
  

Abstract— In this paper, we develop and evaluate a 
Convolutional Neural Network (CNN)-based Light Detection 
and Ranging (LiDAR) localization algorithm that includes 
uncertainty quantification for ground vehicle navigation.  This 
paper builds upon prior research where we used a CNN to 
estimate a rover’s position and orientation (pose) using LiDAR 
point clouds (PCs).  This paper presents a simplification of the 
LiDAR PC processing and describes a new approach for 
outputting a covariance matrix in addition to the rover pose 
estimates.  Performance assessment is carried out in a 
structured, static lab environment using a LiDAR-equipped 
rover moving along a fixed, repeated trajectory. 

I. INTRODUCTION 

This paper describes the design and evaluation of a new 
method to estimate a rover’s position and orientation (pose) 
from a Light Detection and Ranging (LiDAR) three-
dimensional (3D) point cloud (PC) using a Convolutional 
Neural Network (CNN).  We first develop a CNN-based 
LiDAR localization algorithm to simultaneously determine a 
vehicle’s pose and quantify the pose estimation uncertainty.  
We then implement this CNN-based covariance estimation 
method in a structured, known environment.  

This research is intended for future autonomous 
navigation of vehicles, such as buses, delivery drones, 
farming and mining surveillance platforms, that repeatedly 
follow a predefined itinerary in an unstructured but known 
environment.  LiDAR localization aims at determining a 
LiDAR’s “pose”, i.e., its position and orientation in a 
navigation frame, or East-North-Up (ENU) frame, given a 
discretized representation of the environment in sensor frame 
as perceived by the LiDAR. 

Conventional model-based LiDAR PC navigation 
methods include matching techniques and landmark-based 
localization (LBL).  On the one-hand, it is typical for scan-
matching, PC-matching, and grid-based approaches to be 
heuristically implemented, which complicates uncertainty 
prediction [1-6].  On the other hand, localization error 
covariance matrices are readily provided in LBL when using 
an extended Kalman filter (EKF), but additional steps of 
feature extraction (FE) and data association (DA) are needed 
[7-9].  FE is the identification of reliable, viewpoint-invariant 
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landmarks in the environment surrounding the LiDAR.  DA 
is the ordering of these extracted features to match the 
ordering of measurements in the EKF innovation vector.  We 
will use a LiDAR LBL method as reference algorithm when 
evaluating LiDAR CNNs [10-11]. 

Data-driven algorithms have the potential to learn how to 
find a LiDAR’s navigation-frame pose given a sensor-frame 
PC, without explicitly performing the error-prone FE and 
DA.  A major issue with neural networks, when used for 
localization, is their limited ability to quantify pose 
prediction uncertainty.  Unlike model-based approaches that 
readily output estimation error covariance matrices, neural 
networks learn heuristically.  We can evaluate their actual 
estimation errors offline by post-processing large amounts of 
pose error data [12].  But it remains unclear under what 
conditions a neural network can learn online to self-assess its 
LiDAR pose prediction uncertainty.   

In related work, other LiDAR-based CNNs have been 
implemented in realistic scenarios, but composite error 
statistics combining varying rover-to-obstacle geometries 
could only be evaluated offline [13, 14].  Other CNNs have 
been specifically developed to quantify uncertainty, 
including using raw error data or using a model-based 
estimator’s covariance output as training data [15, 16].  In 
[16], a matrix decomposition is implemented to ensure that 
the neural-network-estimated covariance matrix is positive 
definite.  In [17], sources of uncertainty are classified and 
accounted for in CNN-based estimators.  But, [15-17] are not 
implemented in LiDAR navigation applications.  In [18], 
two-dimensional indoor LiDAR data is processed using deep 
neural networks, including uncertainty quantification 
showing limitations of the Monte-Carlo dropout technique 
[19]; this effort is focused on mapping performance. 
Reference [20] shows promising localization performance 
using a LiDAR CNN in GNSS-denied urban areas, but 
uncertainty localization performance prediction is still an 
issue.  Missing from the literature is a detailed analysis of 
LiDAR CNN-estimated pose error distributions versus actual 
error distributions. 

In response, in this paper, we design a CNN LiDAR 
localization process that streamlines 3D PC processing, and 
we develop a new training method to output elements of a 
pose estimation error covariance matrix.  We evaluate the 
LiDAR CNN in comparison with a model-based approach. 

The second section of this paper outlines our CNN-based 
LiDAR navigation architecture.  It describes a new approach 
for parametric localization uncertainty quantification using a 
Cholesky factorization-based method to enforce the 
symmetry and positive definiteness of the pose estimation 
error covariance matrix.  The third section is a preliminary  
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Figure 1.  LiDAR CNN architecture where 3D point-clouds in the LiDAR’s field of view are captured using two two-dimensional arrays of azimuth-
elevation bins with color-coded ranging and intensity measurements, respectively.  Outputs include pose estimates and elements of the decomposed pose 
estimate covariance matrix.  
 

performance evaluation using data collected in a known 
laboratory environment.  Because this paper’s emphasis is on 
error distribution analysis, datasets are limited to lab 
experiments where true vehicle pose is continuously and 
accurately known.  Lab testing has limitations, but it reveals 
variations in error distributions that would be cost-
prohibitive to observe in field testing.  A comparison is 
performed with a more conventional model-based 
localization technique that uses static, recognizable features.  
Concluding statements are given in the fourth section. 

II. CNN ARCHITECTURE FOR 3D LIDAR POINT CLOUD 
LOCALIZATION WITH UNCERTAINTY QUANTIFICATION 

A. CNN Architecture for LiDAR PC-Based Localization 
A LiDAR PC is made of thousands of 3D point 

coordinates, each of which comes with a light-return-
intensity measurement.  Both the point coordinates and 
intensity values can be used for localization [11]. 

The 3D LiDAR PC must first be pre-processed to fit 
conventional image-based CNN functions that assume two-
dimensional arrays as inputs.  Consistent with the LiDAR’s 
spherical scanning of the environment, we rearrange the 3D 
PC point locations into azimuth-elevation bins with a 
resolution of approximately 1-degree-by-1-degree over the 
LiDAR field of view.  This is an improvement over the 
previous triple projection in [12].  This implementation also 
includes LiDAR light-return intensity data arranged in 
azimuth-elevation bins.  These two arrays serve as input 
layer to the CNN. 

Then, we process the input data with the CNN designed 
using PyTorch [21].  The CNN must find an estimate x̂  of 
the rover’s actual pose x  in a local navigation frame.  It 
must simultaneously output elements L̂  derived from P̂ , 
which is an estimate of the actual pose estimate error 
covariance matrix P . 

A diagram of the LiDAR CNN architecture is displayed 
in Figure 1.  It was designed iteratively with the intention of 

being as simple as possible to facilitate our understanding of 
the algorithm’s properties and of the most sensitive 
parameters.   Our preliminary design criterion is that the 
CNN should achieve an estimation performance similar to 
the example model-based approach in [10, 11].   

In [11], static, recognizable landmarks with viewpoint-
invariant features are extracted from the LiDAR PC and 
associated over time as the LiDAR moves in the 
environment. Point-features are then processed using an 
EKF.  The algorithm in [11] serves as guidance to tune the 
CNN’s number of layers and numbers of neurons per layer 
by matching output performance.  Further CNN 
improvements using more sophisticated architectures will be 
investigated in future iterations of this work.   

The CNN architecture includes three convolutional 
layers, each of which has a kernel size of 2×2 and a 
maximum pooling of 2×2 [12]. Their output is flattened into 
a 20,000×1 vector.  During our iterative CNN design, we 
verified that the same flattened layer could be used for pose 
and covariance estimation without significant performance 
impact.  The flattened layer is therefore the input to two 
separate threads for pose and covariance determination.  
Both threads comprise three fully connected layers.  

Each fully connected layers’neuron has a linear mapping 
function, and a ReLU activation function.  A neuron-dropout 
rate of 5% prevents overfitting the training dataset and 
provides robustness to changes during validation.  

In each thread, the last of the fully-connected layer is 
fully connected to an output layer through a linear mapping 
function.  The first thread’s output is the 3×1 LiDAR pose 
estimate vector x̂ , i.e., estimates of the LiDAR’s two-
dimensional horizontal position coordinates and of its 
orientation (or azimuth) in a local navigation frame.  The 
outputs of the second thread are estimates of the six lower-
triangular non-zero elements of the L̂  matrix defined by the 
Cholesky decomposition of the 3×3 a-posteriori pose 
covariance matrix ˆ ˆ ˆT=P LL . 



  

B. CNN Training for LiDAR PC-Based Uncertainty 
Quantification 
Training of the LiDAR CNN for the determination of the 

3×1 vector x̂ , which is an estimate of the actual pose vector 
x  (given by a reference truth source), aims at minimizing 
the following loss function:  

 1ˆ ˆ( ) ( )T
poseJ −≡ − −x x P x x  

where P   is the a-priori (predicted) covariance matrix of the 
state estimation error. 

Training of the LiDAR CNN for the determination of the 
non-zero elements of matrix L̂  aims at minimizing the 
following loss function derived from the Frobenius norm of 
matrix 1

3
ˆ ˆ[ ( ) ]T T− −−I L LL L : 

 1 1
cov 3 3

ˆ ˆ ˆ ˆtrace{[ ( ) ][ ( ) ] }T T T T TJ − − − −≡ − −I L LL L I L LL L  

 
where: 

trace{}  : is the trace operator, i.e., sum of the diagonal 
elements of the matrix in argument 

L   : is a 3×3 upper-triangular matrix derived from the 
Cholesky factorization of the true covariance 

T=P LL  

3I   : is a 3 3×  identity matrix 

The cost functions capture differences that we want to 
minimize in a two-step training process (a) between a known 
LiDAR pose x  and its CNN estimate x̂ , and (b) between a 
known LiDAR pose estimate error covariance, derived using 
CNN pose estimate error samples ( ˆ−x x ) for a same location 
of the LiDAR, and the CNN’s output pose estimate error 
covariance P̂ .   

In the expression of covJ , the Cholesky factorization 
ensures symmetry and positive definiteness of ˆ ˆ ˆT=P LL .  
Inverses capture a normalization operation by elements of L  
required to combine position and orientation quantities that 
have non-identical, and non-independent distributions.  The 
Frobenius norm gives a scalar measure of the 3 3×  matrix.  
Other cost functions, e.g., used in references [15,16], did not 
provide adequate performance results in this specific LiDAR 
navigation implementation. 

In training, we employ a stochastic gradient descent 
algorithm to update the CNN’s internal weights and biases to 
minimize the loss functions.  We first train pose estimation, 
and then pose estimate error covariance determination. The 
CNN is trained using a third of the data collected using our 
experimental testbed. We use all samples of the LiDAR 
revisiting a same location to determine truth pose estimation 
error covariance P  at that location.  CNN performance is 
then validated using the other two thirds of the data. 

III. PRELIMINARY PERFORMANCE EVALUATION 

A. Experimental Setup 
We built an experimental data collection testbed that 

provides a sufficient number of pose estimate samples to 
empirically evaluate the true pose error distribution.  It 
comprises a rover repeatedly moving on a figure-eight track 
and carrying a suite of sensors.  The sensor suite includes a 
Velodyne Puck lidar sensor VLP-16 providing a 360-degree-
azimuth, 35-degree-elevation 3D scan of the environment at 
a 10 Hz sampling rate.  A VICON infrared camera-based 
motion capture system tracks the LiDAR’s true pose.   

As described in Section II, for guidance in the CNN 
design, we use the landmark-based localization algorithm in 
[11].  To facilitate landmark identification in this reference 
algorithm, we place six cardboard cylinders around the 
figure-eight track.  It is worth noticing that the CNN does not 
require PC segmentation or landmark extraction, and uses 
the entire PC, not only a subset of data points corresponding 
to landmarks.  Data collection was performed over 3.5 hours, 
during which the rover travelled repeatedly on the figure-
eight track.  It completed 700 laps, the first 100 of which we 
use in this paper.   

B. LiDAR CNN Positioning Performance 
Out of the 100 figure-eight laps of LiDAR PC and truth 

data that was collected, 30 laps are used for training, and 70 
laps are used for validation.  As compared to [12] where we 
performed localization only, the CNN must learn elements of 
a covariance matrix in addition to the pose estimate.  The 
model was trained on a Nvidia RTX 3090 graphics card.  

 

 
Figure 2.  Testbed setup and example LiDAR point cloud collected 
during the experiment. 



  

The estimated position from the LiDAR CNN over 100 
laps are plotted against the true trajectory in Figure 3. The 
red dot-markers represent the LiDAR CNN estimate, the 
black line represents the true trajectory.  Neither the red 
markers nor the black line are visible because they are 
underneath the error ellipses.   

The gray dots represent the LiDAR PCs at one instant;  it 
was rotated and translated from the original LiDAR-frame 
for representation in the navigation frame.  LiDAR PCs 
come as inputs to the CNN in sensor frame, and the CNN 
must learn to perform an equivalent operation to achieve 
localization in the navigation frame.  The six black dots 
around the figure-eight are landmark locations used in the 
reference landmark-based algorithm [11].  

The zoomed-in window in Figure 3 shows the “1-sigma” 
CNN-estimated horizontal position estimate covariance 
ellipses in blue, and the true, post-processed, sample 
covariance ellipses in orange.  Covariance ellipses represent 
the spread of the estimation error.  In the zoomed-in window, 
both the true and estimated covariance matrices semi-major 
axes seem reasonably well aligned, with consistently larger 
error spread along the in-track direction as compared to the 
off-track direction.  Demonstrating consistency between 
CNN-estimated and true error distributions is a major 
objective of this paper. 

The term “1-sigma” refers to the fact that if the position 
estimate vector was a bivariate normally distributed random 
vector, we would expect 40% of the sample data to be within 
n the “1-sigma” covariance ellipse (we would expect 68% of 
the data to be within +/- 1 sigma bounds for a one-
dimensional random variable).  

 

 

 
Figure 3.  Rover trajectory and covariance ellipses estimated using the 
CNN-based LiDAR localization algorithm described in Section II (showing 
horizontal position coordinates only, no heading angle estimate) over 100 
repeated figure-eight laps;  the estimated covariance ellipses (blue) are 
good approximations of the true covariance ellipses (orange)  . 

C. LiDAR CNN Pose Performance Comparison with 
Model-Based Methods 
Figure 4 is a comparison of CNN localization versus a 

more conventional LiDAR EKF that uses extracted point-
features for localization.  Figure 4 shows both cross-track 
positioning errors on the upper charts, and heading angle (or 
azimuth angle) estimation errors on the lower charts.  It does 
so for the EKF and CNN-based approaches on the left-hand-
side and right-hand-side charts, respectively.  In all cases, the 
cross-track and heading angle deviations are lower than 30 
mm and 2 deg, respectively.  We focused on cross-track 
positioning deviations because this direction is of primary 
concern in ground-vehicle lane-centering tasks. 

Figure 4(a) shows increased error and error covariance 
when the LiDAR crosses the tracks’ intersection.  This 
occurs in part because of higher vibrations and of landmark 
feature-extraction errors in the EKF-based approach.  After 
further investigation, we determined that another, more 
significant source of errors comes from the LiDAR’s warm-
up period [22].   

Figure 5 was generated similar to Figure 4, but we 
removed the few laps impacted by the LiDAR warm-up 
period, and we changed the y-axes scales.  Both the EKF-
based approach in Figure 5(a) and the CNN localization in 
Figure 5(b) show lower errors as compared to Figure 4.  The 
reduction in error deviation is of factor three, which cannot 
be neglected, and would have been difficult to identify in a 
field test.   

Position and heading angle error estimation in Figure 
4(a) are driven by feature extraction errors.  Feature 
extraction is the process of identifying recognizable 
landmarks in the environment, in this case, cardboard 
cylinders.  The data is segmented to find the few datapoints 
originating from the landmarks, and the central axis of the 
cylinder is computed [11].  Few point features are extracted 
to minimize the risk of mistaking one landmark from another 
in data association, i.e., when sending the point feature 
measurements to the EKF.  The localization process can be 
more robust when using the entire point cloud as in Figure 
4(b), which is an advantage of the CNN over this specific 
EKF-based implementation.  Other implementations that are 
not landmark-based could be considered at the cost of higher 
computation load (e.g., [6]). 

LiDAR warm-up-induced error variations are removed in 
Figure 5.  The true sample error covariance envelopes (black 
lines) capture the main error variations as the LiDAR’s 
viewpoint changes with vehicle motion.  This true 
covariance envelope is fairly consistent for the EKF-based 
and CNN-based approaches, with slight increases in heading 
angle estimation error deviations at times 4s-to-6s and 14s-
16s when the vehicle crosses the tracks intersection.   

In Figure 5(b), the red lines represent the CNN-estimated 
covariance envelopes, which are constituent over multiple 
laps, and also match the true envelope fairly well, although 
there is a slight time offsets between black and red lines.  We 
further investigate this offset in the next section. 
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(a) Landmark-based localization

 
Figure 4.  Cross-track and heading angle estimation errors obtained: (a) using LiDAR EKF;  (b) using LiDAR CNN.  Overall, the estimate errors are 
small, but significant feature extraction error variations impact the EKF-based approach.  The LiDAR CNN method does not require explicit feature 
extraction.  The LiDAR CNN uses the entire point-cloud, whereas the LiDAR EKF localization methods only uses datapoints corresponding to identified 
landmarks. 

 

0 2 4 6 8 10 12 14 16 18 20
-10

0

10

C
ro

ss
 T

ra
ck

 E
rro

r (
m

m
)

Sample error

Sample 1  covariance envelope

0 2 4 6 8 10 12 14 16 18 20

Time (s)

0

H
ea

di
ng

 e
rro

r (
de

g)

(a) Landmark-based localization (subset of data)
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Figure 5.  After removing laps impacted by the LiDAR warm-up period, this figure shows the cross-track and heading angle estimation errors obtained: (a) 
using LiDAR EKF;  and (b) using LiDAR CNN.  The estimated error covariance envelope for LiDAR CNN (red lines in (b)) is consistent over multiple laps 
(mostly overlapping) and is consistent with the true covariance envelope (black line).  It is worth noticing that the Y-axis scales changed as compared to 
Figure 4.    

 

D. LiDAR CNN Pose Performance Comparison with 
Model-Based Methods 
Figure 6 shows the LiDAR CNN covariance envelope 

estimated during training (light-green line), which does not 
perfectly fit the true covariance (black line).  This suggests 
that the CNN is not over-fitted during training.  The red lines 
are the estimated covariance obtained during validation.   

The figure shows 30 overlapping and indistinguishable 
green covariance envelopes and another more than 30 red 

covariance envelopes.  They are both self-consistent over 
multiple laps.  They are also consistent in magnitude with the 
true covariance envelope (black).  The red curves are also 
consistent with the green envelopes derived during training, 
but there appears to be a slight time offset that we suspect is 
caused by imperfect calibration of our experiments.   

Further evaluation of the experimental setup and data 
processing algorithm will be performed in future work to 
find the source of this apparent slight timing inconsistency. 
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Figure 6.  Cross-track and heading angle estimation errors, true error 
covariance, and estimated error covariance obtained using a LiDAR CNN.  
The estimated error covariance envelope achieved during training (green 
lines) and validation (red lines) are consistent with the true covariance 
envelope (black line) and are consistent over multiple laps.  The apparent 
timing offset between green and red lines will be investigated in future 
work.   

IV. CONCLUSION 
In this paper, we designed a new Convolutional Neural 

Network (CNN) architecture, which we trained to directly 
estimate position and orientation (pose) from a LiDAR point 
cloud (PC) without explicit extraction of environmental 
features.  The CNN architecture is streamlined to take as 
inputs two arrays corresponding to the LiDAR’s distance and 
light-return intensity measurements over a range of azimuth 
and elevation angles that define the sensor’s field of view.  
The CNN outputs include both pose estimates and pose 
estimation uncertainty in the form of elements of an 
estimation error covariance matrix.   

We carried out a preliminary analysis of the LiDAR 
CNN’s performance using data collected in a known lab 
environment. We evaluated the LiDAR CNN performance in 
comparison with a more conventional EKF-based method 
that extracts and associates landmark features from the 
LiDAR PC for localization.  The lab test helped analyze the 
system, and illustrated the CNN’s robustness to sensor errors 
during the LiDAR warm-up period.  Future work will aim at 
quantifying the LiDAR CNN’s ability to evaluate pose 
uncertainty in realistic ground vehicle environments.    
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