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Abstract—The integration of GNSS with Inertial Navigation
Systems (INS) has the potential to achieve high levels of continuity
and availability as compared to standalone GNSS and therefore
to satisfy stringent navigation requirements. However, robustly
accounting for time-correlated measurement errors is a challenge
when designing the Kalman filter (KF) used for GNSS/INS cou-
pling. In particular, if the error processes are not fully known, the
KF estimation error covariance can be misleading, which is prob-
lematic in safety-critical applications. In this paper, we design
a GNSS/INS integration scheme that guarantees upper bounds
on the estimation error variance assuming that measurement
errors are first-order Gauss-Markov processes with parameters
only known to reside within pre-established bounds. We evaluate
the filter performance and guaranteed estimation by covariance
analysis for a simulated precision approach procedure.

Index Terms—Overbounding, Kalman filtering, GNSS, Inertial
Systems, Guaranteed estimation, Precision Approach, Gauss
Markov Process, Colored Noise, ARAIM

I. INTRODUCTION

The demand for increased levels of autonomy in safety-
and liability-critical transportation applications motivates the
need for high-integrity navigation solutions. The combination
of GNSS and Inertial Navigation Systems (INS) has been
used since the 1990s in avionic systems as part of the
Aircraft-Based Augmentation Systems (ABAS). It has also
become a baseline approach for applications in challenging
land, air, and sea environments, for example in autonomous
ground vehicles and commercial quadcopters. GNSS/INS can
potentially achieve high levels of continuity and availability as
compared to standalone GNSS. However, providing a rigorous
assessment of GNSS/INS integrity still poses unanswered
challenges.

Fault detection algorithms have been developed to address
sensor faults in integrated GNSS/INS schemes using a Kalman
filter (KF) [1, 2, 3, 4]. However, there is no widely adopted
approach to account for time-varying sensor errors when
the structure of the error time correlation is uncertain. For
example, assuming that sensor errors follow a Gauss-Markov
Process (GMP), how should one account for an unknown GMP
time constant? Robust estimators are a promising solution
when dealing with mis-modeled errors in GNSS [5] and
GNSS/INS positioning [6, 7], but no rigorous quantification of
their estimation error is currently available and therefore they
cannot readily be implemented in safety critical applications.
Existing error overbounding techniques used for snapshot

GNSS positioning [8] do not account for measurement error
correlation and therefore are not guaranteed to overbound
the positioning error distribution when used in a sequential
estimation context.

Correlated error processes affect GNSS pseudoranges, IMU
specific force, and IMU angular rate measurements. These
errors have a substantial impact on the performance of the
KF, and state estimate variance can be misleading if these
errors are not properly modelled. Proper characterization of
correlated errors can be a difficult task. For instance, in
GNSS, the pseudorange error is an accumulation of multiple
error sources including orbit, clock, atmospheric (ionospheric
and tropospheric) and multipath, whose stochastic behavior
depends upon complex system processes and a changing
environment.

In [9, 10], we provided a solution for overbounding sequen-
tial estimation errors in the presence of Gauss-Markov (GM)
error processes with unknown but bounded time constants and
driving noises. In this paper, we apply the methodology in [9]
to design a GNSS/INS Kalman filter so that the navigation
estimation error is properly overbounded by the KF covariance
for the states of interest when the error model parameters are
not fully known. First, we revisit the overbounding process
in [9]. The different GNSS error sources are then modeled
using different ranges of correlation time constants. We de-
scribe the error models provided in aviation standards, in
the ARAIM Working Group C, and in recent publications
that address sequential estimation for high-integrity navigation.
We then design a KF that includes augmented states for
each of the time-correlated GNSS and IMU measurements.
This GNSS/INS Kalman filter is implemented in a realistic
simulated aircraft precision approach trajectory to analyze the
tightness of the proposed estimation error variance bound.

II. OVERBOUNDING KALMAN FILTER WITH UNKNOWN
GAUSS-MARKOV PROCESSES

Let P̂ be the Kalman filter (KF) estimate error covariance
matrix and P be the true estimate error covariance matrix. The
inequality P̂ ≥ P means that the predicted variance αT P̂α is
greater than or equal to the true variance αTPα for any real
vector α.

Suppose that the measurement and process noise com-
ponents are known to be first-order GMP. These processes
are completely specified by a time constant τ , steady-state
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variance σ2 and initial variance σ2
0 , and propagate according

to the difference equation

ak+1 = e−∆t/τak +
√
σ2
(
1− e−2∆t/τ

)
wk ,

wk ∼WGN (0, 1) and a0 ∼ N(0, σ2
0)

(1)

where k is an arbitrary time index and ∆t = tk+1 − tk is
the discrete-time sampling interval. The notation WGN(0, 1)
indicates zero-mean white Gaussian noise with unit variance
and N(0, σ2

0) denotes a zero-mean normal random variable
with variance σ2

0 .
It was proved in [9] that when τ and σ2 are only known

to reside in the intervals [τmin, τmax] and [0, σ2
max], a state-

augmented KF that models ak with

τ̂ = τmax

σ̂2 = σ2
max(τmax/τmin)

σ̂2
0 ≥

2σ2
max

1 + (τmin/τmax)

(2)

is guaranteed to produce a covariance matrix P̂ ≥ P.
A direct interpretation is that the design of the GMP that

produces an overbounded covariance estimation must consider
the maximum time constant from within the possible range
and must inflate the steady-state maximum variance by a
factor which is the ratio between the maximum and minimum
time constant. Please note that when σ2

0 = σ2
max(τmax/τmin),

the overbounding augmented state error model is stationary.
When using the lower bound for σ2

0 in Equation (2), the GMP
variance will have a transition phase until it converges to its
steady state variance. Appendix A provides further insight
about the nature of this bound with respect to the uncertain
GMPs by representing it in different domains.

III. ERROR MODEL IMPLEMENTATION

In the following section, we describe the error models for
the GNSS and IMU measurements. Particularly relevant for
this paper is the consideration of uncertain time constants for
the time correlated errors in GNSS, which we assume to reside
within a known range of values.

A. GNSS

The linearized iono-free code and carrier measurement can
be expressed as:

ρi,jk − ρ̃
i,j
k (x0,k) =

ui,j
T

k ∆xk + bjk + ∆Si,jk + T i,jk +mpi,jρ,k + εi,jρ,k (3)

φi,jk − φ̃
i,j
k (x0,k) =

ui,j
T

k ∆xk + bjk + ∆Si,jk + T i,jk +N i,j
φ +mpi,jφ,k + εi,jφ,k (4)

where ρi,jk is the code measurement of satellite i of constel-
lation j at time epoch k. ui,j

T

k is a unit line of sight vector
user to satellite, ∆xk is the user position with respect to the

linearization point. The receiver clock offset with respect to
constellation j is bjk. ∆Si,jk is the residual satellite clock and
ephemeris error after correction based on broadcast ephemeris,
T i,jk is the tropospheric error, mpi,jρ,k and mpi,jφ,k the multipath
error in code and carrier respectively, εi,jk the receiver noise
and N i,j

φ is the float iono-free integer ambiguity.
1) Satellite Clock and Orbit Errors: According to [11], we

can model the residual satellite clock and ephemeris error for
a satellite i as a Gauss-Markov process expressed as:

∆Si,GPS ∼ GM(σ2
URA , τ ∈ [4, 50] hours), (5)

∆Si,GAL ∼ GM(σ2
URA , τ ∈ [2, 38] hours). (6)

The user range accuracy (URA) is nominally chosen to be
σURA = 1m [12].

2) Tropospheric Errors: The largest part of the tropospheric
error caused by the dry component can be removed by
applying standard models [13]. The remaining wet component
of the troposphere is more unpredictable and it is typically
modeled as:

∆T i,jk = mtropo(θi,j) · ηtropo,k, (7)

where m(θi,j) is a mapping function that depends on the
satellite elevation θi,j [13]:

m(θi,j) =
1.001√

0.002001 + sin(θi,j)2
. (8)

The uncertain component ηtropo,k at the zenit is specified in
[13] to be overbounded by a zero mean Gaussian distribution
with variance σ2

tropo = (0.12)2m2. In this work, we model
the random component ηtropo,k as a first-order Gauss-Markov
process with the range of parameters specified in Table I.

3) Multipath and antenna group delay: For 100 seconds
carrier-smoothed code, the following expression is given for
the multipath error standard deviation [12]:

σi,jmp,ρ,sm =

√
(f2

L1 − f2
L5)2

f4
L1 + f4

L5

(
0.13 + 0.53e−θ

i,j
deg /10

)
, (9)

where fL1 and fL5 are the GNSS carrier frequencies for L1
and L5 signals respectively.

We want to consider unsmoothed measurements in order to
avoid the artificial correlation that the smoothing would cause
between the measurements in the filter. It is found in [14, 15],
that the unsmoothed code and carrier phase standard deviation
due to multipath can be obtained with the following scaling
of the smoothed ones:

σmp,ρ = 1.5 · σmp,ρ,sm,

σmp,φ = 0.015 · σmp,ρ,sm.
(10)

In this work, we model the total multipath for code and carrier
as:

mpi,jρ,k = σρ(θ
i,j
k ) · ηi,jmpρ,k, (11)

mpi,jφ,k = σφ(θi,jk ) · ηi,jmpφ,k. (12)
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The first term will follow Equation (10) and it is used as a
mapping or scaled parameter. The stochastic process ηi,jmpρ,k
and ηi,jmpφ,k are modeled as first-order Gauss-Markov processes
with unit variance and time-correlations in the ranges specified
in Table I. Airborne multipath models for new signals and
constellations are currently under development [16] and will
be included in future publications.

4) Receiver Noise: The receiver noise component in the
code and carrier measurement is modeled as a zero mean white
Gaussian noise. Receiver code and carrier phase standard
deviations can be expressed as [15]:

σi,jερ = 19.6 · σi.jερ,sm,

σi,jεφ = 0.196 · σi.jερ,sm,
(13)

where σi.jερ,sm is the iono-free scaled carrier smoothed code
noise standard deviation which is dependent on elevation [12]:

σi.jερ,sm =

√
(f2

L1 − f2
L5)2

f4
L1 + f4

L5

(
0.15 + 0.43e−θ

i,j
deg /6.9

)
. (14)

5) Receiver Clock: GNSS receiver clocks are typically
quartz oscillators; their offset with respect to GPS time is
often treated as a parameter to be estimated. In this paper, we
conservatively assume that at any particular time, we do not
have any prior knowledge of the clock bias from previous time
instants. This is modeled as an KF state parameter following
a random walk with infinite (very high) variance.

TABLE I: GNSS Error Model Parameters.

Error Model Parameters
Error source Mapping Variance τmin τmax

Clock and Eph. (GPS) - 1m2 4 h. 50 h.
Clock and Eph. (Gal) - 1m2 2 h. 38 h.

Tropospheric Eq.(8) (0.12 m)2 900 s 2700 s
Raw Code Multipath Eqs.(9,10) 1m2 10 s 900 s

Raw Carrier Multipath Eqs.(9,10) 1m2 10 s 900 s
Receiver Code Noise - Eqs.(13,14) - -

Receiver Carrier Noise - Eqs.(13,14) - -

B. Inertial Measurement Unit (IMU)

The inertial measurements coming from gyroscopes and
accelerometers are typically modeled as a combination of error
sources and processes. First, we consider deterministic errors
including misalignment of the sensor axis, scaling factors and
constant biases. In this paper, we assume that these errors can
be estimated and compensated for using an offline calibration
procedure. Second, we consider stochastic errors that cannot
be compensated for. A widely-used approach is to model
stochastic errors of the IMU as the sum of a random constant
turn-on bias, a time-correlated process and a white-Gaussian
noise. We can therefore express the turn rate and specific force
measurements as:

w̃b = wb + bw,0 + bw + ηηηw, (15)

f̃ b = f b + bf,0 + bf + ηηηf , (16)

where w̃b and f̃ b are the 3-axis measured turn rates and
specific forces in a body frame b, respectively; similar, wb and
f b are their true values, b?,0 is the turn-on random constant
bias with ? referring either to the turn rates w or to the specific
forces f . Last, b? is the time-correlated bias and ηηη? are the
white Gaussian noise vectors of the associated measurements.

The turn-on biases can initially roughly be estimated by
a coarse alignment process and further improved using a fine
alignment process [17]. For low cost sensors in particular, final
estimation of these random constant biases is often performed
while in operation and thanks to the dynamics of the vehicle.
In Section ”Analysis of Overbounded GPS/INS”, we will
assume that some previous estimation process was available
that provided initial values for these biases.

The most widely used model for the time-correlated bias of
IMU measurements is based on a GM approximation, in part
because it can easily by incorporated in a Kalman filter by
state augmentation. This model is also adopted in this paper.
Typical GM model parameter values for two sensor grades
are listed in Table II and Table III for the GM bias over time
(including a time constant and driving noise specifications)
and for the measurement white noise.

TABLE II: IMU Accelerometer Error Parameters.

Grade Noise Bias Noise τ

[µg/
√

Hz] [µg] [s]
Navigation 15 20 3000
Tactical 50 160 3000

TABLE III: IMU Gyroscope Error Parameters.

Grade Noise Bias Noise τ

[°/h/
√

Hz] [°h−1] [s]
Navigation 0.01 0.005 12000
Tactical 2 0.5 10000

In this paper, we assume that the IMU error parameters are
known. Future work will include the possibility to account for
uncertainty in parameter values of the stochastic error models.
This will capture the fact that error processes are not always
repeatable, and that error behavior becomes unpredictable in
the presence of variations in temperature and vibrations.

IV. GNSS/INS KALMAN FILTER DESIGN

We consider a tightly coupled integration between GNSS
and Inertial Navigation System (INS) where we use an error-
state Kalman Filter. A general architecture of the system
design is depicted in Figure 1. Note that the INS system is run
outside the KF and it is calibrated with parameters estimated
using the KF whenever an update step occurs.

A. State Selection

Kalman filter state parameters include position, velocity and
attitude errors in a local navigation frame. In order to account
for the time correlated errors present in IMU measurements we
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Fig. 1: GNSS/INS Kalman filter Architecture.

include the augmented states bf and bw. The total number of
error states related to the INS system are therefore NINS = 15:

xINS =
(
δψψψT δvT δpT bTf bTw

)T
(17)

where δψψψ, δv and δp are the 3D error in attitude, velocity
and position of the INS system respectively. The filter states
specific to GNSS first include the receiver clock biases with
respect to each constellation in use. In order to account for the
time correlated errors, additional augmented states are added
to the state vector to capture the satellite clock and ephemeris,
tropospheric and multipath error of each satellite. Finally, we
add the integer ambiguities to each of the satellites in view.
The GNSS-specific state vector component is therefore:

xGNSS =
(

bclk
T ∆ST mtropo

T mpTρ mpTφ Nφ
T
)T

(18)
where bclk are the user clock biases for each GNSS con-
stellation, ∆S the satellite ephemeris and clock error, mtropo
the tropospheric error at zenith, mpρ and mpφ the code
and carrier multipath respectively and Nφ the float iono-free
integer ambiguities. The KF state vector therefore contains

NKF = 15 + Nj + 5Ni parameters, where Nj is the number
of constellations and Ni the number of satellites in view:

xKF =
(

xT
INS

xT
GNSS

)T
. (19)

B. KF Prediction

The KF time-update or prediction step propagates the mean
and covariance of the state estimates as follows:

x̂k|k−1 = Φ̂ΦΦkx̂k−1|k−1, (20)

P̂k|k−1 = Φ̂ΦΦkP̂k−1|k−1Φ̂ΦΦ
T

k + GkQ̂kG
T
k , (21)

where x̂k|k−1 and P̂k|k−1 are the predicted states and covari-
ance respectively, Φ̂ΦΦk is the time propagation matrix, Q̂k is
the covariance of the process noise and Gk maps the process
noise vector to the relevant states. The (ˆ) notation on Φ̂ΦΦk and
Q̂k indicates that a filter design choice is made: we want to
set Φ̂ΦΦk and Q̂k guaranteeing that the computed estimate error
covariance overbounds the actual estimation uncertainty. The
discrete propagation matrix Φ̂ΦΦk for the GNSS/INS design can
be expressed as:

Φ̂ΦΦk =

[
ΦΦΦk,INS 0

0 Φ̂ΦΦk,GNSS

]
, (22)

where
ΦΦΦk,INS = eFk,INS∆t ≈ I + Fk,INS∆t. (23)

The Jacobian matrix Fk,INS can be obtained by differentiating
the strapdown inertial differential equations at time k. This
matrix is well known and can be found in textbooks on inertial
integration (for instance, in [17]). It is worth noticing that ΦΦΦINS
and FINS do not have the (ˆ) notation because, in this paper,
the IMU error process parameters are assumed to be known.
This assumption will be relaxed in future work.

The propagation design matrix Φ̂ΦΦk,GNSS is a diagonal matrix
expressed as:

Φ̂ΦΦk,GNSS =



INj×Nj

e−∆t/τ̂∆SINi×Ni

e−∆t/τ̂tropoINi×Ni

e−∆t/τ̂mp,ρINi×Ni

e−∆t/τ̂mp,φINi×Ni

INi×Ni

 . (24)

In Equation (21), the Q̂k matrix can also be split into con-
tributions from the IMU and GNSS error processes using the
following definitions:

Q̂k =

[
QIMU 0

0 Q̂k,GNSS

]
. (25)

The covariance QIMU contains the IMU noise and GM vari-
ances which are not changing at different epochs.

The matrix Q̂k,GNSS is a diagonal matrix expressed as:

Q̂k,GNSS = diag





σ2
clk∆t1Nj×1

σ̂2
∆S

(
1− e−

2∆t
τ̂∆S

)
1Ni×1

σ̂2
tropo

(
1− e−

2∆t
τ̂tropo

)
1Ni×1

σ̂2
mp,ρ

(
1− e−

2∆t
τ̂mp,ρ

)
1Ni×1

σ̂2
mp,φ

(
1− e−

2∆t
τ̂mp,φ

)
1Ni×1

0Ni×1



T

.

(26)
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The notation 1a×b and 0a×b indicates a matrix (or vector) of
size a × b filled with ones or zeros respectively. The values
of the σ̂2 and τ̂ parameters are computed using Equation (2)
and parameter range limits in Section III to ensure that the KF
estimation is overbounded. Finally, matrix Gk can be written
as:

Gk =

[
Gk,IMU 0NINS×NGNSS

0NGNSS×NINS INGNSS×NGNSS

]
, (27)

where NINS = 15 and NGNSS = Nj + 5Ni. Matrix Gk,IMU is
given in Appendix in [18].

C. KF Update

The Kalman filter measurement update is performed using
the following equations:

x̂k|k = x̂k|k−1 + K̂k

(
zk −Hkx̂k|k−1

)
, (28)

P̂k|k =
(
I− K̂kHk

)
P̂k|k−1, (29)

where K̂ is the Kalman filter gain obtained using:

K̂k = P̂k|k−1H
T
k

(
HkP̂k|k−1H

T
k + Rk

)−1

. (30)

The linearized KF measurement vector z is made of the
differences between the iono-free code and carrier phase
measurements and their predicted values computed using the
INS current position:

zk =



ρ1
k − ρ1

k,INS
...

ρNik − ρ
Ni
k,INS

φ1
k − φ1

k,INS
...

φNik − φ
Ni
k,INS


. (31)

The measurement matrix H projects the states into measure-
ment space and is expressed as:

Hk =



06×Ni 06×Ni

UT
k UT

k

06×Ni 06×Ni

1
Nj×Ni
{si∈cj} 1

Nj×Ni
{si∈cj}

INi×Ni INi×Ni

Mtropo Mtropo
Mmp,ρ 0Ni×Ni

0Ni×Ni Mmp,φ

0Ni×Ni INi×Ni



T

, (32)

where Uk ∈ RNi×3 contains the line-of-sight vectors related
to each of the satellites in view. The diagonal matrix Mtropo ∈
RNi×Ni contains the tropospheric mapping function for each
of the satellites depending on their elevation as in Equation (8).
And the diagonal matrix Mmp,ρ,Mmp,φ ∈ RNi×Ni contains
the scaling of the multipath time-correlated errors according
to their elevation as in Equation (10) for the code and
carrier phase measurement respectively. Each element (j, i)

of the matrix 1
Nj×Ni
{si∈cj} is one if the satellite si belongs to

constellation cj and zero otherwise. Finally, Rk is a diagonal
matrix containing the code and carrier receiver noise variances
(Equation (13)):

Rk =

[
σ2
ερI

Ni×Ni 0

0 σ2
εφ

INi×Ni

]
. (33)

Note that in the case of loss of satellites in view, the size of
state vector and covariance matrix must be reduced accord-
ingly. Similarly, new states must be created and initialized
if new satellites are available during the filter runtime. The
change of satellites in view also affect the size of Φ̂ΦΦk,GNSS,
Q̂k,GNSS, Gk, Hk and Rk.

V. ANALYSIS OF OVERBOUNDED GPS/INS

A. Precision Approach Simulation

In order to evaluate the behavior of a GPS/INS system
in a realistic operational scenario, we consider the simulated
precision approach procedure shown in Figure 2. We consider
a half race-track procedure starting from a holding position at
7000ft with 200 knots speed. For the turn, the bank angle is
at its maximum of 25 degrees as specified in [19], which is
a worst case trajectory (i.e., high likelihood of losing visible
low-elevation satellites due to banking). More realistic proce-
dures could be defined based on true airspeed and tailwind,
but these are beyond the scope of this work.
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(a) Horizontal Profile
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2000

H
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t 
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Fig. 2: Simulated Approach Trajectory.

We consider the integration of navigation grade IMU mea-
surements at 100 Hz frequency with L1/L5 GPS code and
carrier measurements at 1 Hz.

B. Linearized GPS/INS and KF Initialization

In order to evaluate the overbounding capability of the
proposed solution, we implement a Linearized Kalman Filter
(LKF) [17], linearized about the true trajectory. This helps
isolate and properly evaluate the impact of the computed
KF covariance as compared to the true covariance without
including linearization errors of the Extended Kalman Filter
(EKF). We can assume that when a simulated approach in
Figure 2 is initiated, the navigation filter must have been
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running for a significant period of time. Finding realistic values
for the initialized KF while limiting computation load is not
trivial. We have selected the following values for the initial
covariance matrix P0 related to the INS states:

P0,δψψψ = diag(0.012, 0.012, 0.032) deg2,

P0,δv = diag(0.0052, 0.0052, 0.0052) (m/s)2,

P0,δp = diag(1.22, 1.22, 1.22) m2,

P0,δbf = diag((10−3)2, (10−3)2, (10−4)2) (m/s/s)2,

P0,δbw = diag((10−5)2, (10−5)2, (10−4)2) (deg/s)2

and for the GNSS states:

σ2
0,clk = 1 m2,

σ2
0,∆S = 12.5 m2,

σ2
0,mtropo

= 0.0432 m2,

σ2
0,mpρ = 90 m2,

σ2
0,mpφ

= 90 m2,

σ2
0,Nφ

= 0.62m2.

The initial variance for the augmented states were selected
according to the stationary bound variance from Equation (2).
Notice that when we acquire new satellites during the simu-
lation, we need to incorporate new augmented states for the
correlated errors related to each satellites and the initialization
is here performed with the non-stationary GM bound condition
to minimize the uncertainty.

C. Covariance Analysis Results

The position covariance estimated using the proposed
GPS/INS filter are depicted over time in Figure 3.
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Fig. 3: Horizontal and vertical standard deviation estimated by
the overbounding GPS/INS filter.

If the true time correlation of the GNSS errors is known,
it is possible to compute the actual true KF estimation error
covariance in addition to the computed covariance. Appendix
B describes a method to derive the true error covariance for
a generic discrete-time KF, which also applies to this aircraft
navigation problem. In Figure 4, we compare the estimated
positioning standard deviation with the true error standard
deviation, assuming that the true values of the error correlation
time constants are in the middle of the range of possible time
constant values.
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Fig. 4: Estimated KF standard deviation minus true error
standard deviation. Here it is assumed that the true time
correlations for each of the augmented states are in the middle
of the range provided in Table I.

In Figure 4, the fact that the curves are positive for all
simulated time epochs shows that the designed KF achieves
bounding estimation covariance. The proof that this holds true
for any values of the correlation time constants is provided in
[9]. Figure 4 illustrates that this theoretical result holds true for
practical GPS/INS integration applications. The results from
Figure 3 and Figure 4 show that, in this example, the proposed
filter produces estimated positioning standard deviations up
to 70 cm larger than the true values in both horizontal and
vertical directions. Although this value is a significant fraction
of the actual true error standard deviation (also sub-meter
level), the estimated total uncertainty is kept at the meter level.
This has therefore the potential to support the computation of
protection levels that satisfy stringent integrity and availability
requirements for precision approach.

VI. CONCLUSIONS

The concept of overbounding has been developed and is in
use in the context of civil aviation for snapshot estimators.
The use of sequential estimators like the Kalman filter can
potentially provide better performance in accuracy, continuity
and availability than snapshot algorithms, especially when
integrating information from multiple sensors. However, ex-
tending the concept of overbounding to GNSS/INS is chal-
lenging because time-correlated errors must be rigorously
accounted for. In this paper, we provided a first solution
to overbounding GNSS/INS estimation error variance in the
presence of uncertain GNSS measurement errors behaving
as Gauss-Markov processes (GMP). Our proposed integration
scheme only causes minor changes in algorithms that already
incorporated GMP error models but, in addition, produces
guaranteed estimation error bounds which are essential for
safety-critical applications.

APPENDIX A
GAUSS-MARKOV BOUND INTERPRETATION

The methodology to bound the Kalman filter under uncer-
tain GM errors consists on designing the augmented time
correlated states with another GM process as specified in
Equation (2).
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There are different mathematical tools that are typically used
to model the errors in sensor measurements. Depending on
the type of sensor, the nature of the measurements and the
specific parameters and time correlation that they have, one
or another tool would be more suitable to perform the error
modeling. In this appendix we include the representation of
the proposed bound in [9] and Equation (2) in the following
domains: Autocorrelation, Power Spectral Density (PSD) and
Allan Variance.

A. Autocorrelation

The autocorrelation of a given stationary GM process with
variance σ2 and time correlation τ is expressed as:

R(∆t) = σ2e−
|∆t|
τ , (34)

where ∆t is the sampling interval. In Figure 5, we can see
some examples of different GM processes in the autocorrela-
tion domain that have σ2 = 1 and τ ∈ [1, 10]s. In Figure 5, the
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Fig. 5: Autocorrelation of GM processes with σ2 = 1 and
τ ∈ [1, 10]s and the GM process bound.

value of the autocorrelation of the bound at zero is expressed
as R(0) = σ2 τmax

τmin
and its value is therefore 10 for this example.

Please note that the bound appears to be quite conservative
for small sample intervals. This can be partially improved by
using the non-stationary bound with a tighter initial variance
as described in Section II.

B. Power Spectral Density (PSD)

The spectral density of a GM process for a given frequency
f can be expressed as [20]:

S(f) =
2σ2/τ

(2πf)2 + (1/τ)2
. (35)

In Figure 6, the GMPs and the proposed bound are represented
in the PSD domain. Please note that the GMPs with the uncer-
tain time-correlation constant crosses at different frequencies,
which supports the reason why choosing the GMPs with the
highest time constant does not guaranteed an estimation bound.
The PSD offers a powerful insight of the underlying error
process in the frequency domain. In [21], the authors present
a general overbounding methodology in the frequency domain
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Fig. 6: Power Spectral Density (PSD) of GM processes with
with σ2 = 1 and τ ∈ [1, 10]s and the GM process bound.

for time-correlated error processes that goes beyond the Gauss-
Markov error structure.

C. Allan Variance

The Allan variance (AV) is a statistical analysis tool to
identify and characterize stochastic processes by observing
their behaviour over different time periods [22]. The GMP
in the AV domain has the following expression [22]:

σ2
AV(∆t) =

2σ2τ

∆t

[
1− τ

2∆t

(
3− 4e

−∆t
τ + e

−2∆t
τ

)]
(36)

where σ2 is the GM steady state variance, τ is the time
constant and ∆t is the time interval under consideration.

Figure 7 represents the Allan deviation in log-log scale of
GMPs with different time constants as well as the representa-
tion of the Equation (2) bound.
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Fig. 7: Different Gauss-Markov Process with different time
constant within τ ∈ [1, 10]s in Allan Variance.

We can see that in fact the designed GMP is bounding the
unknown process for any time interval for any possible time
constant also in the AV domain. The maximum peak value
of the bound is aligned with the one of the GMP with the
maximum time constant, but its variance level is increased.
This is consistent with the interpretation we did in Section II.
This graphical representation also suggest that there is a tighter
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bound. Graphically this bound can be found by fitting a GMP
that bounds in the AV domain both the ascending slope of the
GMP with τmin and the descending slope of the GMP with
τmax. This new process is provided graphically in Figure 8.

10-1 100 101 102 103

log(  t)

10-1

100

lo
g

(
A

V
)

GMP Bound

GM with 
min

 = 1

GM with 
max

=10

Tight Bound

Fig. 8: New bound representation in Allan Variance Domain.

The new tighter bound can be found to have a time constant
that is a mean value between the extremes of the range of
possible time constants in the logarithmic scale:

τb = 10
log(τmin)+log(τmax)

2 = 10
log(τminτmax)

2 (37)

and the variance of the process must be inflated as:

σ2
b = σ2

max
τb
τmin

. (38)

This new bound is a candidate to provide a tighter bound over
uncertain GMP and is first presented here only as a conjecture
until the formal proof is published [23].

APPENDIX B
DISCRETE KF TRUE ERROR COVARIANCE

The general discrete linear system we are working with can
be described as follows:

xk = ΦΦΦxk−1 + Gkwk, (39)
zk = Hkxk + νννk. (40)

A Kalman filter estimator that designs imperfectly Φ̂ΦΦ, and Q̂
with E[ŵŵT ] = Q̂, can be written as:

x̂k|k−1 = Φ̂ΦΦx̂k−1|k−1, (41)

P̂k|k−1 = Φ̂ΦΦkP̂k−1|k−1Φ̂ΦΦ
T

k + GkQ̂kG
T
k , (42)

K̂k = P̂k|k−1H
T
k

(
HkP̂k|k−1H

T
k + Rk

)−1

, (43)

x̂k|k = x̂k|k−1 + K̂k

(
zk −Hkx̂k|k−1

)
, (44)

P̂k|k =
(
I− K̂kHk

)
P̂k|k−1. (45)

Notice that because the filter is imperfectly designed, the
covariance matrix P̂k|k is not guaranteed to bound the actual
true error present in x̂k|k. In [24] a methodology is proposed
to study the sensitivity of the imperfect modeling for a
continuous Kalman filter. In [10] similar expressions can be
found for the hybrid Kalman filter. In here we follow the same

approach to derive the true covariance error for the complete
discrete Kalman filter.

Let’s consider the error vector e =̂ x̂ − x. Using it and
Equation (39), for the prediction step we can write:

ek|k−1 = x̂k|k−1 − xk

= Φ̂ΦΦx̂k−1|k−1 −ΦΦΦxk−1 −Gkwk. (46)

Defining ∆ΦΦΦ =̂Φ̂ΦΦ−ΦΦΦ, Equation (46) can be written as:

ek|k−1 = Φ̂ΦΦek−1|k−1 + ∆ΦΦΦxk−1 −Gwk. (47)

In order to propagate this error over time, we can consider the
time propagation of the extended vector xe =

[
e x

]T
as:[

ek|k−1

xk

]
=

[
Φ̂ΦΦ ∆ΦΦΦ
0 ΦΦΦ

] [
ek−1|k−1

xk−1

]
+

[
−Gkwk

Gkwk

]
,

(48)

whose associated covariance is:

Pe
k|k−1 =

[
Φ̂ΦΦ ∆ΦΦΦ
0 ΦΦΦ

]
Pe
k−1|k−1

[
Φ̂ΦΦ ∆ΦΦΦ
0 ΦΦΦ

]T
+

[
GkQkG

T
k −GkQkG

T
k

−GkQkG
T
k GkQkG

T
k

]
. (49)

For the update step we proceed in a similar way:

ek|k = x̂k|k − xk =
(
I− K̂kHk

)
x̂k|k−1 + K̂kzk − xk

=
(
I− K̂kHk

)
ek|k−1 − K̂kνννk, (50)

which leads to the extended update expression:[
ek|k
xk

]
=

[ (
I− K̂kHk

)
0

0 I

] [
ek|k−1

xk

]
+

[
−K̂kνννk

0

]
(51)

and whose associated covariance is now:

Pe
k|k =

[ (
I− K̂kHk

)
0

0 I

]
Pe
k|k−1

[ (
I− K̂kHk

)
0

0 I

]T
+

[
K̂kRkK̂

T
k 0

0 0

]
. (52)

The true error covariance of the states of interest, i.e.,
P = E[eeT ] can be extracted from the upper block of the
covariance matrix Pe.

Notice also that Equation (52) cannot be written in a
simplified fashion as in Equation (45) because the covariance
of the prediction of ek|k−1 is different from the one that is used
to compute the Kalman gain, which is based on the imperfectly
designed Kalman filter estimator.

Finally, the initial state covariance P̂0 must be also set ac-
cording to our design. Assuming an error state implementation
of the filter where E[x0] = 0, the initialization of the extended
matrix we used for the sensitivity analysis is described as:

Pe
0 =

[
P0 −P0

−P0 P

]
. (53)

Using Equation (53), Equation (49) and Equation (52) it is
possible to obtain recursively the true error KF covariance
matrix over time.
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