
simulated laser measurement error model includes both ran-
dom uncertainty and large-size impulse-type ranging errors.
The result of the estimation process is given on the lower
part. Covariance ellipses represent the positioning error on
the vehicle and landmarks.

The mission starts with the vehicle operating in a GPS
available area (yellow-shaded). The many satellite signals
available during this initialization enable accurate estima-
tion of cycle ambiguities, so that the vehicle positioning
uncertainty does not exceed a few centimeters. In the next
time-steps, as the vehicle crosses the GPS-and-laser avail-
able area (green-shaded), and the laser-only area (blue-
shaded), seamless variations in covariance are achieved.
The yellow–green–blue color code is used consistently in
the next figures. A detailed description of this simulation is
given in [39].

In this scenario, the likelihood of IA is high. This can
be seen on the upper plot in Fig. 11. It shows that the actual
cross-track positioning error versus distance travelled is
significantly exceeding the corresponding 1σ covariance
envelope. It indicates that errors are impacting positioning,
which are not captured by the covariance.

This is confirmed on the lower chart of Fig. 11, where
the black curve showing the P (HMIk|CAK )-bound and
directly derived from the positioning error covariance
stays below 10−5. In contrast, the red curve showing the
P (HMIk)-bound indicates much higher risk. The red curve
reaches a first plateau of IFE,ALLOC,k due to the risk involved
in FE as soon as two landmarks are visible. As discussed in

Fig. 11. P (HMIk)-bound for the GPS-denied-area crossing scenario
(same color-code as in Fig. 10).

Section IV-A-1), our choice of IFE,ALLOC,k = 10−9 is con-
servative, but it is far below the overall requirement (e.g.,
assumed to be IREQ,k = 10−7) and provides a practical so-
lution to P (HMIk)-bounding when using FE.

The red P (HMIk)-bound curve then suddenly increases
to 1, at approximately 21 m of distance travelled. This
means that there is not enough information to guarantee
that any of the candidate associations is correct. Fig. 12
shows that, at the time step preceding the large increase in
predicted integrity risk, landmark 6 is hidden behind land-
mark 5. Before that point, it was either out of laser range,
or hidden behind landmark 5. It will first become visible to
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Fig. 12. Time-step preceding the large increase in P (HMIk)-bound in
Fig. 10 (same color-code as in Fig. 10).

Fig. 13. P (HMIk)-bound for the GPS-denied-area crossing scenario
when landmark 6 is not extracted (same color-code as in Fig. 9).

the laser at the next time step, which makes correct mea-
surement association with either landmark 5 or 6 extremely
challenging. The P (HMIk)-bound in (49)–(51) provides
the means to quantify the impact on integrity risk of such
events.

Eliminating landmark 6 reduces occurrences of IAs, as
indicated in the upper graph of Fig. 13 where the positioning
error now fits the covariance envelope. Risk reduction is
also observed in the lower chart, where the P (HMIk)-
bound does not exceed 10−5 (versus 1 in Fig. 11). The red
curve in Fig. 13 still exhibits a sudden increase at about 23
m of travel distance. This is because, as shown in Fig. 14,
landmark 2 that was temporarily hidden behind landmark
5 will suddenly become visible again. The resulting risk of
incorrectly associating measurements with landmarks 2 or
5 is quantified as being about 10−6.

This risk can be further reduced by eliminating even
more landmarks using a feature selection method. How-
ever, this approach has its limits because if landmarks keep

Fig. 14. Time-step preceding the increase in P (HMIk)-bound in
Fig. 12 when landmark 6 is not extracted (same color-code as in Fig. 10).

Fig. 15. Experimental setup of a forest-type scenario, where a
GPS/Laser-equipped rover is driving by six landmarks (cardboard
columns) in a GPS-denied area. GPS is artificially blocked by a

simulated tree canopy, and a precise differential GPS
solution is used as truth trajectory.

being removed, there will eventually not be enough ex-
tracted measurements to provide continuous positioning.

This section has pointed out a key tradeoff in laser-
based navigation safety: on the one hand, a large number of
extracted measurements ensure continuous positioning, but
on the other hand, it lowers navigation integrity because it
increases the risk of IAs. Future work will investigate ways
to design landmark selection algorithms and to quantify
continuity risk.

V. PRELIMINARY EXPERIMENTAL TESTING

Preliminary experimental testing of the method derived
in Sections II and III is carried out using data collected in
a structured environment shown in Fig. 15. Static simple-
shaped landmarks are located at locations sparse enough
to ensure successful outcomes for FE and DA. Because
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Fig. 16. Integrity risk bounds versus travel distance for the preliminary
experimental data set capturing a forest-type scenario

(same color-code as in Fig. 10).

the results presented here are free of IAs, they describe
the estimation process, and P (HMIk) is expected to match
P (HMIk|CAK ). Practical implementation of the proposed
method in more realistic HAV environments requires land-
mark selection and unwanted obstacle detection [38], which
are not addressed in this paper.

Measurements from carrier phase differential GPS
(CPDGPS) as well as laser scanners are synchronized and
recorded. In order to obtain a full 360 °C laser scan, two
180 °C laser scanners are assembled back-to-back. The laser
scanners have a specified 15–80 m range limit, a 0.5 °C an-
gular resolution, a 5 Hz update rate, and a ranging accuracy
of 1–5 cm (1σ ) [45]. The GPS antenna is mounted on top
of the front laser. The lever-arm distance between the two
lasers is included in the measurement model.

The two lasers and the GPS antenna are mounted on
rover also carrying the GPS receiver and data link. An
embedded computer onboard the vehicle records all mea-
surements including the raw GPS data from the reference
station transmitted via wireless spread-spectrum data-link.
Truth vehicle trajectory and landmark locations are ob-
tained using a fixed CPDGPS solution.

In this forest-type scenario, landmarks are tree-trunks
reproduced using five cardboard columns and one dark plas-
tic garbage can. Because there is actually no physical ob-
struction to the sky, satellite masking for the GPS/laser
integration system is performed artificially as illustrated in
Fig. 15: an artificially simulated tree canopy blocks high-
elevation satellite signals; low-elevation GPS observations
are not used either inside the obstruction.

As mentioned in the first paragraph of this section, the
landmark geometry in this experiment is such that the risk
of IA is extremely small. This is confirmed on the upper
chart in Fig. 16 where the actual error (thick line) fits the co-
variance envelope (thin line) throughout the test. The lower
graph also shows that the P (HMIk)-bound matches the
P (HMIk|CAK )-bound, except between 565 and 600 m of
travel distance where the predefined integrity risk allocation
for FE is the dominant term in the P (HMIk)-bound.

This test shows that the method derived in this paper
can be implemented using actual data from a multisen-
sor GPS/laser system, and that the analytical integrity risk
bound is tight when the risk of IA is small.

VI. CONCLUSION

This paper presents a new approach to ensure the safety
of laser-based navigation using FE and DA by quantifying
the integrity risk.

An analytical integrity risk bound is established, which
accounts for all possible ways FE and DA can fail. First,
at FE, a minimum normalized separation metric is derived,
which evaluates, in a statistically quantifiable manner, how
distinguishable landmarks are. Then, at DA, an innovation-
based nearest-neighbor association criterion is employed to
evaluate the risk of all potential IAs, at each time step in
the iterative vehicle pose estimation process.

Performance evaluations are carried out by covariance
analysis and direct simulation, showing that the positioning
error covariance is a misleading safety performance metric.
Cases are shown where the contributions of IAs to integrity
risk far surpass that of nominal errors accounted for in the
positioning error covariance. In addition, a key tradeoff in
FE and DA is pointed out: more extracted measurements
ensure continuous positioning, but reduce integrity because
of the increased risk of IA. The next step of this research
will aim at quantifying the continuity risk of FE and DA,
which is an essential aspect of navigation safety.

Finally, preliminary experimental testing was carried
out using a multisensor GPS/laser system onboard a vehi-
cle roving in a structured environment. It showed that the
integrity risk evaluation method can be implemented with
real data. Future testing will be performed in a more re-
alistic passenger vehicle operating environment using FE
and selection methods that are more advanced than the ones
implemented in this paper.

APPENDIX

This appendix shows that: λMAX,i = 1 and λMAX,0

= 1, where λ2
MAX,i and λ2

MAX,0, respectively, are the
maximum eigenvalues of R1/2(MiY−1

i MT
i )R1/2 and R1/2

(M0Y−1
0 MT

0 )R1/2.
The following derivation shows that

R1/2(MiY−1
i MT

i )R1/2, which is symmetric (obvious),
is also idempotent [46] for i = 0, ..., h. By definitions of
Mi and R in (29) and (30), the following equations can be
written to show idempotence:

R1/2(MiY−1
i MT

i )R1/2R1/2(MiY−1
i MT

i )R1/2

= R1/2MiY−1
i

[
I −AiH

] [V 0
0 P̄

] [
I

−HT
i AT

i

]
Y−1

i MT
i R1/2

= R1/2MiY−1
i (V + AiHiP̄HT

i AT
i )Y−1

i MT
i R1/2

= R1/2MiY−1
i MT

i R1/2

where the last equation is obtained by definition of Yi in
(26). The above derivation shows that R1/2MiY−1

i MT
i R1/2

is idempotent for i = 0, ..., h.
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Thus, the eigenvalues of the rank-deficient matrix
R1/2(MiY−1

i MT
i )R1/2 are ones and zeros, and the maxi-

mum eigenvalue λ2
MAX,i (and λ2

MAX,0 for i = 0) is equal to
one. It follows that: (λMAX,i + λMAX,0)2 = 4.
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