

Abstract— In this paper, we develop and evaluate a
Convolutional Neural Network (CNN)-based Light Detection
and Ranging (LiDAR) localization algorithm that includes
uncertainty quantification for ground vehicle navigation. This
paper builds upon prior research where we used a CNN to
estimate a rover’s position and orientation (pose) using LiDAR
point clouds (PCs). This paper presents a simplification of the
LiDAR PC processing and describes a new approach for
outputting a covariance matrix in addition to the rover pose
estimates. Performance assessment is carried out in a
structured, static lab environment using a LiDAR-equipped
rover moving along a fixed, repeated trajectory.

I. INTRODUCTION

This paper describes the design and evaluation of a new
method to estimate a rover’s position and orientation (pose)
from a Light Detection and Ranging (LiDAR) three-
dimensional (3D) point cloud (PC) using a Convolutional
Neural Network (CNN). We first develop a CNN-based
LiDAR localization algorithm to simultaneously determine a
vehicle’s pose and quantify the pose estimation uncertainty.
We then implement this CNN-based covariance estimation
method in a structured, known environment.

This research is intended for future autonomous
navigation of vehicles, such as buses, delivery drones,
farming and mining surveillance platforms, that repeatedly
follow a predefined itinerary in an unstructured but known
environment. LiDAR localization aims at determining a
LiDAR’s “pose”, i.e., its position and orientation in a
navigation frame, or East-North-Up (ENU) frame, given a
discretized representation of the environment in sensor frame
as perceived by the LiDAR.

Conventional model-based LiDAR PC navigation
methods include matching techniques and landmark-based
localization (LBL). On the one-hand, it is typical for scan-
matching, PC-matching, and grid-based approaches to be
heuristically implemented, which complicates uncertainty
prediction [1-6]. On the other hand, localization error
covariance matrices are readily provided in LBL when using
an extended Kalman filter (EKF), but additional steps of
feature extraction (FE) and data association (DA) are needed
[7-9]. FE is the identification of reliable, viewpoint-invariant

M. Joerger is with the Kevin T. Crofton Department of Aerospace and

Ocean Engineering at the Virginia Polytechnic Institute and State
University (Virginia Tech), Blacksburg, VA, USA 24061 USA (phone:
540-231-6707; fax: 540-231-9632; e-mail: joerger@vt.edu).

J. Wang, is with the Kevin T. Crofton Department of Aerospace and
Ocean Engineering at Virginia Tech, Blacksburg, VA, USA 24061 USA.
(e-mail: julianw@vt.edu).

A. Hassani is with the Kevin T. Crofton Department of Aerospace and
Ocean Engineering at Virginia Tech, Blacksburg, VA, USA 24061 USA.
(e-mail: ahassani@vt.edu).

landmarks in the environment surrounding the LiDAR. DA
is the ordering of these extracted features to match the
ordering of measurements in the EKF innovation vector. We
will use a LiDAR LBL method as reference algorithm when
evaluating LiDAR CNNs [10-11].

Data-driven algorithms have the potential to learn how to
find a LiDAR’s navigation-frame pose given a sensor-frame
PC, without explicitly performing the error-prone FE and
DA. A major issue with neural networks, when used for
localization, is their limited ability to quantify pose
prediction uncertainty. Unlike model-based approaches that
readily output estimation error covariance matrices, neural
networks learn heuristically. We can evaluate their actual
estimation errors offline by post-processing large amounts of
pose error data [12]. But it remains unclear under what
conditions a neural network can learn online to self-assess its
LiDAR pose prediction uncertainty.

In related work, other LiDAR-based CNNs have been
implemented in realistic scenarios, but composite error
statistics combining varying rover-to-obstacle geometries
could only be evaluated offline [13, 14]. Other CNNs have
been specifically developed to quantify uncertainty,
including using raw error data or using a model-based
estimator’s covariance output as training data [15, 16]. In
[16], a matrix decomposition is implemented to ensure that
the neural-network-estimated covariance matrix is positive
definite. In [17], sources of uncertainty are classified and
accounted for in CNN-based estimators. But, [15-17] are not
implemented in LiDAR navigation applications. In [18],
two-dimensional indoor LiDAR data is processed using deep
neural networks, including uncertainty quantification
showing limitations of the Monte-Carlo dropout technique
[19]; this effort is focused on mapping performance.
Reference [20] shows promising localization performance
using a LiDAR CNN in GNSS-denied urban areas, but
uncertainty localization performance prediction is still an
issue. Missing from the literature is a detailed analysis of
LiDAR CNN-estimated pose error distributions versus actual
error distributions.

In response, in this paper, we design a CNN LiDAR
localization process that streamlines 3D PC processing, and
we develop a new training method to output elements of a
pose estimation error covariance matrix. We evaluate the
LiDAR CNN in comparison with a model-based approach.

The second section of this paper outlines our CNN-based
LiDAR navigation architecture. It describes a new approach
for parametric localization uncertainty quantification using a
Cholesky factorization-based method to enforce the
symmetry and positive definiteness of the pose estimation
error covariance matrix. The third section is a preliminary

On Uncertainty Quantification for Convolutional Neural Network
LiDAR Localization

Mathieu Joerger, Senior Member, IEEE, Julian Wang, and Ali Hassani

...

...

3x Times

...

... ...

3 Fully Connected Layer 2 Output LayerInput Layer

Convolution Pooling

Flatten3 Convolutional Layer

3D LiDAR point cloud location
& intensity arranged in two (400
x 200) azimuth-elevation bins;
range/intensity are color-coded

Pose
Estimation

Elements of
Covariance

Decomposition

Figure 1. LiDAR CNN architecture where 3D point-clouds in the LiDAR’s field of view are captured using two two-dimensional arrays of azimuth-
elevation bins with color-coded ranging and intensity measurements, respectively. Outputs include pose estimates and elements of the decomposed pose
estimate covariance matrix.

performance evaluation using data collected in a known
laboratory environment. Because this paper’s emphasis is on
error distribution analysis, datasets are limited to lab
experiments where true vehicle pose is continuously and
accurately known. Lab testing has limitations, but it reveals
variations in error distributions that would be cost-
prohibitive to observe in field testing. A comparison is
performed with a more conventional model-based
localization technique that uses static, recognizable features.
Concluding statements are given in the fourth section.

II. CNN ARCHITECTURE FOR 3D LIDAR POINT CLOUD
LOCALIZATION WITH UNCERTAINTY QUANTIFICATION

A. CNN Architecture for LiDAR PC-Based Localization
A LiDAR PC is made of thousands of 3D point

coordinates, each of which comes with a light-return-
intensity measurement. Both the point coordinates and
intensity values can be used for localization [11].

The 3D LiDAR PC must first be pre-processed to fit
conventional image-based CNN functions that assume two-
dimensional arrays as inputs. Consistent with the LiDAR’s
spherical scanning of the environment, we rearrange the 3D
PC point locations into azimuth-elevation bins with a
resolution of approximately 1-degree-by-1-degree over the
LiDAR field of view. This is an improvement over the
previous triple projection in [12]. This implementation also
includes LiDAR light-return intensity data arranged in
azimuth-elevation bins. These two arrays serve as input
layer to the CNN.

Then, we process the input data with the CNN designed
using PyTorch [21]. The CNN must find an estimate x̂ of
the rover’s actual pose x in a local navigation frame. It
must simultaneously output elements L̂ derived from P̂ ,
which is an estimate of the actual pose estimate error
covariance matrix P .

A diagram of the LiDAR CNN architecture is displayed
in Figure 1. It was designed iteratively with the intention of

being as simple as possible to facilitate our understanding of
the algorithm’s properties and of the most sensitive
parameters. Our preliminary design criterion is that the
CNN should achieve an estimation performance similar to
the example model-based approach in [10, 11].

In [11], static, recognizable landmarks with viewpoint-
invariant features are extracted from the LiDAR PC and
associated over time as the LiDAR moves in the
environment. Point-features are then processed using an
EKF. The algorithm in [11] serves as guidance to tune the
CNN’s number of layers and numbers of neurons per layer
by matching output performance. Further CNN
improvements using more sophisticated architectures will be
investigated in future iterations of this work.

The CNN architecture includes three convolutional
layers, each of which has a kernel size of 2×2 and a
maximum pooling of 2×2 [12]. Their output is flattened into
a 20,000×1 vector. During our iterative CNN design, we
verified that the same flattened layer could be used for pose
and covariance estimation without significant performance
impact. The flattened layer is therefore the input to two
separate threads for pose and covariance determination.
Both threads comprise three fully connected layers.

Each fully connected layers’neuron has a linear mapping
function, and a ReLU activation function. A neuron-dropout
rate of 5% prevents overfitting the training dataset and
provides robustness to changes during validation.

In each thread, the last of the fully-connected layer is
fully connected to an output layer through a linear mapping
function. The first thread’s output is the 3×1 LiDAR pose
estimate vector x̂ , i.e., estimates of the LiDAR’s two-
dimensional horizontal position coordinates and of its
orientation (or azimuth) in a local navigation frame. The
outputs of the second thread are estimates of the six lower-
triangular non-zero elements of the L̂ matrix defined by the
Cholesky decomposition of the 3×3 a-posteriori pose
covariance matrix ˆ ˆ ˆT=P LL .

B. CNN Training for LiDAR PC-Based Uncertainty
Quantification
Training of the LiDAR CNN for the determination of the

3×1 vector x̂ , which is an estimate of the actual pose vector
x (given by a reference truth source), aims at minimizing
the following loss function:

 1ˆ ˆ() ()T
poseJ −≡ − −x x P x x

where P is the a-priori (predicted) covariance matrix of the
state estimation error.

Training of the LiDAR CNN for the determination of the
non-zero elements of matrix L̂ aims at minimizing the
following loss function derived from the Frobenius norm of
matrix 1

3
ˆ ˆ[()]T T− −−I L LL L :

 1 1
cov 3 3

ˆ ˆ ˆ ˆtrace{[()][()] }T T T T TJ − − − −≡ − −I L LL L I L LL L

where:

trace{} : is the trace operator, i.e., sum of the diagonal
elements of the matrix in argument

L : is a 3×3 upper-triangular matrix derived from the
Cholesky factorization of the true covariance

T=P LL

3I : is a 3 3× identity matrix

The cost functions capture differences that we want to
minimize in a two-step training process (a) between a known
LiDAR pose x and its CNN estimate x̂ , and (b) between a
known LiDAR pose estimate error covariance, derived using
CNN pose estimate error samples (ˆ−x x) for a same location
of the LiDAR, and the CNN’s output pose estimate error
covariance P̂ .

In the expression of covJ , the Cholesky factorization
ensures symmetry and positive definiteness of ˆ ˆ ˆT=P LL .
Inverses capture a normalization operation by elements of L
required to combine position and orientation quantities that
have non-identical, and non-independent distributions. The
Frobenius norm gives a scalar measure of the 3 3× matrix.
Other cost functions, e.g., used in references [15,16], did not
provide adequate performance results in this specific LiDAR
navigation implementation.

In training, we employ a stochastic gradient descent
algorithm to update the CNN’s internal weights and biases to
minimize the loss functions. We first train pose estimation,
and then pose estimate error covariance determination. The
CNN is trained using a third of the data collected using our
experimental testbed. We use all samples of the LiDAR
revisiting a same location to determine truth pose estimation
error covariance P at that location. CNN performance is
then validated using the other two thirds of the data.

III. PRELIMINARY PERFORMANCE EVALUATION

A. Experimental Setup
We built an experimental data collection testbed that

provides a sufficient number of pose estimate samples to
empirically evaluate the true pose error distribution. It
comprises a rover repeatedly moving on a figure-eight track
and carrying a suite of sensors. The sensor suite includes a
Velodyne Puck lidar sensor VLP-16 providing a 360-degree-
azimuth, 35-degree-elevation 3D scan of the environment at
a 10 Hz sampling rate. A VICON infrared camera-based
motion capture system tracks the LiDAR’s true pose.

As described in Section II, for guidance in the CNN
design, we use the landmark-based localization algorithm in
[11]. To facilitate landmark identification in this reference
algorithm, we place six cardboard cylinders around the
figure-eight track. It is worth noticing that the CNN does not
require PC segmentation or landmark extraction, and uses
the entire PC, not only a subset of data points corresponding
to landmarks. Data collection was performed over 3.5 hours,
during which the rover travelled repeatedly on the figure-
eight track. It completed 700 laps, the first 100 of which we
use in this paper.

B. LiDAR CNN Positioning Performance
Out of the 100 figure-eight laps of LiDAR PC and truth

data that was collected, 30 laps are used for training, and 70
laps are used for validation. As compared to [12] where we
performed localization only, the CNN must learn elements of
a covariance matrix in addition to the pose estimate. The
model was trained on a Nvidia RTX 3090 graphics card.

Figure 2. Testbed setup and example LiDAR point cloud collected
during the experiment.

The estimated position from the LiDAR CNN over 100
laps are plotted against the true trajectory in Figure 3. The
red dot-markers represent the LiDAR CNN estimate, the
black line represents the true trajectory. Neither the red
markers nor the black line are visible because they are
underneath the error ellipses.

The gray dots represent the LiDAR PCs at one instant; it
was rotated and translated from the original LiDAR-frame
for representation in the navigation frame. LiDAR PCs
come as inputs to the CNN in sensor frame, and the CNN
must learn to perform an equivalent operation to achieve
localization in the navigation frame. The six black dots
around the figure-eight are landmark locations used in the
reference landmark-based algorithm [11].

The zoomed-in window in Figure 3 shows the “1-sigma”
CNN-estimated horizontal position estimate covariance
ellipses in blue, and the true, post-processed, sample
covariance ellipses in orange. Covariance ellipses represent
the spread of the estimation error. In the zoomed-in window,
both the true and estimated covariance matrices semi-major
axes seem reasonably well aligned, with consistently larger
error spread along the in-track direction as compared to the
off-track direction. Demonstrating consistency between
CNN-estimated and true error distributions is a major
objective of this paper.

The term “1-sigma” refers to the fact that if the position
estimate vector was a bivariate normally distributed random
vector, we would expect 40% of the sample data to be within
n the “1-sigma” covariance ellipse (we would expect 68% of
the data to be within +/- 1 sigma bounds for a one-
dimensional random variable).

Figure 3. Rover trajectory and covariance ellipses estimated using the
CNN-based LiDAR localization algorithm described in Section II (showing
horizontal position coordinates only, no heading angle estimate) over 100
repeated figure-eight laps; the estimated covariance ellipses (blue) are
good approximations of the true covariance ellipses (orange) .

C. LiDAR CNN Pose Performance Comparison with
Model-Based Methods
Figure 4 is a comparison of CNN localization versus a

more conventional LiDAR EKF that uses extracted point-
features for localization. Figure 4 shows both cross-track
positioning errors on the upper charts, and heading angle (or
azimuth angle) estimation errors on the lower charts. It does
so for the EKF and CNN-based approaches on the left-hand-
side and right-hand-side charts, respectively. In all cases, the
cross-track and heading angle deviations are lower than 30
mm and 2 deg, respectively. We focused on cross-track
positioning deviations because this direction is of primary
concern in ground-vehicle lane-centering tasks.

Figure 4(a) shows increased error and error covariance
when the LiDAR crosses the tracks’ intersection. This
occurs in part because of higher vibrations and of landmark
feature-extraction errors in the EKF-based approach. After
further investigation, we determined that another, more
significant source of errors comes from the LiDAR’s warm-
up period [22].

Figure 5 was generated similar to Figure 4, but we
removed the few laps impacted by the LiDAR warm-up
period, and we changed the y-axes scales. Both the EKF-
based approach in Figure 5(a) and the CNN localization in
Figure 5(b) show lower errors as compared to Figure 4. The
reduction in error deviation is of factor three, which cannot
be neglected, and would have been difficult to identify in a
field test.

Position and heading angle error estimation in Figure
4(a) are driven by feature extraction errors. Feature
extraction is the process of identifying recognizable
landmarks in the environment, in this case, cardboard
cylinders. The data is segmented to find the few datapoints
originating from the landmarks, and the central axis of the
cylinder is computed [11]. Few point features are extracted
to minimize the risk of mistaking one landmark from another
in data association, i.e., when sending the point feature
measurements to the EKF. The localization process can be
more robust when using the entire point cloud as in Figure
4(b), which is an advantage of the CNN over this specific
EKF-based implementation. Other implementations that are
not landmark-based could be considered at the cost of higher
computation load (e.g., [6]).

LiDAR warm-up-induced error variations are removed in
Figure 5. The true sample error covariance envelopes (black
lines) capture the main error variations as the LiDAR’s
viewpoint changes with vehicle motion. This true
covariance envelope is fairly consistent for the EKF-based
and CNN-based approaches, with slight increases in heading
angle estimation error deviations at times 4s-to-6s and 14s-
16s when the vehicle crosses the tracks intersection.

In Figure 5(b), the red lines represent the CNN-estimated
covariance envelopes, which are constituent over multiple
laps, and also match the true envelope fairly well, although
there is a slight time offsets between black and red lines. We
further investigate this offset in the next section.

0 2 4 6 8 10 12 14 16 18 20
-30

-20

-10

0

10

20

30

C
ro

ss
 T

ra
ck

 E
rro

r (
m

m
)

Sample error

Sample 1 covariance envelope

0 2 4 6 8 10 12 14 16 18 20

Time (s)

-4

-2

0

2

4

H
ea

di
ng

 e
rro

r (
de

g)
(a) Landmark-based localization

Figure 4. Cross-track and heading angle estimation errors obtained: (a) using LiDAR EKF; (b) using LiDAR CNN. Overall, the estimate errors are
small, but significant feature extraction error variations impact the EKF-based approach. The LiDAR CNN method does not require explicit feature
extraction. The LiDAR CNN uses the entire point-cloud, whereas the LiDAR EKF localization methods only uses datapoints corresponding to identified
landmarks.

0 2 4 6 8 10 12 14 16 18 20
-10

0

10

C
ro

ss
 T

ra
ck

 E
rro

r (
m

m
)

Sample error

Sample 1 covariance envelope

0 2 4 6 8 10 12 14 16 18 20

Time (s)

0

H
ea

di
ng

 e
rro

r (
de

g)

(a) Landmark-based localization (subset of data)

0 2 4 6 8 10 12 14 16 18 20
-10

0

10

C
ro

ss
 T

ra
ck

 E
rro

r (
m

m
)

Sample error

Sample 1 covariance envelope
CNN-estimated covariance envelopes

0 2 4 6 8 10 12 14 16 18 20

Time (s)

0

H
ea

di
ng

 e
rro

r (
de

g)

(b) CNN-based localization (subset of data)

1

-1

Figure 5. After removing laps impacted by the LiDAR warm-up period, this figure shows the cross-track and heading angle estimation errors obtained: (a)
using LiDAR EKF; and (b) using LiDAR CNN. The estimated error covariance envelope for LiDAR CNN (red lines in (b)) is consistent over multiple laps
(mostly overlapping) and is consistent with the true covariance envelope (black line). It is worth noticing that the Y-axis scales changed as compared to
Figure 4.

D. LiDAR CNN Pose Performance Comparison with
Model-Based Methods
Figure 6 shows the LiDAR CNN covariance envelope

estimated during training (light-green line), which does not
perfectly fit the true covariance (black line). This suggests
that the CNN is not over-fitted during training. The red lines
are the estimated covariance obtained during validation.

The figure shows 30 overlapping and indistinguishable
green covariance envelopes and another more than 30 red

covariance envelopes. They are both self-consistent over
multiple laps. They are also consistent in magnitude with the
true covariance envelope (black). The red curves are also
consistent with the green envelopes derived during training,
but there appears to be a slight time offset that we suspect is
caused by imperfect calibration of our experiments.

Further evaluation of the experimental setup and data
processing algorithm will be performed in future work to
find the source of this apparent slight timing inconsistency.

0 2 4 6 8 10 12 14 16 18 20

0

C
ro

ss
 T

ra
ck

 E
rro

r (
m

m
)

Sample error

Sample 1 covariance envelope
CNN-estimated covariance during training

CNN-estimated covariance during validation

0 2 4 6 8 10 12 14 16 18 20
Time (s)

0

H
ea

di
ng

 e
rro

r (
de

g)

Figure 6. Cross-track and heading angle estimation errors, true error
covariance, and estimated error covariance obtained using a LiDAR CNN.
The estimated error covariance envelope achieved during training (green
lines) and validation (red lines) are consistent with the true covariance
envelope (black line) and are consistent over multiple laps. The apparent
timing offset between green and red lines will be investigated in future
work.

IV. CONCLUSION
In this paper, we designed a new Convolutional Neural

Network (CNN) architecture, which we trained to directly
estimate position and orientation (pose) from a LiDAR point
cloud (PC) without explicit extraction of environmental
features. The CNN architecture is streamlined to take as
inputs two arrays corresponding to the LiDAR’s distance and
light-return intensity measurements over a range of azimuth
and elevation angles that define the sensor’s field of view.
The CNN outputs include both pose estimates and pose
estimation uncertainty in the form of elements of an
estimation error covariance matrix.

We carried out a preliminary analysis of the LiDAR
CNN’s performance using data collected in a known lab
environment. We evaluated the LiDAR CNN performance in
comparison with a more conventional EKF-based method
that extracts and associates landmark features from the
LiDAR PC for localization. The lab test helped analyze the
system, and illustrated the CNN’s robustness to sensor errors
during the LiDAR warm-up period. Future work will aim at
quantifying the LiDAR CNN’s ability to evaluate pose
uncertainty in realistic ground vehicle environments.

REFERENCES
[1] F. Wang and Z. Zhao, “A Survey of Iterative Closest Point

Algorithm,” 2017 Chinese Automation Congress (CAC), Jinan,
China, 2017, pp. 4395-4399, doi: 10.1109/CAC.2017.8243553.

[2] J. Levinson and S. Thrun, “Robust vehicle localization in urban
environments using probabilistic maps,” IEEE Int.Conference on
Robotics and Automation (ICRA), 2010, pp. 4372–4378.

[3] J. Castorena and S. Agarwal, “Ground-edge-based LIDAR
localization without a reflectivity calibration for autonomous
driving,” IEEE Robot. Autom. Lett., vol. 3, no. 1, pp. 344–351, 2018.

[4] R. W. Wolcott and R. M. Eustice, “Fast lidar localization using
multiresolution gaussian mixture maps,” IEEE International
Conference on Robotics and Automation (ICRA), 2015, pp. 2814–
2821.

[5] Z. Luo, M. V. Mohrenschildt, S. Habibi, “A Probability Occupancy
Grid Based Approach for Real-Time LiDAR Ground Segmentation,”
IEEE Transactions on Intelligent Transportation Systems, vol. 21, no.
3, pp. 998-1010, March 2020, doi: 10.1109/TITS.2019.2900548.

[6] A. Hassani and M. Joerger, “A new point-cloud-based lidar/imu
localization method with uncertainty evaluation,” Proceedings of the
34th International Technical Meeting of the Satellite Division of The
Institute of Navigation (ION GNSS+ 2021), 2021, pp. 636–651.

[7] A. Hata and D. Wolf, “Road marking detection using lidar reflective
intensity data and its application to vehicle localization,” 17th
International Conference on Intelligent Transportation Systems
(ITSC), 2014, pp. 584–589.

[8] M. Joerger, M. Jamoom, M. Spenko, B. Pervan, “Integrity of Laser-
Based Feature Extraction and Data Association,” Proceedings of
IEEE/ION PLANS 2016, Savannah, GA, April 2016, pp. 557-571.

[9] M. Joerger, B. Pervan, “Continuity Risk of Feature Extraction for
Laser-Based Navigation,” Proceedings of the 2017 International
Technical Meeting of the Institute of Navigation, Monterey,
California, January 2017, pp. 839-855.

[10] A. Hassani, M. Joerger, G. D. Arana, and M. Spenko, “LiDAR data
association risk reduction, using tight integration with INS,”
Proceedings of the 31st International Technical Meeting of The
Satellite Division of the Institute of Navigation (ION GNSS+ 2018),
2018, pp. 2467–2483.

[11] A. Hassani, N. Morris, M. Spenko, and M. Joerger, “Experimental
integrity evaluation of tightly-integrated IMU/LiDAR including
return-light intensity data,” Proceedings of the 32nd International
Technical Meeting of The Satellite Division of the Institute of
Navigation (ION GNSS+ 2019), Miami, FL, 2019.

[12] J. Wang, A. Hassani, M. Joerger, “Navigation Performance of a
LiDAR-Based CNN in a Known Environment” Proceedings of the
International Technical Meeting of the Institute of Navigation (ION
ITM 2022), 2022.

[13] W. Lu, Y. Zhou, G.Wan, S. Hou, and S. Song, “L3-net: Towards
learning based lidar localization for autonomous driving,”
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2019, pp. 6389–6398.

[14] I. A. Barsan, S. Wang, A. Pokrovsky, and R. Urtasun, “Learning to
localize using a lidar intensity map,” 2nd Conference on Robot
Learning (CoRL), 2018.

[15] R.L. Russell, C. Reale, “Multivariate Uncertainty in Deep Learning,”
IEEE Transaction on Neural Networks and Learning Systems, 2021.

[16] Liu, K., Ok, K., Vega-Brown, W., & Roy, N. (2018, May). Deep
inference for covariance estimation: Learning gaussian noise models
for state estimation. 2018 IEEE International Conference on Robotics
and Automation (ICRA), pp. 1436-1443, 2018.

[17] Y. Gal and Z. Ghahramani, “Dropout As a Bayesian Approximation:
Representing Model Uncertainty in Deep Learning,” Proceedings of
the 33rd International Conference on International Conference on
Machine Learning, ICML’16, vol. 48, New York, NY, 2016, pp.
1050–1059.

[18] F. Verdoja, J. Lundell and V. Kyrki, “Deep Network Uncertainty
Maps for Indoor Navigation,” 2019 IEEE-RAS 19th International
Conference on Humanoid Robots (Humanoids), 2019, pp. 112-119,
 .

[19] A. Kendall, and Y. Gal, “What uncertainties do we need in bayesian
deep learning for computer vision?” 31st Conference on Neural
Information Processing Systems (NIPS 2017), Long Beach, CA,
USA, 2017.

[20] A. Schlichting, and U. Feuerhake, “Global vehicle localization by
sequence analysis using lidar features derived by an autoencoder,”
2018 IEEE Intelligent Vehicles Symposium (IV2018), 2018, pp. 656-
661.

[21] Torch Contributors, “BCELOSS”, Technical function description,
2019. Available online at
https://pytorch.org/docs/stable/generated/torch.nn.BCELoss.html

[22] S. Cattini, D. Cassanelli, L. D. Cecilia, L. Ferrari and L. Rovati, “A
Procedure for the Characterization and Comparison of 3-D LiDAR
Systems,” IEEE Transactions on Instrumentation and Measurement,
vol. 70, 2021, pp. 1-10, doi: 10.1109/TIM.2020.3043114.

	I. INTRODUCTION
	II. CNN Architecture for 3D LiDAR Point Cloud Localization with Uncertainty Quantification
	A. CNN Architecture for LiDAR PC-Based Localization
	B. CNN Training for LiDAR PC-Based Uncertainty Quantification

	III. Preliminary Performance Evaluation
	A. Experimental Setup
	B. LiDAR CNN Positioning Performance
	C. LiDAR CNN Pose Performance Comparison with Model-Based Methods
	D. LiDAR CNN Pose Performance Comparison with Model-Based Methods

	IV. Conclusion
	References

