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This paper provides a comparative analysis of two different atmospheric drag models
aimed at predicting the reentry of Resident Space Objects (RSO). We quantify the impact of
considering a rotating atmosphere in the drag model, and analyze its effects on the Milankovitch
elements, namely the angular momentum vector, and the Laplace-Runge-Lenz vector. The
secular variation of the Milankovitch elements is expressed analytically through averaging. We
evaluate the performance of the two formulations of the averaged equations of motion to provide
accurate predictions of the orbital decay of RSO’s, by comparing simulated trajectories to
those derived from the non-averaged dynamics, and to a documented spacecraft reentry event.
Results show that accounting for atmospheric rotation in the averaged dynamics, provides
simulated RSO trajectories closer to the non-averaged dynamics, and to the documented two-
line element reentry data.

I. Introduction
Although the impact of atmospheric drag on RSOs has been extensively studied in prior work [1–10], the effect

of the rotating atmosphere is not accounted for in some drag models, which can alter the lifetime predictions of the
RSOs significantly. The work done in [4] considers a rotating atmospheric model based on Horizontal Wind Model
(HWM07) [11], but does not focus on the long-term evolution of the orbits. Recent work in [12] includes a treatment
of lifetime predictions of objects in Geo-Synchronous Transfer Orbits (GTOs), by simulating the averaged long-term
evolution of atmospheric drag. However, reference [12] does not consider a rotating atmosphere. An approach that
accounts for the rotating atmosphere in the drag model is presented by Ward in [13]. Reference [13] builds on prior
work with similar formulations [14, 15], but does not assume small eccentricities for ease of analysis. Reference [12]
and [13] serve as the main references for this work. A vector treatment is used in deriving the averaged equations,
which naturally leads to the description of the orbital geometry in terms of the vectorial elements of the Milankovitch
type; namely, the angular momentum vector and the Laplace-Runge-Lenz vector [16].

In this paper, we study the analytical formulation of the averaged equations of motion derived in [12] and [13].
We discuss the fundamental equations, and identify the key differences between the two treatments which include (1)
consideration of atmospheric angular velocity, (2) approximations made in evaluating the integrals, and (3) numerical
stability. Our focus will be on quantifying the impact that these differences have on simulated trajectories of RSOs. We
look specifically at the impact of accounting for a rotating atmosphere versus neglecting relative atmospheric velocity
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in estimating the orbital decay for satellites in GTO. This analysis is carried out by comparing the simulated orbital
decay with those obtained from the non-averaged dynamics, and a known reentry event.

In the next section of this paper, the non-averaged equations of motion are derived for RSOs with perturbations
due to Earth oblateness, luni-solar third-body gravity, and atmospheric drag. Then, the equations for the averaged
dynamics with atmospheric drag are developed with and without atmospheric rotation in Section III. The complete
set of averaged equations including 𝐽2 and luni-solar perturbations in addition to atmospheric drag are written out
in Section IV. A performance analysis is carried out comparing the two formulations of the averaged equations in
Section V. Simulation results are validated against a reference trajectory using the non-averaged dynamics in Section
V.C, and against real reentry data in Section V.D. Conclusions are given followed by future work in Section VI. In this
preliminary analysis, we perform simulations specifically for objects in GTO. In future work, we will extend this to
other orbital regimes.

II. Non-averaged Equations for Perturbed Circumterrestrial Dynamics
In this section, we derive the non-averaged dynamics as a nonlinear relative equation of motion for an RSO with

respect to Earth (two-body problem). We first define the unperturbed dynamics considering the Earth and RSO as
point masses, with the Earth’s gravitational attraction as the primary force acting on the RSO. Later, we model other
forces acting on the RSO as perturbations. The perturbations considered in this paper are Earth oblateness, Sun and
Moon third-body gravity, and atmospheric drag.

A. Equations of motion

The acceleration of an RSO in Earth’s gravity field is defined in Earth Centered Inertial (ECI) frame. The ECI
frame is not rotating with respect to Earth, and its 𝑥-𝑦 plane is the equatorial plane. The 𝑥-axis points towards the
vernal equinox, and the 𝑧-axis is perpendicular to the equatorial plane, and is in the same direction as the Earths spin
axis. The 𝑦-axis completes the right-hand triad. The RSO acceleration equation can be written as [17]:

¥r = −𝜇 r
𝑟3 + f (1)

f = a𝐽2 + aS,M + a𝑑 (2)

where

r is the position vector of the RSO,
𝑟 is the magnitude of r,
𝜇 is the Earth’s standard gravitational parameter,
a𝐽2 is the perturbing acceleration due to Earth oblateness,
aS,M is the perturbing acceleration due to Sun and Moon third-body gravity, and
ad is the perturbing acceleration due to atmospheric drag.

The position of the RSO can be found by integrating Eq. (1). When f = 0, the solution to Eq. (1) is a Keplerian
orbit and its angular momentum vector is constant. However, when f ≠ 0, the solution to Eq. (1) is not a Keplerian
orbit, and does not have an exact solution. We can simulate the orbit trajectory by integrating Eq. (1) numerically. If
the perturbing accelerations are small enough, the orbital elements vary slowly in time, and the orbit can be described
in terms of osculating Keplerian elements.

B. Perturbations model

In this section, we model the perturbing accelerations that cause variations of the angular momentum and specific
mechanical energy of the orbit. The RSO trajectory is deviating from the nominal Keplerian orbit because of
perturbations, and its lifetime changes correspondingly.
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1. Earth oblateness perturbation

Now we relax the assumption that Earth is a point mass. Earth is not a perfect sphere and its density is not uniform.
To address this, the Earth’s gravitational potential field can be modeled as the sum of spherical harmonic terms. The
first term in the summation is already considered in Eq. (1). The second term denoted 𝐽2, models the deviation from
the spherical model due to the equatorial bulge, or oblateness of Earth in the equator (𝐽2 = 0.0010826267) [17–19].
The perturbing acceleration due to Earth oblateness can be written as:

a𝐽2 = − 𝜇𝐽2𝑅
2

2𝑟5

[(
1 −

5𝑟2
𝑧

𝑟2

)
r + 2𝑟𝑧 ẑ

]
(3)

where

𝑅 is the mean Earth equatorial radius, and
𝑟𝑧 is the component of r in the ẑ direction.

Earth oblateness can change an RSO’s orbit by rotating its orbital plane around Earth’s polar axis (regression of nodes),
and also by rotating its orbit in the orbital plane (the advance of the perigee) [17].

2. Luni-Solar third-body gravitational perturbation

The gravitational field of the Sun and Moon impact the trajectory of an RSO. The effects of this third-body
perturbation become more significant as the RSO altitude increases. Therefore, at GTO apogees, which can range from
tens to hundreds of thousands of kilometers, the luni-solar perturbations’ impact is larger than anywhere else on the
orbit. It is shown in the literature that at an altitude of one Earth radii the luni-solar perturbation is orders of magnitude
smaller than 𝐽2, while at an altitude of 16 Earth radii the magnitude of luni-solar perturbations can be twice as much
as 𝐽2. The luni-solar perturbing accelerations can be written as [20]:

aS,M = a𝑆 + a𝑀 (4)

aS/M = −𝜇𝑆/𝑀

(
d𝑆/𝑀

𝑑3
𝑆/𝑀

+
r𝑆/𝑀
𝑟3
𝑆/𝑀

)
(5)

dS/M = r − r𝑆/𝑀 (6)

where

𝜇S/M is the Sun or Moon gravitational constant,
rS/M is the position vector of sun or moon in ECI frame, and
𝑑S/M is the magnitude of dS/M .

In this work, the position vectors of the Sun and Moon, rS/M for any given epoch are calculated based on ephemeris
provided by JPL Horizons web interface developed by NASA Jet propulsion Laboratory [21].

3. Drag perturbation

Atmospheric drag can cause changes in RSO trajectory, especially in Low Earth Orbit (LEO). Although drag
force decreases significantly at high altitudes (after hundreds of kilometers), it can still change the orbital elements
over long periods of time. The impact of atmospheric drag on an RSO’s trajectory is well studied in prior work
[15, 22]. However, the role of atmospheric rotation in the variation of orbital elements and RSO lifetimes is not as well
understood. Therefore, including the Earths atmospheric rotation in the drag model and studying its effects on RSO
trajectories is the main contribution of this work. The perturbing drag acceleration including atmospheric rotation can
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be expressed as [12, 13]:

a𝑑 = −1
2
𝐵𝜌 |v − vatm | (v − vatm) (7)

vatm = 𝜔𝑎 ẑ × r (8)
𝐵 = AMR · 𝐶𝑑 (9)

𝜌 = 𝜌𝑝0 exp
(
𝑟𝑝0 − 𝑟𝑝

𝐻𝜌0

)
(10)

where

vatm is the linear atmospheric velocity,
𝜔𝑎 is the angular atmospheric velocity (considered the same as Earth’s spin rate)
ẑ is the unit vector in the direction of the ECI z-axis,
AMR is the RSO area-to-mass ratio,
𝐶𝑑 is the RSO drag coefficient,
𝜌𝑝0 is the density at initial perigee altitude,
𝑟𝑝0 is the initial perigee altitude, and
𝐻𝜌0 is the constant scale height.

Equation (9) is the ballistic coefficient. In many cases, reentering RSOs are tumbling, which results in a time-
varying AMR, 𝐶𝑑 , and consequently, ballistic coefficients that change over time. In this paper, we consider a constant
value for the RSO’s AMR, and drag coefficient. However, there is room for improvement by considering a time-varying
ballistic coefficient in the simulation. Furthermore, Eq. (10) assumes a spherically symmetric density model for the
atmosphere that varies exponentially with altitude. This model is only a function of altitude (𝑟) and does not consider
the complexities of solar cycles, space weather, and other spatiotemporal effects of space weather. For consistency
in comparing with the averaged results, we use the exponential density model which is analytically defined through
averaging. The variables 𝜌𝑝0 and 𝐻𝜌0 are calculated based on the 1976 US Standard Atmosphere Model (USSA76).

C. Non-averaged vs averaged dynamics

In the previous sections, we discussed how orbiting objects close to Earth deviate from Keplerian motion as a result
of perturbing forces. Fortunately, these deviations are small and their effects are slow, such that we can choose a mean
Keplerian orbit whose elements vary slowly with time. The actual orbital motion is oscillatory about this mean, and
the mean orbit’s period is approximately equal to the actual orbital period. The mean Keplerian orbit is obtained by
averaging the perturbed dynamics over a complete period. The resulting singly averaged system no longer has terms
that are periodic over one orbital period.

In this paper, we are comparing the performance of the averaged formulations with the non-averaged dynamics.
Simulation of the non-averaged dynamics requires numerical integration of the nonlinear equations (1) with all the
perturbations. This results in a simulated trajectory that is closer to the true dynamics. The higher fidelity perfor-
mance of this method is usually achieved at a greater computational cost. In some cases, lifetime analysis for RSOs
may involve studying the orbital evolution for tens to thousands of years, and simulating the non-averaged dynamics
becomes impractical. Therefore, as an alternative, we can consider only the long-term variations by averaging the
rates of change of orbital elements over specific periods of time (discussed in next sections). This approach requires
orders of magnitude less computational resources. In this work, for validating the averaging method’s performance,
the non-averaged dynamics are used as a reference trajectory for short time spans.

The plots in Fig. 1 show a visual comparison of the number of computations for a typical simulation of averaged vs
non-averaged trajectories for twelve hours (left plot), and the computational time of the same trajectories for different
simulation elapsed times (right plot). The results are produced by a personal computer with 4.00GHz Intel(R) processor
with 32.0GB RAM and x64 Windows operating system. We can clearly see that the averaged dynamics outperform the
non-averaged dynamics in terms of computational cost.
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Fig. 1 Computational cost of typical averaged and non-averaged trajectories. Visual comparison of the number of
computations (left plot), where each marker shows a computational step, and a comparison of computation time for
different simulation time spans (right plot).

III. Averaged Equations for Drag Perturbation
The mean or averaged Keplerian orbit is obtained by averaging the perturbed dynamics over a complete orbital

period. The resulting averaged system is autonomous, which means it no longer depends on time. This simplifies the
treatment of the problem while providing intuition on the long-term/secular effects of the perturbations on the orbit. We
describe the orbital geometry in terms of the Milankovitch elements, angular momentum vector and Laplace-Runge-
Lenz vector. This gives the advantage of having to deal with only two vector equations, from which the classical orbital
elements can be obtained from without difficulty (see Appendix). The Milankovitch elements are [12]

¤H = r × f

¤e =
1
𝜇
(v × r − H) × f

(11)

where H is the instantaneous angular momentum vector given by r × v. The eccentricity vector e, points towards the
instantaneous argument of perigee and has a magnitude equal to the instantaneous eccentricity of the orbit. The orbital
elements are described in the standard ECI frame of reference. The expression for Milankovitch elements given in Eq.
(11) is used throughout this work to describe the averaged motion of the perturbed orbits. The averaged dynamics of
an RSO over a single orbital period can be derived by integrating with respect to the mean anomaly as below [12].

¤H =
1

2𝜋

∫ 2𝜋

0
¤H d𝑀 =

1
2𝜋

∫ 2𝜋

0
r × f d𝑀

¤e =
1

2𝜋

∫ 2𝜋

0
¤e d𝑀 =

1
2𝜋

∫ 2𝜋

0

1
𝜇
(v × r − H) f d𝑀

(12)

where the notation (·) is used for averaged quantities. In this section we discuss the averaged perturbing acceleration
due to atmospheric drag.

A. Averaged drag with a still atmosphere

The drag acceleration on an RSO is given by Eq. (7). With a still atmosphere assumption, vatm = 0, the air drag
term can be written as [12]:

ad = −1
2
𝜌𝐵𝑣v (13)
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where 𝑣 = |v|. The rates of change of the Milankovitch elements due to drag can be written as follows by substituting
Eq. (13) into Eq. (11):

¤Hd = −1
2
𝜌𝐵𝑣H

¤ed =
1
𝜇
𝜌𝐵𝑣H × v

(14)

The averaged rates of the H and e can be obtained by substituting the Eq. (14) into Eq. (12).

¤Hd =
1

2𝜋

∫ 2𝜋

0

(
−1

2
𝜌𝐵𝑣H

)
d𝑀 = −1

2
𝐵H

1
2𝜋

∫ 2𝜋

0
𝜌𝑣d𝑀

¤ed =
1

2𝜋

∫ 2𝜋

0

(
1
𝜇
𝜌𝐵𝑣H × v

)
d𝑀 =

1
𝜇
𝐵H ×

(
1

2𝜋

∫ 2𝜋

0
𝜌𝑣vd𝑀

) (15)

The exponential density model for 𝜌 was defined in Eq. (10). We get the following expressions for the averaged rates
of the Milankovitch elements [12]

¤Hd = −1
2
𝐵

√
𝜇

(
1 − 𝑒2)
2𝑎𝜋𝑧

𝜌𝑝0exp
(
𝑟𝑝0 − 𝑟𝑝

𝐻𝜌0

) (
1 + 1 + 3𝑒2

8𝑧
(
1 − 𝑒2) ) H (16)

¤ed = −𝐵 1 + 𝑒

𝑎
√

2𝜋𝑧
𝜌𝑝0exp

(
𝑟𝑝0 − 𝑟𝑝

𝐻𝜌0

) (
1 + 3𝑒2 − 4𝑒 − 3

8𝑧
(
1 − 𝑒2) )

𝐻ê (17)

where 𝑧 = 𝑎𝑒
𝐻𝜌0

, 𝑟𝑝 = 𝑎(1 − 𝑒) is the instantaneous perigee, and 𝐻𝜌0 is the scale height of the density model in Eq.
(10). We refer to the dynamics described in Eq. (16)-(17) as Formulation 1. Note that the directions of H and e are
preserved because the rates of change are in the same direction as the vectors itself. This means that in Formulation 1,
the RSO is spiraling into the Earth while the orbital plane is not changing orientation.

B. Averaged drag with a rotating atmosphere

In this section, we derive the averaged drag perturbation considering a finite relative velocity between the satellite
and the atmosphere (vatm ≠ 0). The averaged drag perturbation with a rotating atmosphere is written from Eq. (7),
with vatm = 𝜔𝑎 ẑ× r. Following the derivation in [13], we use the eccentric anomaly 𝐸 as the variable of integration to
arrive at the following equations

¤Hd =
𝐵𝑎

2𝑇

∫ 2𝜋

0

√
1 − 𝑒2 cos2 𝐸

(
1 − 𝜔𝑎 ẑ · H

𝑣2

)
[H − 𝜔𝑎r × (ẑ × r)] 𝜌 d𝐸 (18)

¤ed =
𝐵𝑎

2𝜇𝑇

∫ 2𝜋

0

√
1 − 𝑒2 cos2 𝐸

(
1 − 𝜔𝑎 ẑ · H

𝑣2

)
×

(
2H × v − 𝑟2 (𝜔𝑎 ẑ × v) + (𝜔𝑎 ẑ · r) H + (𝜔𝑎 ẑ · H) r

)
𝜌 d𝐸. (19)

where 𝑇 = 2𝜋
√

𝑎3

𝜇 . The evaluation of these integrals includes much derivation and requires splitting Eq. (18) and (19)
into the following four averaged equations for the rates of angular momentum and eccentricity.

¤𝐻d = −
𝐵𝐻2𝜌𝑝0

2𝑎
exp

(
𝑟𝑝0 − 𝑎

𝐻𝜌0

) [
𝐼0 +

𝐻𝜌0𝑒

2𝑎(1 − 𝑒2)
𝐼1 −

2𝜔𝑎𝑎
2 cos 𝑖
𝐻

[
(1 + 𝑒2)𝐼0 − 2𝑒𝐼1

] ]
(20)

¤̂
Hd =

𝐵𝜔𝑎𝑎𝜌𝑝0

2
exp

(
𝑟𝑝0 − 𝑎

𝐻𝜌0

) [ [
(1 + 𝑒2)𝐼0 − 2𝑒𝐼1

]
(ê⊥ · ẑ)ê − 1

2
(1 − 𝑒2) (𝐼0 − 𝐼2)(ê · ẑ)ê⊥

]
× Ĥ (21)

¤𝑒d = −
𝐵𝐻𝜌𝑝0

𝑎
exp

(
𝑟𝑝0 − 𝑎

𝐻𝜌0

) [ (
1 −

𝐻𝜌0 (2 − 𝑒2)
2𝑎(1 − 𝑒2)

)
𝐼1 +

(
1 −

𝐻𝜌0

2𝑎(1 − 𝑒2)

)
𝑒𝐼0 −

(
2𝜔𝑎𝑎

2 (1 − 𝑒2) cos 𝑖
𝐻

)
(𝐼1 − 𝑒𝐼0)

]
(22)

¤̂ed = −
𝐵𝜔𝑎𝑎𝜌𝑝0

2
exp

(
𝑟𝑝0 − 𝑎

𝐻𝜌0

) [1
2
(1 − 𝑒2)(𝐼0 − 𝐼2) (ê · ẑ)ê⊥

]
× Ĥ (23)
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where 𝐼0, 𝐼1 and 𝐼2 are modified Bessel functions of the first kind with argument 𝑧 = 𝑎𝑒
𝐻𝜌0

of orders 0, 1, and 2
respectively, and ê⊥ = Ĥ× ê. The final vectorial form of the averaged rates of change of the Milankovitch elements are
as follows

¤Hd = −
𝐵𝐻2𝜌𝑝0

2𝑎
exp

(
𝑟𝑝0 − 𝑎

𝐻𝜌0

) [
𝐼0 +

𝐻𝜌0𝑒

2𝑎(1 − 𝑒2)
𝐼1 −

2𝜔𝑎𝑎
2 cos 𝑖
𝐻

[
(1 + 𝑒2)𝐼0 − 2𝑒𝐼1

] ]
Ĥ

+
𝐵𝐻𝜔𝑎𝑎𝜌𝑝0

2
exp

(
𝑟𝑝0 − 𝑎

𝐻𝜌0

) [ [
(1 + 𝑒2)𝐼0 − 2𝑒𝐼1

]
(ê⊥ · ẑ)ê − 1

2
(1 − 𝑒2)(𝐼0 − 𝐼2) (ê · ẑ)ê⊥

]
× Ĥ (24)

¤ed = −
𝐵𝐻𝜌𝑝0

𝑎
exp

(
𝑟𝑝0 − 𝑎

𝐻𝜌0

) [ (
1 −

𝐻𝜌0 (2 − 𝑒2)
2𝑎(1 − 𝑒2)

)
𝐼1 +

(
1 −

𝐻𝜌0

2𝑎(1 − 𝑒2)

)
𝑒𝐼0 −

(
2𝜔𝑎𝑎

2 (1 − 𝑒2) cos 𝑖
𝐻

)
(𝐼1 − 𝑒𝐼0)

]
ê

+
𝑒𝐵𝜔𝑎𝑎𝜌𝑝0

2
exp

(
𝑟𝑝0 − 𝑎

𝐻𝜌0

) [1
2
(1 − 𝑒2)(𝐼0 − 𝐼2) (ê · ẑ)ê⊥

]
× Ĥ (25)

Contrary to the previous model with a still atmosphere, this formulation captures the change in the orbital plane’s
orientation. The change in direction of Ĥ and ê given in Eq. (21) and (23) vanishes when the atmospheric angular
velocity is zero (𝜔 = 0). We refer to the dynamics described in Eq. (24)-(25) as Formulation 2.

IV. Averaged Equations for J2, and Luni-Solar Third-Body Perturbations
The singly averaged rates of change of H and e for 𝐽2 and luni-solar perturbations are given below [12]

¤H = ¤HJ2 +
¤H𝑆 + ¤H𝑀

= −3𝜇𝐽2𝑅
2

2𝑎3ℎ5 (ẑ · h) ẑ × h + 3𝑎2𝜇𝑆

2𝑑3
𝑆

[
5
(
d̂𝑆 · e

)
e × d̂𝑆 −

(
d̂𝑆 · h

)
h × d̂𝑆

]
+ 3𝑎2𝜇𝑀

2𝑑3
𝑀

[
5
(
d̂𝑀 · e

)
e × d̂𝑀 −

(
d̂𝑀 · h

)
h × d̂𝑀

]
(26)

¤e = ¤eJ2 + ¤eS + ¤e𝑀

= −3𝑛𝜇𝐽2𝑅
2

4𝑎2ℎ5

{[
1 − 5

ℎ2 (ẑ · h)2
]

h × e + 2 (ẑ · h) ẑ × e
}

+ 3𝜇𝑆
2𝑛𝑑3

𝑆

[
5
(
d̂𝑆 · e

)
h × d̂𝑆 −

(
d̂𝑆 · h

)
e × d̂𝑆

]
+ 3𝜇𝑀

2𝑛𝑑3
𝑀

[
5
(
d̂𝑀 · e

)
h × d̂𝑀 −

(
d̂𝑀 · h

)
e × d̂𝑀

]
(27)

where d𝑆 and d𝑀 are position vectors from the Earth’s center to the centers of Sun and Moon respectively, and
h = H/√𝜇𝑎.

There is one caveat to averaging worth mentioning. In averaging, it is assumed that the short-period terms removed
by time-averaging cause only small oscillations which do not affect the secular variation of the elements. This will not
be true in the presence of resonances [23]. Resonances occur when the period of the orbiting object is a multiple of
the period of the forcing term. However, this does not apply to the problem at hand, as will be seen in the scenario that
will be presented next.

V. Comparative Analysis of Drag Model Performance
In this section, we compare the performance of the two atmospheric drag models with and without atmospheric

rotation, and describe the limitations of each model. We start the section by first looking at simulated trajectories
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with atmospheric drag perturbations only. This lets us isolate the effects of atmospheric rotation. Then we add the
effects of 𝐽2 and luni-solar third-body gravity, and compare the simulations to those using the non-averaged dynamics.
Finally, we quantify the impact of air drag models on RSO lifetime predictions by comparing the simulations with the
documented reentry of an Ariane 5 rocket body.

Studying the dynamics and decay of the orbits of spent rocket stages is a prerequisite to responsible mission design
[24]. Geo-Synchronous Transfer Orbits (GTOs) are used for transferring satellites from circular low Earth orbit (LEO)
to geosyncrhonous Earth orbit (GEO). For this reason, GTOs are highly eccentric orbits, often characterized by a
low perigee corresponding to the circular LEO the satellite is transferring from, and a high apogee corresponding to
near GEO altitude. We want to analyze the effects of atmospheric drag on the spent rocket stages left uncontrolled at
GTO, after the payload has been boosted to GEO. In this preliminary analysis, we perform simulations of the averaged
equations specifically for objects in GTO.

For ease of discussion we will refer to the dynamics derived with a still atmosphere in Section III.A as Formulation
1, and those derived considering a rotating atmosphere in Section III.B as Formulation 2 in the legend of subsequent
figures.

A. Description of initial conditions

As a baseline for this analysis, the initial orbital elements, area-to-mass ratio (AMR), and drag coefficient were
taken to be that of a typical mission profile of Ariane 5. The initial orbital elements defined at GTO injection were
given in [12] and repeated below.

ℎ𝑎0 = 35, 943 km (apogee altitude)
ℎ𝑝0 = 250 km (perigee altitude)
𝑖0 = 6◦

Ω0 = 60◦

𝜔0 = 178◦

AMR = 0.02 m2/kg
𝐶𝑑 = 2.2

(28)

The subscript (0) in Eq. (28) denotes initial values. The inclination of 6◦ corresponds to an object launched from
a low latitude site, and is a good starting point since these orbits are largely unaffected by the perturbations we will be
neglecting when looking at drag only.

B. Simulation results for drag only

Using the initial conditions in Eq. (28), the averaged dynamics for Formulation 1 and 2 were numerically integrated
using MATLAB’s built-in solver, ode113 for a time span of 10 years. The following figures show the time history of
the classical orbital elements for both Formulations, and for Formulation 2 when vatm = 0.

The plots in Fig. 2 show the in-plane orbital elements 𝑎 and 𝑒 monotonically decreasing over time. This means that
the orbit is shrinking (decreasing 𝑎), and getting more circular (decreasing 𝑒). The overlapping results for the thick gray
line and the dashed black line, indicate that Formulation 1 is equivalent to Formulation 2 when the atmospheric velocity
is set to 0. Going back to Eq. (7), the two drag models differ only by vatm. Consider the case when vatm = 0. A subtle
difference between the two sets of equations lies with the approximation of the integrals. These integral approximations
should be analytically equivalent, but we find that Formulation 1 is more numerically stable than Formulation 2 for
certain initial conditions where the finite accuracy of numerical integration becomes dominant. This comparison of
numerical stability is further discussed in Section V.E.

8

D
ow

nl
oa

de
d 

by
 7

3.
25

1.
8.

14
7 

on
 N

ov
em

be
r 

2,
 2

02
0 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
02

0-
42

43
 



0 2 4 6 8 10

Elapsed Time (yrs)

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5
S

e
m

i-
m

a
jo

r 
A

x
is

, 
a

 (
k
m

)

10
4

Formulation 1

Formulation 2

Formulation 2 with v
atm

 = 0

0 2 4 6 8 10

Elapsed Time (yrs)

0.62

0.64

0.66

0.68

0.7

0.72

0.74

E
c
c
e

n
tr

ic
it
y
, 

e

Formulation 1

Formulation 2

Formulation 2 with v
atm

 = 0

Fig. 2 Time history of the semi-major axis 𝑎 (left plot), and eccentricity 𝑒 (right plot) for both atmospheric drag
models. The results for Formulation 1 are overlapping with the results for Formulation 2 when vatm = 0.

In Fig. 2, the lines corresponding to zero atmospheric velocity (thick gray, and black dashed lines) have a higher
slope than the line corresponding to a finite vatm (black dotted line). This result implies that for the drag-only case,
neglecting atmospheric rotation causes the orbit to decay faster for this set of initial conditions. The time difference
for when both orbits decay to 19,000 km is 1 year. We can extrapolate that lifetime prediction discrepancies would be
even larger after 10 years. We can inspect this phenomena further by looking at the time histories for the out-of-plane
orbital elements.
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Fig. 3 Time history of inclination 𝑖 (left plot), argument of perigee 𝜔 (center plot), and right ascension of the
ascending node Ω (right plot) for both atmospheric drag models. The results for Formulation 1 are overlapping with
the results for Formulation 2 when vatm = 0.

In Fig. 3, it is clear that considering atmospheric rotation changes the out-of-plane elements 𝑖, and Ω. The secular
variation of these elements are small and slow as we can see on the 𝑦-axis, but they will not be negligible over long
time periods. These variations are due to the fact that drag is a force in the direction anti-parallel to the relative velocity
between spacecraft and atmosphere. If we consider a still atmosphere, all the drag force would be in the spacecraft
anti-velocity direction. If we consider a rotating atmosphere, the drag force would have out-of-orbit-plane components.
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C. Simulation results with drag, 𝐽2, and luni-solar perturbations

Using the same initial conditions as Eq. (28), we now consider the effects of 𝐽2, and luni-solar third-body gravity
in addition to drag, and compare simulations with the non-averaged dynamics.
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Fig. 4 Time history of the semi-major axis 𝑎 (left plot), eccentricity 𝑒 (center plot), and inclination 𝑖 (right plot)
with all perturbations. The results for Formulation 1 are still overlapping with the results for Formulation 2 when
vatm = 0 even with all the perturbations.

Figure 4 shows the evolution of 𝑎, 𝑒, and 𝑖 for the singly averaged dynamics using Formulation 1 and 2, and the
non-averaged dynamics. The linear trend present in the previous figures is now superposed with oscillations from the
added perturbations. These additional oscillations have periods corresponding to the orbits between the Earth, Sun,
and Moon. Triply averaging about the periods of Earth’s orbit about the Sun and Moon would remove these oscillations
[12]. The results for the drag model considering atmospheric rotation (dotted black lines) is closer to the non-averaged
plots (solid black lines). As expected, the results considering Formulation 1 (dashed black lines) is relatively farther
from the non-averaged results. With that in mind, we proceed with just Formulation 2 for the rest of this section.
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Fig. 5 Time history of the semi-major axis 𝑎 (left plot), and eccentricity 𝑒 (right plot). Each line represents the
results of a simulation using the area-to-mass-ratio (AMR) indicated in the legend.

In our simulations we use a constant value for the area-to-mass ratio (AMR), while in reality the AMR could be
time-varying. So, it is useful to look at a range of AMRs. The subsequent plots show the simulation results using
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Formulation 2 for three different values of area-to-mass ratio. The AMR is specified as 0.02, 0.01, and 0.005 m2/kg,
while all other initial conditions were left unchanged. In Fig. 5, we see the same decreasing trend as before for an orbit
that is shrinking and getting more circular. From solid, to dashed, to dotted lines, we have decreasing values of AMR.
As we expect, higher AMRs incur higher drag force, and these orbits decay faster.

The plots on Fig. 6 show the evolution of perigee altitude ℎ𝑝 and apogee altitude ℎ𝑎 for the three AMR values.
The perigee altitude (left plot) is fluctuating around the initial value of 250 km, while the apogee altitude (right plot)
is steadily decreasing. This fluctuation is caused by the drag force (which acts as a sort of Δ𝑣 in the anti-velocity
direction) which is much higher at perigee, and less dominant everywhere else on the GTO. The net result is that the
orbit is circularizing, and bringing the apogee closer to the focus. These plots show that a slight change in AMR can
change the RSO dynamics dramatically. Therefore, comparing the simulations to real data is key to evaluating the
performance of the averaged formulations.
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Fig. 6 Time history of perigee altitude ℎ𝑝 (left plot), and apogee altitude ℎ𝑎 (right plot) for Formulation 2. Each
line represents the results of a simulation using the area-to-mass-ratio (AMR) indicated in the legend.

D. Comparison with Real Data

In this section, we use the two averaged formulations and the non-averaged dynamics to simulate the trajectory of
Ariane 5 R/B (NORAD ID:37239) which launched on November 25, 2010, and reentered the atmosphere on August 15,
2014. The “true” trajectory is retrieved in the form of Two-Line Elements (TLE) from space-track.org [25]. Despite
uncertainties in the TLE data, its limited accuracy is sufficient for this study [26]. The set of initial conditions used for
this set of simulations are as follows:

ℎ𝑎0 = 35, 730.611 km (apogee altitude)
ℎ𝑝0 = 238.181 km (perigee altitude)
𝑖0 = 1.750◦ (29)
Ω0 = 180.581◦

𝜔0 = 168.584◦

In the previous section, we showed how a small change in AMR (and consequently the ballistic coefficient) can
significantly change the predicted dynamics. In addition, the perturbations neglected in the formulation of the averaged
dynamics will introduce errors when compared to the TLE data.
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To address these issues, the first step in this performance
analysis is determining an acceptable estimate of the bal-
listic coefficient. We accomplish this step by doing a sen-
sitivity analysis on the ballistic coefficient using a high-
fidelity non-averaged dynamic model which includes drag,
𝐽2, luni-solar third-body perturbations, solar radiation pres-
sure, third body perturbations from other planets, Earth’s
solid tides, ocean tides, and relativity perturbations [27].
Once the ballistic coefficient is determined, we run the
non-averaged dynamics with just drag, 𝐽2, and luni-solar
perturbations, consistent with the averaged formulations.
This step allows us to determine the lifetime prediction dis-
crepancy caused by neglecting other perturbations, before
making observations on the error caused by the atmospheric
drag models. Figure 7 shows the evolution of semi-major
axis with different ballistic coefficients. For compactness,
only the semi-major axis time history is shown here. The
ballistic coefficient 𝐵 = 0.0106 yields the closest trajectory
to the TLE data, and will be used in subsequent analysis.
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Fig. 7 Time history of semi-major axis 𝑎 for
varying ballistic coefficients simulated using the
high-fidelity non-averaged dynamics.

Figure 8 compares the time history of the perigee altitude simulated using the non-averaged and averaged dynamics,
against the TLE data (solid black line). The results simulated using the high-fidelity non-averaged model (light gray
line) is the closest to the TLE. Reducing the non-averaged model to consider only atmospheric drag, 𝐽2 and luni-solar
perturbations already introduces a discrepancy of ∼ 1.5 years in the reentry prediction (dark gray line). By averaging
we introduce ∼ 3 years of additional error (dotted line). Furthermore, neglecting atmospheric rotation in Formulation
2 causes another ∼3 years error in reentry (dashed line). As expected, Formulation 2 which accounts for atmospheric
rotation has better performance than Formulation 2 without atmospheric rotation (matches with Formulation 1).
Although the results of both averaged formulations are off from the true reentry trajectory, this figure quantifies the
relative performance between considering atmospheric rotation and neglecting it in the averaged dynamics. In addition,
the advantage of using the averaged equations lies with times scales much larger than the one presented here. Further
performance analysis using longer time scales, and considering additional perturbations in the averaged dynamics
could be pursued in future work.

Fig. 8 Time history of perigee altitude ℎ𝑝 for both averaged formulations, non-averaged dynamics, and high-
fidelity non-averaged dynamics, compared against TLE data for Ariane 5 R/B (NORAD ID: 37239). The results for
Formulation 1 and Formulation 2 with vatm = 0 match very closely, so only Formulation 2 with vatm = 0 is shown
here.
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E. Numerical stability analysis of Formulation 2: averaged drag dynamics with a rotating atmosphere

There are terms in Formulation 2 of the averaged drag perturbation [13] which can cause numerical issues. These
issues arise for certain initial conditions. In the equations of motion given in Eq. (20)-(25), the density-like term
𝜌𝑝0exp

(
𝑟𝑝0−𝑎
𝐻𝜌

)
can be rewritten using the relationship between perigee altitude and semi-major axis as follows:

𝜌𝑝0 exp
(
𝑟𝑝0 − 𝑎

𝐻𝜌0

)
= 𝜌𝑝0 exp

(
𝑟𝑝0 − (𝑟𝑝 + 𝑎𝑒)

𝐻𝜌0

)
= 𝜌𝑝0 exp

(
𝑟𝑝0 − 𝑟𝑝

𝐻𝜌0

)
exp

(
− 𝑎𝑒

𝐻𝜌0

)
= 𝜌 exp

(
− 𝑎𝑒

𝐻𝜌0

)
(30)

resulting in the density model given in Eq. (10) multiplied by the term exp
(
− 𝑎𝑒

𝐻𝜌0

)
, where 𝑧 = 𝑎𝑒

𝐻𝜌0
as defined in Section

III.A. When Eq. (30) is distributed out to terms in Eq. (20) to (25), we get expressions containing the following
products

exp(−𝑧) 𝐼0 (𝑧), exp(−𝑧) 𝐼1 (𝑧), exp(−𝑧) 𝐼2 (𝑧) (31)

where 𝑧 is the argument of the Bessel function 𝐼𝜈 (.). Although theoretically the products in Eq. (31) yield values
between zero and one, exp(−𝑧) and 𝐼𝜈 (𝑧) respectively return the smallest and largest numbers that can be represented
by double precision floating-point numbers ( 1e-308 is numerically zero and 1e+308 is numerically ∞). As a result,
when the equations are evaluated beyond 𝑧 = 700 we get ‘0’ times ‘Inf’ which is ‘Not a Number’. Figure 9 plots the
first term in Eq. (31) as a function of 𝑧.
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Fig. 9 Variation of the modified Bessel function 𝐼0, negative exponential term, and their product are plotted on a
log scale on the top plot. The product term exp(−𝑧)𝐼0 (𝑧) is plotted on a linear scale on the bottom plot. For values
beyond 700, the terms evaluated are outside the range of double-precision floating-point arithmetic.
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The product terms in Eq. (31) vary between 1 for near circular orbits, and a very small number for highly elliptic
orbits. For large arguments of 𝑧, we can approximate the modified Bessel functions in Eq. (31) with an asymptotic
expansion as follows [28]

𝐼𝜈 (𝑧) ∼
exp(𝑧)
√

2𝜋𝑧

[
1 − 𝛼 − 1

8𝑧
+ (𝛼 − 1) (𝛼 − 3)

2!(8𝑧)2 − (𝛼 − 1)(𝛼 − 9)(𝛼 − 25)
3!(8𝑧)3 + ...

]
(32)

where 𝛼 = 4𝜈2. Then for large values of 𝑧 the terms in Eq. (31) become

exp(−𝑧)𝐼𝜈 (𝑧) ∼
1

√
2𝜋𝑧

[
1 − 𝛼 − 1

8𝑧
+ (𝛼 − 1)(𝛼 − 3)

2!(8𝑧)2 − (𝛼 − 1) (𝛼 − 9) (𝛼 − 25)
3!(8𝑧)3 + ...

]
. (33)

The expression in Eq. (33) is free of numerical issues and can be evaluated with increasing accuracy by considering
higher order terms. This approximation is used for the simulation of an example RSO in GTO. Fig. 10 shows the
evolution 𝑎 and 𝑒 for Ariane 4LP upper-stage rocket body. The initial value of the orbital parameter 𝑧 is 801.39.
At this value of 𝑧, the Bessel function 𝐼𝜈 (𝑧), and the exponential function exp(−𝑧) fall outside the double-precision
floating-point arithmetic range of most software. Using the approximation in Eq. (33), we are able to simulate the
dynamics of Formulation 2 from Section III.B which was not possible otherwise.

0 1 2 3 4 5 6

Elapsed time (yrs)

0.5

1

1.5

2

2.5

S
e

m
i-
m

a
jo

r 
A

x
is

, 
a

 (
k
m

)

104

Formulation 1

Formulation 2

Formulation 2 with V
atm

 = 0

0 1 2 3 4 5 6

Elapsed time (yrs)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
E

c
c
e

n
tr

ic
it
y
, 

e

Formulation 1

Formulation 2

Formulation 2 with V
atm

 = 0

Fig. 10 Time history of the semi-major axis 𝑎 (left plot), and eccentricity 𝑒 (right plot) with all perturbations for
Ariane 4LP upper-stage R/B (NORAD ID:19218) with orbital parameter, 𝑧 = 801.39

VI. Conclusions
Simulating the non-averaged equations is computationally expensive, therefore, for applications requiring long

propagation intervals, it is advantageous to use the averaged equations. This paper analyzed the secular variation of
the Milankovitch elements for an RSO in GTO (1) under the influence of atmospheric drag alone, and (2) under the
influence of atmospheric drag with 𝐽2 and luni-solar perturbations.

We showed the impact of considering atmospheric rotation by comparing two models, Formulation 1 which
considers a still atmosphere, and Formulation 2 which considers a rotating atmosphere. Results show that the two
models are equivalent when atmospheric rotation is set to zero for Formulation 2, using the given set of initial conditions,
and assuming no numerical issues. Since drag is a function of relative velocity between the atmosphere and the RSO,
neglecting atmospheric rotation only accounts for the in-plane components of the drag force. In contrast, Formulation 2
captures the out-of-orbit-plane drag components, thus affecting the out-of-plane elements, and changing the orientation
of the orbit plane.

We showed that Formulation 2 is numerically ill-conditioned, and we proposed a numerically stable approximation
as outlined in Section V.E. In addition, we showed the effect of varying AMR on lifetime predictions using Formulation
2. Finally, we evaluated the performance of the averaged formulations by comparing them to a known reentry event.
Formulation 2, which accounts for a rotating atmosphere, gave results that are closer to the reference non-averaged
dynamics and correspondingly to the TLE data.
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Appendix
From the classical orbital elements, we compute the Milankovitch elements, H and e through the equations below.

𝑟𝑎 = ℎ𝑎 + 𝑅 , 𝑟𝑝 = ℎ𝑝 + 𝑅 , 𝑎 =
1
2
(𝑟𝑎 + 𝑟𝑝) , 𝑒 = 1 −

𝑟𝑝

𝑎
, 𝐻 =

√
𝑎𝜇(1 − 𝑒2) (34)

Ĥ = sinΩ sin 𝑖 x̂ − cosΩ sin 𝑖 ŷ + cos 𝑖 ẑ (35)
ê = (cos𝜔 cosΩ − cos 𝑖 sin𝜔 sinΩ)x̂ + (cos𝜔 sinΩ + cos 𝑖 sin𝜔 cosΩ)ŷ + sin𝜔 sin 𝑖 ẑ (36)

From these definitions, the Milankovitch elements are

H = 𝐻 Ĥ , (37)
e = 𝑒 ê . (38)

The equations used to retrieve the classical orbital elements from the Milankovitch elements are listed below.

𝑒 = |e| , 𝑎 =
𝐻2

𝜇(1 − 𝑒2)
, 𝑖 = cos−1 (ẑ · Ĥ) , Ω = sin−1

(
x̂ · Ĥ
|ẑ × Ĥ|

)
, 𝜔 = cos−1

(
e · (ẑ × Ĥ)
𝑒 |ẑ × Ĥ|

)
(39)

References
[1] de Lafontaine, J., and Garg, S. C., “A Review of Satellite Lifetime and Orbit Decay Prediction,” Indian Academy of Sciences

Proceedings: Section C Engineering Sciences, Vol. 5, 1982, pp. 197–258.

[2] Fu, X., Wu, M., and Tang, Y., “Design and Maintenance of Low-Earth Repeat-Ground-Track Successive-Coverage Orbits,”
Journal of Guidance, Control, and Dynamics, Vol. 35, No. 2, 2012, pp. 686–691. https://doi.org/10.2514/1.54780, URL
https://doi.org/10.2514/1.54780.

[3] Peng, H., and Bai, X., “Artificial Neural NetworkBased Machine Learning Approach to Improve Orbit Prediction Accuracy,”
Journal of Spacecraft and Rockets, Vol. 55, No. 5, 2018, pp. 1248–1260. https://doi.org/10.2514/1.A34171, URL https:
//doi.org/10.2514/1.A34171.

[4] Zhang, R., Han, C., Sun, X., and Qi, Z., “Initial Orbit Determination from Atmospheric Drag Direction,” Journal of
Guidance, Control, and Dynamics, Vol. 42, No. 12, 2019, pp. 2731–2740. https://doi.org/10.2514/1.G004530, URL https:
//doi.org/10.2514/1.G004530.

[5] Morand, V., Fèvre, C., Lamy, A., Fraysse, H., and Deleflie, F., “Dynamical Properties of Geostationary Transfer Orbits Over
Long Time Scales: Consequences for Mission Analysis and Lifetime Estimation,” 2012, pp. 1–2. https://doi.org/10.2514/6.
2012-4968.

[6] David, E., and Braun, V., “Re-Entry Analysis Comparison with Different Solar Activity Models of Spent Upper Stage Using
ESA’s DRAMA Tool,” Safety is Not an Option, Proceedings of the 6th IAASS Conference, ESA Special Publication, Vol. 715,
2013, p. 15.

[7] Shute, B. E., “Pre-Launch Analysis of High Eccentricity Orbits,” NASA Technical Note D-494, Jan. 1964.

[8] Cook, G., and Scott, D. W., “Lifetimes of Satellites in Large-Eccentricity Orbits,” Planetary and Space Science, Vol. 15,
No. 10, 1967, pp. 1549 – 1556. https://doi.org/https://doi.org/10.1016/0032-0633(67)90088-8, URL http://www.sciencedirect.
com/science/article/pii/0032063367900888.

[9] Janin, G., “Decay of Debris in Geostationary Transfer Orbit,” Advances in Space Research, Vol. 11, No. 6, 1991, pp. 161
– 166. https://doi.org/https://doi.org/10.1016/0273-1177(91)90247-H, URL http://www.sciencedirect.com/science/article/pii/
027311779190247H.

[10] Bettinger, R. A., Black, J. T., Agte, J. S., and Spencer, D., “Design of Experiment Approach to Atmospheric Skip Entry
Maneuver Optimization,” Journal of Spacecraft and Rockets, Vol. 52, No. 3, 2015, pp. 813–826. https://doi.org/10.2514/1.
A33032.

15

D
ow

nl
oa

de
d 

by
 7

3.
25

1.
8.

14
7 

on
 N

ov
em

be
r 

2,
 2

02
0 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
02

0-
42

43
 

https://doi.org/10.2514/1.54780
https://doi.org/10.2514/1.54780
https://doi.org/10.2514/1.A34171
https://doi.org/10.2514/1.A34171
https://doi.org/10.2514/1.A34171
https://doi.org/10.2514/1.G004530
https://doi.org/10.2514/1.G004530
https://doi.org/10.2514/1.G004530
https://doi.org/10.2514/6.2012-4968
https://doi.org/10.2514/6.2012-4968
https://doi.org/https://doi.org/10.1016/0032-0633(67)90088-8
http://www.sciencedirect.com/science/article/pii/0032063367900888
http://www.sciencedirect.com/science/article/pii/0032063367900888
https://doi.org/https://doi.org/10.1016/0273-1177(91)90247-H
http://www.sciencedirect.com/science/article/pii/027311779190247H
http://www.sciencedirect.com/science/article/pii/027311779190247H
https://doi.org/10.2514/1.A33032
https://doi.org/10.2514/1.A33032


[11] Drob, D. P., Emmert, J. T., Crowley, G., Picone, J. M., Shepherd, G. G., Skinner, W., Hays, P., Niciejewski, R. J., Larsen, M.,
She, C. Y., Meriwether, J. W., Hernandez, G., Jarvis, M. J., Sipler, D. P., Tepley, C. A., O’Brien, M. S., Bowman, J. R., Wu, Q.,
Murayama, Y., Kawamura, S., Reid, I. M., and Vincent, R. A., “An Empirical Model of the Earth’s Horizontal Wind Fields:
HWM07,” Journal of Geophysical Research: Space Physics, Vol. 113, No. A12, 2008. https://doi.org/10.1029/2008JA013668,
URL https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2008JA013668.

[12] Wang, Y., and Gurfil, P., “Dynamical Modeling and Lifetime Analysis of Geostationary Transfer Orbits,” Acta Astronautica,
Vol. 128, 2016, pp. 262–276. https://doi.org/10.1016/j.actaastro.2016.06.050.

[13] Ward, G. N., “On the Secular Variations of the Elements of Satellite Orbits,” Royal Society of London. Series A, Mathematical
and Physical Sciences, Vol. 266, No. 1324, 1962, pp. 266–130. https://doi.org/10.1086/104968.

[14] Musen, P., “Special Perturbations of the Vectorial Elements,” The Astronomical Journal, Vol. 59, 1954, pp. 262–267.

[15] Allan, R. R., “Satellite Orbit Perturbations in Vector Form,” Nature, Vol. 190, 1961, p. 615.

[16] Rosengren, A. J., and Scheeres, D. J., “On the Milankovitch Orbital Elements for Perturbed Keplerian Motion,” Celestial
Mechanics and Dynamical Astronomy, Vol. 118, No. 3, 2014, pp. 197–220. https://doi.org/10.1007/s10569-013-9530-7.

[17] Wiesel, W. E., Spaceflight Dynamics, 3rd ed., Aphelion Press, Beavercreek, Ohio, 2012.

[18] Vallado, D., and McClain, W., Fundamentals of Astrodynamics and Applications, 4th ed., Microcosm Press, Hawthorne, Calif,
2007.

[19] Hassani, A., Saghafi, F., and Pasand, M., “𝐻∞ and 𝜇 Synthesis Control of Virtual Structure Satellites Formation Flying,”
International Journal of Dynamics and Control, Vol. 5, 2016, pp. 741–755. https://doi.org/10.1007/s40435-016-0238-x.

[20] Roy, A. E., “Luni-solar perturbations of an Earth satellite,” Astrophys Space Sci, Vol. 4, 1969, p. 375386. https://doi.org/https:
//doi.org/10.1007/BF00651343.

[21] Jet Propulsion Laboratory, “Horizons Web Interface,” , 2020. URL https://ssd.jpl.nasa.gov/horizons.cgi.

[22] Roy, A. E., and Moran, P. E., “Studies in the Application of Recurrence Relations to Special Perturbation Methods,” Celestial
Mechanics, Vol. 7, 1973, pp. 236–255.

[23] Skoulidou, D. K., Rosengren, A. J., Tsiganis, K., and Voyatzis, G., “Dynamical Lifetime Survey of Geostationary Transfer
Orbits,” Celestial Mechanics and Dynamical Astronomy, Vol. 130, No. 11, 2018, p. 77.

[24] Pasand, M., Hassani, A., and Ghorbani, M., “A Comprehensive Study of Reaction Control Thrusters Configurations for
3-axis Upper Stage Attitude Control ,” IEEE Aerospace and Electronic Systems Magazine, Vol. 32, No. 7, 2017, pp. 22–39.
https://doi.org/10.1109/MAES.2017.160104.

[25] SPACE-TRACK.ORG, 2020. URL http://www.space-track.org/.

[26] Racelis, D., and Joerger, M., “High-Integrity TLE Error Models for MEO and GEO Satellites,” 2018 AIAA SPACE and
Astronautics Forum and Exposition, 2018. https://doi.org/10.2514/6.2018-5241.

[27] Mahooti, M., “Satellite Orbit Modeling,” 2020. URL https://www.mathworks.com/matlabcentral/fileexchange/54877-satellite-
orbit-modeling, Retrieved September 25, 2020.

[28] Abramowitz, M., Stegun, I. A., and Romer, R. H., Handbook of Mathematical Functions with Formulas, Graphs, and
Mathematical Tables, American Association of Physics Teachers, 1988.

16

D
ow

nl
oa

de
d 

by
 7

3.
25

1.
8.

14
7 

on
 N

ov
em

be
r 

2,
 2

02
0 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
02

0-
42

43
 

https://doi.org/10.1029/2008JA013668
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2008JA013668
https://doi.org/10.1016/j.actaastro.2016.06.050
https://doi.org/10.1086/104968
https://doi.org/10.1007/s10569-013-9530-7
https://doi.org/10.1007/s40435-016-0238-x
https://doi.org/https://doi.org/10.1007/BF00651343
https://doi.org/https://doi.org/10.1007/BF00651343
https://ssd.jpl.nasa.gov/horizons.cgi
https://doi.org/10.1109/MAES.2017.160104
http://www.space-track.org/
https://doi.org/10.2514/6.2018-5241
https://www.mathworks.com/matlabcentral/fileexchange/54877-satellite-orbit-modeling
https://www.mathworks.com/matlabcentral/fileexchange/54877-satellite-orbit-modeling

	Introduction
	Non-averaged Equations for Perturbed Circumterrestrial Dynamics
	Equations of motion
	Perturbations model
	Earth oblateness perturbation
	Luni-Solar third-body gravitational perturbation
	Drag perturbation

	Non-averaged vs averaged dynamics

	Averaged Equations for Drag Perturbation
	Averaged drag with a still atmosphere
	Averaged drag with a rotating atmosphere

	Averaged Equations for J2, and Luni-Solar Third-Body Perturbations
	Comparative Analysis of Drag Model Performance
	Description of initial conditions
	Simulation results for drag only
	Simulation results with drag, J2, and luni-solar perturbations
	Comparison with Real Data
	Numerical stability analysis of Formulation 2: averaged drag dynamics with a rotating atmosphere

	Conclusions

