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ABSTRACT

In this paper, we quantify integrity for a GNSS-PPP system when augmented with mega-constellation satellites (GNSS-MC). The
geometric diversity provided by signals from fast-moving LEO satellites is exploited for rapid estimation of floating valued cycle ambi-
guities. Further, the improved redundancy provided by mega-constellation satellite signals in addition to GNSS enable e�cient fault
detection using carrier phase Advanced Receiver Autonomous Integrity Monitoring (ARAIM). The proposed framework assumes
that mega-constellation (MC) satellite orbit and clock determination is based on their spaceborne GNSS receivers. We quantify
the impact on integrity of GNSS faults, which not only a�ect the potential users on earth, but also the spaceborne MC receiver
data. Given that GNSS faults can cascade to constellation-wide MC faults, this work determines the conditions where GNSS-MC
improves integrity, and quantifies this improvement as compared to GNSS only.

1. INTRODUCTION

With increasing demands on autonomy and navigation safety, quantifying accuracy is insu�cient. We need to quantify integrity. So
far, the best achievable performance in terms of navigation integrity over wide areas is obtained using carrier phase GNSS positioning
and Precise Point Positioning (PPP). For example, one of the most demanding applications motivating the need for GNSS PPP is
automated driving systems. GNSS-PPP performance approaches autonomous car navigation integrity requirements [1, 2], but does
not quite meet them [3, 4]. In this work, we evaluate the integrity performance of GNSS-PPP augmented with low earth orbit (LEO)
satellites.

In carrier phase GNSS, changes in satellite geometry can be exploited to provide quick and accurate estimation of floating-point
cycle ambiguities [5, 6]. But, the large amount of time for GNSS spacecraft to achieve significant changes in line of sight results in
long initialization times, and limits the use of carrier phase GNSS in most real-time applications. The geometric diversity needed for
prompt carrier phase positioning can potentially be provided by emerging LEO satellite constellations launched by private companies
such as SpaceX and Amazon. In contrast to GNSS at medium earth orbit (MEO), angular variations from LEO satellites quickly
become substantial. SpaceX’s plans to deploy tens of thousands of satellites in LEO could also result in a significant increase in
redundant ranging measurements. Therefore, the combination of LEO mega-constellation and GNSS observations can make timely,
global, robust, and unambiguous carrier phase positioning possible.

The use of LEO satellites for improved navigation performance is not unexplored. The underlying concept of using satellite motion to
resolve carrier phase cycle ambiguities is equivalent to the principle of Doppler positioning used in Transit, the first operational satellite
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radio-navigation system. Using Transit’s constellation of LEO satellites, the position of stationary receivers could be determined with
better than 70 meters of accuracy [7]. The most compelling proof of concept for LEO-based carrier phase positioning without the
stationary user restriction was realized in the late 1990’s by Rabinowitz et al. [8], with the development of a receiver capable of
tracking carrier phase measurements from GPS and from GlobalStar (another LEO telecommunications constellation). In [9], the
augmentation of GPS with LEO Iridium satellite signals provided signal redundancy, and enabled fault detection using carrier phase
ARAIM. Another implementation can be found in [10] where LEO satellite signals were used to limit the drift of inertial sensors in
GPS-denied areas. Reference [11] assessed the performance achieved by augmenting GNSS with measurements from a lone LEO
satellite (Luojia-1A) carrying a navigation payload capable of automatically calculating its orbit and clock by itself. Recent work in
[12, 13, 14] examined several aspects that could allow LEO mega-constellations to act as navigation satellites.

Apart from Iridium-GPS, there has not been much analysis on the integrity of LEO-augmented GNSS systems. In response, this
research focuses on safety-critical navigation applications where integrity is of primary concern. Integrity risk is the probability of
undetected faults causing unacceptably large positioning errors. Can mega-constellations, when combined with GNSS and PPP
corrections, contribute to achieving safety-critical integrity risk requirements?

In prior work [15], we evaluated the integrity performance achieved by a notional mega-constellation-augmented GNSS (GNSS-MC)
architecture assuming fault-free conditions, and concluded that GNSS-MC has the potential to reduce the achievable horizontal alert
limit. Since the mega-constellations are primarily intended for communication, assumptions were made regarding the space, ground,
and user segments that would allow these LEO constellations to be used for navigation. An estimation algorithm was derived for
integrating dual-frequency measurements from GPS and Galileo, with dual-frequency carrier phase measurements from OneWeb and
Boeing mega-constellations, which leveraged satellite motion to determine floating-valued cycle ambiguities. We designed a batch
estimator to account for time correlation in the errors through newly derived measurement error models that still need to be validated.

In this paper, we modify and extend the prior analysis to incorporate signal-in-space fault hypotheses, e.g., including excessive
spacecraft clock drift. We develop a fault detector and evaluate the impact of undetected satellite faults on integrity risk. In risk
evaluation, we want risk estimates to upper-bound the actual risk. For lack of knowledge on rarely-occurring fault magnitude
distributions, we need to account for the worst case fault model over time, which maximizes the predicted integrity risk. In parallel,
we can use robust, over-bounding probabilistic models [16, 17] for satellite orbit and clock errors, tropospheric delays, and multipath
and receiver noise. While snapshot error models for GNSS are well established [18], error models over time for GNSS and for LEO
are not as well understood. In response, in this work, we refine the time-correlated measurement error models by using a sequential
estimation error bounding method developed in [19, 20], with high-integrity models developed in [21, 22], to conservatively account
for time correlation in satellite orbit and clock ephemeris errors, tropospheric delay, and multipath.

Section 2 of the paper describes an assumed system architecture for the combined constellation where MC orbit and clock deter-
mination (OCD) is performed using MC-embedded GNSS receivers. Starlink mega-constellation satellites are used as examples,
but the methods presented in the paper can be adapted to other LEO constellations if their spacecraft have similar capabilities
(including spaceborne GNSS receivers). The third section describes the estimation and fault detection algorithms. Based on the
system architecture described in the first section, MC orbit and clock determination using spaceborne GNSS receiver data is not
only impacted by MC satellite clock faults, but also by GNSS-based MC orbit determination faults. This research explores this
cascading fault e�ect of using GNSS-derived MC positions. In the last section, we evaluate the integrity performance of the combined
constellation. This research provides methods to analyze the potential of mega-constellation-augmented GNSS to achieve safety
critical navigation requirements in air and land transportation applications.

2. GNSS-MC SYSTEM ARCHITECTURE

In order to evaluate the potential performance of a GNSS-MC system, we make assumptions on the space, ground, and user segment
that will allow such a navigation system to function. The performance evaluation will be based on assumed characteristics of the
example MC satellite signals including their frequency and footprint. We assume the user has access to PPP corrections, and this is
reflected in the measurement error parameter values in Section 3.

2.1. Envisioned GNSS-MC System Overview

Constellations. We use GPS and Galileo for GNSS. We quantify the expected integrity performance of an assumed MC configura-
tion, modeled after Starlink as an example. In this work, we consider 27-satellite GPS, 27-satellite Galileo, and 1584-satellite MC.
The simulated MC shown in Fig. 1 is based on the first shell in Phase 1 of Starlink constellation deployment [23].
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Ranging. For ranging measurements, we assume that the ground user can get dual frequency code and carrier measurements from
GNSS, and dual-frequency carrier phase measurements only from MC satellites. The measurements from MC satellites are assumed
to be carrier-phase-based so that ranging to the satellite can be incorporated with data sent during downlink communication. The
LEO transmitter antenna beam is designed to ensure continuous Earth surface coverage while limiting overlap between satellites in
adjacent orbital planes [24]. According to SpaceX’s FCC filings [23], ground users can receive Starlink signals at a minimum elevation
angle of 25◦ in the early phases of constellation deployment, and 40◦ once the full constellation is deployed. In our simulations,
we assume a ground user elevation mask of 5◦ for GNSS, and 40◦ for MC. It is clear in Figure 2 that relative to a user on the
ground, GNSS satellites barely move, while MC satellites passes are substantial. We leverage MC satellite motion to enable quick
and unambiguous carrier-phase positioning. However, this satellite motion is limited to MC signals received at angles above the
elevation mask of 40◦.

Figure 1: GNSS-MC. The simulation uses 27-satellite GPS (shown
in gray), and 27-satellite Galileo (shown in teal). The 1584-satellite
Starlink constellation (shown in blue) used in the simulations has 72
orbital planes inclined at 53◦ at 550 km altitude [25, 24].

Figure 2: Azimuth-Elevation Plot. This azimuth-elevation plot shows
a sky view of the satellite positions over 10 minutes for GPS in gray,
Galileo in teal, and MC in shades of blue. The dots indicate the satellite
positions at 30-second intervals.

MC Orbit and Clock Determination (OCD) We assume the MC satellites carry a hosted payload consisting of a dual-frequency
GNSS receiver and antenna. The spaceborne receiver gives the MC satellite its position, velocity and clock o�set. In addition to
ranging measurements, MC satellites send their GNSS-derived pose to a dedicated network of ground stations, which computes and
disseminates the MC orbit parameters to the users. With this framework where MC satellites derive their pose using GNSS satellites,
using mega-constellation signals not only introduces more fault sources, but in addition may also be impacted by GNSS faults.
Given that GNSS faults can cascade to constellation-wide MC faults, a key objective of this work is to determine the conditions
where GNSS-MC improves integrity, and quantify this improvement.

2.2. GNSS-MC Assumed Architecture

To determine whether or not it is even worth considering MC-augmentation, we put together a GNSS-MC framework based on the
existing GNSS-PPP architecture. This framework is illustrated in Figure 3. The basis for the GNSS-PPP system is shown with gray
text, boxes, and arrows. The ground user is equipped with a PPP-enabled GNSS receiver with ARAIM. There is a dedicated network
of PPP reference stations which tracks the GNSS satellites, calculates precise GNSS ephemeris and integrity parameters, and provides
alerts and GNSS corrections to the ground user through cellular signals, and through PPP-dedicated geostationary satellites.

The proposed MC-augmentation is shown with black text, boxes, and arrows in Figure 3. We assume that the ground user can
measure range to MC satellites using carrier-phase measurements. The MC satellites are equipped with GNSS receivers and integrity
monitoring for real-time navigation, onboard time-synchronization, and GNSS fault detection. MC satellites provide ranging
measurements and its GNSS-derived pose, with some guaranteed GNSS fault detection probability to the reference stations. There,
it is processed to produce precise MC ephemeris that is sent to the users through the PPP network. The network of reference stations
is assumed to provide precise MC orbit and clock ephemeris with integrity monitoring.

3057



It is important to keep in mind that this is an example framework. We define the framework with and without MC to allow
quantification of the relative performance between using GNSS-PPP, and using GNSS-PPP-MC. For now, we are not accounting
for the correlation between MC positioning errors and user positioning errors, which are both using GNSS measurements. Part of
what mitigates that correlation is the fact that the MC OCD process (gathering data, computing orbit ephemeris, and disseminating
information to users) takes time. Thus, it is likely that the MC orbit and clock errors impacting the ground user depends on past-time
GNSS measurement errors and is dominated by prediction errors.

Figure 3: Overview of a GNSS-PPP Architecture Augmented with MC. The basis for the GNSS-PPP system is shown in gray, and components
for MC-augmentation is shown in black.

3. NOMINAL MEASUREMENT ERROR MODELS ACCOUNTING FOR TIME-CORRELATION

Assumptions were made in [26] to justify error models for LEO single-frequency ranging measurements. However, signals from
fast-moving LEO satellites cross wide sections of the atmosphere within a few minutes, which makes modeling of ranging errors
due to the atmosphere extremely challenging. Moreover, addressing ionospheric anomalies in safety-critical applications is exacting
[27, 28]. In response, in this preliminary analysis, we assume dual-frequency carrier measurements from MC satellites (no code),
which are used to eliminate the impact of ionospheric errors. Models for the remaining errors including satellite orbit and clock
ephemeris, tropospheric delay, multipath, and receiver noise are discussed next.

We assume that the ground user receives frequent PPP updates. The errors are modelled as in [15] with refinements to account
for PPP corrections. The linearized ionosphere-error-free carrier phase and code measurement equations for satellite i at time k
respectively are

iφk = −ieT
k xk + τk +

iη+ iEE ,k +
iET,k +

iEM ,φ,k +
iER ,φ,k

iρk = −ieT
k xk + τk + iEE ,k +

iET,k +
iEM ,ρ,k +

iER ,ρ,k
(1)

where iφk is the carrier phase measurement, iρk is the code phase measurement, iek is the 3×1 line-of-sight vector from the satellite
to the user in North-East-Down (NED), xk is the user position with respect to the linearization point, τk is the receiver clock o�set
(one for each constellation), iη is the carrier phase cycle ambiguity (there is no subscript k because it is constant over time), iEE ,k
is the satellite orbit and clock ephemeris error, iET,k is the residual tropospheric error, iEM ,k is the multipath error, and iER ,k is the
receiver noise error.

3.1. Satellite Orbit and Clock Ephemeris Error

The error due to satellite orbit and clock for satellite i at time k is modelled as a first-order Gauss-Markov Process (FOGMP)

iEE ,k = e −Ts/TE iEE ,k−1 + νE ,k , νE ,k ∼N
�

0,σ2
E

�

1− e −2Ts/TE
��

(2)

where TE is the Markov process correlation time constant, νE ,k is the driving noise, Ts = tk − tk−1 is the sampling interval, and σE
is the GMP standard deviation. We assume no correlation between measurements from di�erent satellites [29, 30, 31]. The GMP
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standard deviation and correlation time constant for ground vehicle applications are given in Table 1 for GNSS [4, 21, 32]. The
GMP standard deviation for MC ephemeris is assumed to match GNSS.

3.2. Residual Tropospheric Error

The bulk of the tropospheric delay error is removed using standard models of the troposphere [33]. We model the residual tropo-
spheric error as a FOGMP scaled by an elevation-dependent tropospheric correction mapping function [34]

icT,k =
1.001

Æ

0.002001+ (sin(iθk [rad]))2
(3)

for satellite elevation angles iθk ≥ 4◦. The resulting error contribution for satellite i at time k is given by
iET,k =

icT,k
iζT,k . (4)

The residual tropospheric error at zenith is modeled as

iζT,k = e −Ts/TT iζT,k−1 + νT,k , νT,k ∼N
�

0,σ2
T

�

1− e −2Ts/TT
��

. (5)

The GMP parameters are given in Table 1, where (0.05 m)2 is the overbounding variance based on the months of data gathered from
multiple globally distributed locations processed in [22]. The error model parameters for MC is assumed to match GNSS, since the
di�erence in satellite motion is already captured in Eq. (3).

3.3. Multipath Error

The multipath error is modeled as a FOGMP, multiplied by the elevation-dependent mapping function given in [33].

iEM ,φ,k =
icM ,k

iζM ,φ,k
iEM ,ρ,k =

icM ,k
iζM ,ρ,k

(6)

where the elevation-dependent multipath mapping function is

icM ,k = cIF

�

0.13+ 0.53 e (−
iθk [deg]/10)� . (7)

for carrier-smoothed measurements [34]. Although we are using raw, non-smoothed measurements in this work, we assume that
we are sampling frequently enough that we approximate smoothed measurements. The ionosphere-free measurement combination
multiplier, cIF , is computed with the equation

cIF =

√

√

√

√

√

f 4
L1 + f 4

L5
�

f 2
L1 − f 2

L5

�2 (8)

where fL1 and fL5 are the frequencies for L1 and L5 respectively. The use of equivalent cIF values for all constellations is a simplifying
assumption that can be refined in future work. The GMP term in Eq. (6) for carrier and code measurements are

iζM ,φ,k = e −Ts/TM iζM ,φ,k−1 + νM ,φ,k , νM ,φ,k ∼N
�

0,σ2
M ,φ

�

1− e −2Ts/TM
��

iζM ,ρ,k = e −Ts/TM iζM ,ρ,k−1 + νM ,ρ,k , νM ,ρ,k ∼N
�

0,σ2
M ,ρ

�

1− e −2Ts/TM
�� . (9)

GNSS multipath error has been modeled for automotive applications in [35], where values for the correlation time constant and
pseudorange bounding standard deviation can be used as reference. These values were taken into account to get the parameters for
GNSS listed in Table 1, where the order of magnitude di�erence in multipath error between code and carrier is accounted for. For
MC, we assume the same GMP variance, and a time constant scaled for LEO orbits [15, 36].

3.4. Receiver Noise Error

Receiver noise is modeled as Gaussian white noise with an elevation-dependent standard deviation, and is computed as

iER ,φ,k =
iνR ,φ,k , iνR ,φ,k ∼N (0, iσ2

R ,φ)
iER ,ρ,k =

iνR ,ρ,k , iνR ,ρ,k ∼N (0, iσ2
R ,ρ)

. (10)
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Elevation-dependent receiver noise error models are formulated for airborne aircraft using carrier-smoothed code measurements from
GNSS in [18]. The e�ect of receiver noise is assumed to match for GNSS and MC measurements using parameters

iσR ,ρ,k = cI F

�

0.15+ 0.43 e (−
iθk [deg]/6.9)� (11)

iσR ,φ,k =
� 1

100

�

cI F

�

0.15+ 0.43 e (−
iθk [deg]/6.9)� (12)

3.5. Accounting for Uncertainty in Error Time Correlation

Using the maximum Markov process time constant does not
always produce an upper bound on the estimate error variance
[20]. Moreover, experimental data show that measurement time
correlation due to ephemeris, multipath, and troposphere errors
do not behave like a FOGMP [21, 37, 38]. To address this
issue, we use a pair of GMP autocorrelation functions with time
constants Tmin and Tmax respectively, to bound the unknown
autocorrelation, which does not have to be a FOGMP. Langel
showed that these autocorrelation functions could be used to
guarantee an upper bound on the estimation error variance
for a linear estimator [19]. A practical implementation of
this positioning error variance bounding method is described in
Appendix A. As a preliminary analysis, the range of GMP time
constants [Tmi n , Tma x ] is taken to be [0.8Tε , 1.2Tε], where Tε is
the FOGMP time constant specified in Table 1. The subscript ε
denotes E , T , M for ephemeris, troposphere, and multipath errors
respectively.

Figure 4: Error Autocorrelation Bounding. This sketch gives a visual
representation of how the actual error autocorrelation (gray lines)
is bounded by two first order Gauss Markov processes with time
constants Tmin and Tmax (black lines).

We have refined our models from last year, and in parallel, work is being done to process years of data to get high-integrity error
models for these error sources. In future work, we will consider more realistic ranges of values that have recently been published in
[21, 22, 32].

3.6. Summary of Error Parameters

The measurement error parameters for ground vehicle applications with PPP corrections are summarized in Table 1. These error
models, particularly those of MC will have to be further evaluated using experimental data.

Table 1: Summary of GMP Error Model Parameters

Error Source Mapping Function σGMP Tnominal

Ephemeris (GPS) 0.10 m 2 h
Ephemeris (Galileo) 0.10 m 4 h

Ephemeris (MC) 0.10 m 100 min
Troposphere Eq. (3) 0.05 m 30 min

Code Multipath (GNSS) Eq. (7) 0.83 m 158 s
Carrier Multipath (GNSS) Eq. (7) 0.0083 m 158 s

Carrier Multipath (MC) Eq. (7) 0.0083 m 6 s
Receiver Code Noise (GNSS) Eq. (11)

Receiver Carrier Noise Eq. (12)

4. GNSS-MC ESTIMATION AND FAULT DETECTION ALGORITHMS

4.1. Batch Measurement Equation

A batch weighted least squares algorithm is used to simultaneously estimate the three-dimensional user position and receiver clock
o�sets at every time step, and the floating valued carrier phase cycle ambiguities that are constant over time, as long as the carrier
is continuously tracked. For practical applications, this method can be implemented sequentially in a sliding window mechanism,
as long as adequate receiver memory is available to store current and past measurements. Starting with the linearized measurement
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equations for ionosphere-error-free carrier and code measurements Eq. (1), we can derive a batch measurement equation of the form
z =H x+ v by following the steps detailed in Section 3.1 of [15], and making the following changes:

uk =









xk
τGPS,k
τGalileo,k
τMC ,k









, (13)

igT
k =

�

−ieT
k 1 0 0

�

if satellite i is a GPS satellite, (14)
igT

k =
�

−ieT
k 0 1 0

�

if satellite i is a Galileo satellite, and (15)
igT

k =
�

−ieT
k 0 0 1

�

if satellite i is an MC satellite. (16)

We stack the measurements over time for each satellite i for time instances 1 through q . The resulting geometry matrix, carrier and
code measurements, carrier and code measurement noise vectors, and user states are respectively expressed as

iG =









igT
1 0

. . .
0 igT

q









iϕ =









iφ1
...

iφq









iρ =









iρ1
...

iρq









ivφ =









iνφ,1
...

iνφ,q









ivρ =









iνρ,1
...

iνρ,q









u =









u1
...

uq









. (17)

The measurements get stacked with GNSS carrier phase measurements first, followed by MC carrier phase measurements, then
GNSS code measurements. The resulting stack of measurements is































1ϕ
2ϕ

...
nsatϕ

1ρ
2ρ
...

nGNSSρ































=

































1G 1q×1 0 0
2G 0 1q×1 0

...
...

...
. . .

...
nsat G 0 0 1q×1

1G 0 0 0
2G 0 0 0

...
...

...
. . .

...
nGNSS G 0 0 0















































u
1η
2η
...

nsatη















+

































1vφ
2vφ

...
nsat vφ

1vρ
2vρ

...
nGNSS vρ

































(18)

where nGNSS is the number of GNSS satellites, and nsat is the total number of visible satellites. The stack of measurements can be
compactly written as

�

ϕ
ρ

�

=
�

Gφ HN
Gρ 0

�

�

u
η

�

+
�

vφ
vρ

�

. (19)

The batch measurement error covariance matrix accounting for measurement error time correlation is given by

V =
�

VE +VT VE +VT
VE +VT VE +VT

�

+
�

Vφφ,M +Vφφ,R 0

0 Vρρ,M +Vρρ,R

�

(20)

where VE is the ephemeris error covariance, VT is the residual tropospheric error covariance, VM is the multipath error covariance,
and VR is the receiver noise error covariance. The covariance matrix captures the fact that VE and VT are common to code and
carrier measurements, while VM and VR are di�erent for code and carrier measurements. For each satellite i these covariances are

iVE = σ
2
E exp

�

−
Ts

TE
B
�

,

iVT = σ
2
T

icT
icT

T ◦ exp
�

−
Ts

TT
B
�

,

iVM = σ
2
M

icM
icT

M ◦ exp
�

−
Ts

TM
B
�

,

iVR =

















iσ2
R ,1 0 . . . 0

0 iσ2
R ,2

. . .
...

...
. . . . . . 0

0 . . . 0 iσ2
R ,q

















, where B =

















0 1 2 . . . q − 1
1 0 1 ...2 1 0
...

. . .
q − 1 0

















. (21)
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The matrix B is a Toeplitz matrix. The symbol "◦" indicates element-by-element multiplication of matrices, where as "exp ◦" means
element-wise exponential function applied to the matrix in parentheses. For error source ε, σε is the GMP standard deviation, icε is
the vector of elevation-dependent coe�cients stacked at all times for satellite i , Tε is the Markov process correlation time constant,
and Ts is the sampling interval. The matrix B arises from computing the cross-correlation terms between separate times whilst having
a fixed sampling period. The detailed derivation of these time-correlated measurement error covariance matrices is described in the
Appendix of [15].

4.2. Batch Estimator

The weighted least squares estimate x̂ that minimizes the sum of squares of the weighted observation errors is given as

x̂ = Sz (22)

where we define the weighting matrix as W = V−1 to get the estimator matrix

S =
�

HTWH
�−1

HTW . (23)

4.3. Detection Using Multiple Hypothesis Solution Separation

Fault detection is implemented using a multiple hypothesis solution separation (MHSS) batch ARAIM method [39, 40, 18, 41, 42].
We consider a set of mutually exclusive, exhaustive hypothesis H (i ) for fault modes i = 0, 1, ..., h , where the number of hypotheses h
is discussed in Section 4.4. The right superscript "(i )" for hypothesis index is not be confused with the left superscript "i " for satellite
index. Under each hypothesis, a subset of satellites is assumed to be impacted by the fault, and the fault-tolerant subset solution for
H (i ) excludes measurements from the faulted satellites. We consider fault-free H (0), and faulted hypotheses H (≥1). The fault-tolerant
position solution for each hypothesis is defined as

x̂(i ) = S(i )z (24)

S(i ) =
�

H(i )
T

W(i )H(i )
�−1

H(i )
T

W(i ) (25)

where S(i ) is the estimator which excludes measurements from the faulted satellite/s for hypothesis H (i ). Given this hypothesis’
estimator, the corresponding estimation error variance for the user position at current time q for the North component is given by

σ (i )
2

N =
�

H(i )
T

W(i )H(i )
�−1

(qN ,qN )
(26)

where qN is the index for the current time user position North component. The variance is similarly derived for the East and Down
position components, designated by E and D subscripts. We define the solution separation between the all-in-view and fault-tolerant
position solutions as

∆x̂(i ) = x̂(i ) − x̂(0) =
�

S(i ) − S(0)
�

z (27)

from which we can extract the solution separation components∆x̂ (i )N ,∆x̂ (i )E , and∆x̂ (i )D , which are normally distributed with variances
σ (i )

2

∆,N , σ (i )
2

∆,E , and σ (i )
2

∆,D respectively. These solution separation variances are used in defining the detection thresholds in the next
section. Nominal biases, which are included in standalone solutions [39, 40, 18] and may or may not impact PPP corrected signals,
will be addressed in future work.

4.4. Integrity and Continuity Risk Evaluation

We write the integrity risk, or probability of hazardously misleading information (HMI) considering all fault hypothesis as

PHMI =
2n−1
∑

i=0
P
�

HMI |H (i )
�

PH (i ) (28)

where n is the sum of the number of visible satellites and the number of constellations, 2n is the total number of faulted versus fault-free
subset combinations in the set n, H (i ) are the fault and fault-free hypotheses, PH (i) is the prior probability of H (i ) occurrence, and
HMI occurs when the estimation error on the state of interest exceeds a predetermined threshold and is not detected. Going through
all possible hypotheses is computationally expensive so in practice, the hypotheses are divided into two groups: one containing faults
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that are most likely to occur and whose impact on estimation error we want to monitor, and one containing unlikely hypotheses
which we will not monitor, but will account for considering its prior probability of occurrence. We require that the integrity risk
contribution from the not monitored hypotheses be significantly smaller than the integrity risk requirement. Thus, Eq. (28) can be
bounded by [41]

PHMI ≤
h
∑

i=0
P
�

HMI |H (i )
�

PH (i ) +
�

1−
h
∑

i=0
PH (i )

�

(29)

where the first term is the integrity risk for all monitored hypotheses (fault-free and faulted), and the second term is the bound on
integrity risk for hypotheses not monitored. The first term in Equation (29) can be rewritten as the sum of risk contributions from
the North, East, and Down directions as follows

PHMI ≤
h
∑

i=0
P
�

HMI N |H
(i )
�

PH (i ) +
h
∑

i=0
P
�

HMI E |H
(i )
�

PH (i ) +
h
∑

i=0
P
�

HMI D |H
(i )
�

PH (i ) +
�

1−
h
∑

i=0
PH (i )

�

(30)

where subscripts N , E , D denote North, East, Down respectively. The integrity risk in the Down direction is
h
∑

i=0
P
�

HMI D |H
(i )
�

PH (i ) = P
��

�

�ε
(0)
D

�

�

� > VAL | H (0)
�

PH (0) +
h
∑

i=1
P
��

�

�ε
(i )
D

�

�

�+T (i )D > VAL | H (i )
�

PH (i ) . (31)

where ε(0)D is the Down component of the error for the all-in-view position solution, H (0) is the fault-free hypothesis, ε(i )D is the Down
component of the error for the fault-tolerant position solution, H (i ) is the i th hypothesis, VAL is the vertical alert limit that defines
hazardous situations, and T (i )D is the Down component detection threshold for the i th test, based on a predefined continuity risk
requirement allocation that limits the probability of false alarms [18]. We compute the thresholds T (i )D , using the equation

T (i )D =Q −1
�Creq

2h

�

σ (i )∆,D . (32)

The horizontal alert limit is defined by a circle of radius equal to
HAL centered at the estimated user position in the North-East
plane as shown in Figure 5. The horizontal positioning error at
current time for hypothesis (i ) is represented by a covariance ellipse
centered on the mean horizontal position error. The horizontal
integrity risk is the integral of the bivariate probability density
function over the area outside the HAL circle. Evaluating this
integral can be quite complex, so in practice, it is approximated
using di�erent methods [43, 44]. In this work, we conservatively
account for the integrity risk in the North and East direction
by considering a square inscribed in the HAL circle. The
perpendicular distance from the origin to any side of the square
is HAL/

p
2. We calculate the integrity risk in the North direction

as follows

h
∑

i=0
P
�

HMI N |H
(i )
�

PH (i ) ≤ P
�

�

�

�ε
(0)
N

�

�

� >
HAL
p

2
| H (0)

�

PH (0)

+
h
∑

i=1
P
�

�

�

�ε
(i )
N

�

�

�+T (i )N >
HAL
p

2
| H (i )

�

PH (i ) (33)
Figure 5: Square Inscribed in the HAL Circle. The shaded region is
the upper bound on the horizontal integrity risk.

where the positioning error ε(i )N is assumed to be normally distributed with variance σ (i )
2

N , and mean equal to the North component
detection threshold T (i )N , computed as

T (i )N =Q −1
�Creq

4h

�

σ (i )∆,N . (34)

The integrity risk and detection thresholds for the East direction are calculated the same way. The total integrity risk is the sum of
risk contributions from the North, East, and Down directions, and the contributions from the hypotheses not monitored.
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4.5. Modified Estimator to Reduce Integrity Risk

The weighted least squares estimator minimizes the all-in-view position solution estimation error variance under fault-free conditions.
However, this solution is typically not the one that minimizes the integrity risk considering fault hypotheses. When PHMI exceeds
the integrity risk requirement, the objective of the modified estimator is to choose a position solution that minimizes the total
integrity risk. The e�ect is that we trade o� a reduction in accuracy for an increase in integrity. This manifests in an increase in
σ (0), which changes the values for σ (i )∆ , and has the overall e�ect of decreasing the second term on the right hand side of Eq. (??).
The implementation of this modified estimator follows the algorithm described in [18], which we implement here for a batch of
measurements over time. The modified estimator does not consider the prior rates of fault when determining which subset solution
to deweight, so we exclude less likely faults as candidates for modifying the estimator. Note that under the configurations selected,
the optimal estimator has negligible e�ects on the integrity risk.

4.6. Number of E�ectively Independent Samples

We reconcile the instantaneous integrity risk in Eq (29), with the operational integrity requirement which is specified per hour, by
defining the number of e�ectively independent samples, NES . This method was developed in [45] to rigorously account for the added
integrity risk arising from multiple exposures to hazardously misleading events, and multiple detection tests over the exposure period.
The modified integrity risk equation based on Eq. (29)is

PHMI (TEXP ) ≤
h
∑

i=0
P
�

HMI |H (i )
�

NES,H (i) PH (i ) +
�

1−
h
∑

i=0
PH (i ) (TEXP )

�

. (35)

For the first term in Eq. (35) corresponding to monitored hypotheses, the bound on NES,H (i) is defined as [45]

NES,H (i) =
�TEXP,int

TTA

�

(36)

where TEXP,int is the period of operation defined for integrity, and TTA is the required time-to-alert (maximum allowable elapsed
time from HMI onset until a system alert). As for the hypotheses not monitored, the last term in parenthesis in Eq. (35), the prior
probability of H (i ) occurrence, PH (i ) , is modified to use the prior probability of a fault event given by

Pevent,i (TEXP ) =
�

1+
TEXP,int

MTTN i

�

Pevent,i (37)

where MTTN is the mean-time-to-notify (commitment made by the service provider for the time elapsed between when a fault is
detected at the ground, to when the user is notified of the fault), and Pevent,i denotes Psat,i for a fault on satellite i , and Pconst,i for a
wide fault on constellation i . We assume that MTTN is 1 h for all fault events on all constellations. An example computation of
PH (i) (TEXP ) using Eq. (37) is given in Appendix B. Furthermore, the detection thresholds in Eq. (32) and Eq. (34) are modified to

T (i )D =Q −1
�

Creq

2hNES,cont

�

σ (i )∆,D , T (i )N /E =Q −1
�

Creq

4hNES,cont

�

σ (i )∆,N (38)

where

NES,cont =
TEXP,cont

TTA
(39)

and TEXP,cont is the period of operation defined for continuity. The values for these parameters are defined in Table 2.

5. IMPACT OF CASCADING FAULTS

Given that a GNSS fault can cascade to a constellation-wide fault on MC, the spaceborne receiver’s detection capability is a driving
factor to the overall integrity at the ground user. In this section, we derive the equations that would allow us to determine the
spaceborne receiver detection capability required to bring about an improvement in MC-augmented GNSS integrity. We first look
at the case for GNSS only. We compute PHMI at the ground receiver considering mutually exclusive, exhaustive hypotheses of GNSS
fault-free conditions (FF,G), and GNSS fault conditions (G).

P (HMI G ) = P
�

HMI G , HFF ,G
�

PFF ,G + P (HMI G , HG )PG (40)
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Then we add MC satellites, and make the assumption that a GNSS fault always causes a constellation-wide fault on all MC satellites
visible at a given user location. This assumption is approximate but conservative. The resulting PHMI equation considers hypotheses of
FF (FF,GM), GNSS faults that always cause MC wide fault (G), and other narrow and wide MC faults (M). Under these assumptions,
we get

P (HMI GM ) ≤ P
�

HMI GM , HFF ,GM
�

PFF ,GM + P (HMI GM , HG )PG + P (HMI GM , HM )PM . (41)

We compare the terms in Eq. (41) to the terms in the GNSS-only case in Eq. (40). For the first term, we have proven in [15] that
the FF term for GNSS-MC is less than the FF term for GNSS-only, which pleads in favor of adding MC. The second term in Eq.
(41) appears similar to that of GNSS-only, but we show in Appendix C that it is actually larger because the false alarm risk has to be
allocated to more hypothesis with the addition of MC. Lastly, the third term in Eq. (41) has no counter part in the GNSS-only case
which pleads against adding MC. The details of this comparison are in Appendix C. Typically, in RAIM and ARAIM, the FF term
does not dominate the integrity risk equation (not by orders of magnitude). Our analysis supports this idea, and has consistently
shown that the first term is insu�cient to compensate for the impact of the latter two. Under these assumptions, MC-augmentation
would always degrade integrity.

We can mitigate this e�ect by incorporating spaceborne integrity monitoring. Using spaceborne MC RAIM, the second right-hand-
side term in Eq. (41) is split into two: one that accounts for just GNSS faults (G), and one that accounts for MC-wide faults caused
by GNSS faults not detected at the spaceborne receiver (MW). At the ground receiver, we now have

P (HMI GM ) ≤ P
�

HMI GM , HFF ,GM
�

PFF ,GM + P (HMI GM , HG )PG + P (HMI GM , HMW )PG PSFD + P (HMI GM , HM )PM (42)

where the probability of spaceborne failed detection, PSFD, will determine the conditions where MC-augmentation improves or
degrades integrity. The sensitivity analysis on PSFD is discussed in a subsequent section.

6. INTEGRITY PERFORMANCE ANALYSIS

6.1. Covariance Analysis Implementation

The nominal configuration uses a 10-minute batch, with measurements sampled every 30 seconds [15]. The 10-minute batch is
performed repeatedly at regular 1-minute intervals over 24 hours at a reference location in Memphis, Tennessee (35◦N 90◦W 0m
altitude), where we found the worst-case mid-latitude GNSS positioning performance. The batch period and measurement sampling
rate were chosen to take full advantage of MC satellite motion, and ensure that we are sampling frequently enough to average out
random errors.

Table 2: List of Constants Used in Detector

Description Value
Ireq total integrity budget 10−6/h [2]

Creq continuity risk requirement to limit probability of false alarms 10−5 [2]

Psat probability of single satellite fault (GPS, Galileo, MC) 10−5, 10−5, 10−5 [18]

Pconst probability of constellation fault (GPS, Galileo, MC) 10−8, 10−8, 10−7 [18, 46]

PSFD probability of failed detection at the spaceborne MC receiver (range of values) 1, 10−1, 10−2

VAL vertical alert limit 2.50 m [1, 2, 3]

HAL horizontal alert limit 1.50 m [1, 2, 3]

TEXP,int exposure time for integrity 1 hr [2]
TEXP,cont exposure time for continuity 15 s [2]
TTA time-to-alert 10 s [2]
MTTN mean-time-to-notify 1 h [18, 45, 46]

6.2. Performance Sensitivity to the Probability of Failed Spaceborne Detection

The conditions where MC-augmentation improves or degrades integrity depends on the probability of failed detection (PSFD) at the
MC spaceborne receiver. To analyze this, we perform a sensitivity analysis at the example Memphis location, where we compare the
availability values at the reference location as we vary PSFD. The integrity risk over time for GNSS only is shown as the black line in
Figure 6, and for this sample location, GNSS availability is 81.12%. Availability is the percentage of time over 24 hours where the
integrity risk is below the requirement, shown as the horizontal dashed line. With MC-augmentation at PSFD = 1, there is no integrity
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monitoring at the MC spaceborne receiver, and we get the dotted gray line with GNSS-MC availability of 34.63%. In this case,
GNSS-MC degrades integrity as compared to GNSS only. If we decrease this probability of no spaceborne detection to 0.1, we get
the dark gray line with GNSS-MC availability of 85.98%. At this PSFD, GNSS-MC already improves integrity with respect to GNSS
only. We consider a better detector by decreasing PSFD further to 0.001, and get the blue line where GNSS-MC is available 100%
of the time for this reference location. The performance of GNSS-MC is not only time-dependent, but also location-dependent. So
we take 0.001 as the value of PSFD for the MC spaceborne detector, and continue to do a performance analysis for a worlwide grid
of locations.

Figure 6: Integrity risk over time at a reference location for GNSS only, and GNSS-MC at varying probability of failed GNSS fault detection
at the spaceborne MC receiver (PSFD)

6.3. Global Availability Analysis

The performance of GNSS only is on the left of Figure 7. We clearly see an improvement in integrity with the image on the right of
Figure 7 for MC-augmented GNSS, where we have less lighter regions, and more blue. A comparison can also be made for coverage.
The coverage, defined here as the percentage of locations where we have 95% availability is 33.76% for GNSS. This means that
around 34% of locations get at least 95% GNSS availability for this simulation configuration. This coverage is increased to 82.49%
with MC-augmented-GNSS.

Figure 7: Availability map of GNSS and GNSS-MC. The availability maps show the integrity performance using GNSS only (left plot) and
GNSS-MC (right plot). Ten minute batches are simulated at regular ten minute intervals over 24 hours for a 10◦ × 10◦ grid of locations. Each
grid point is assigned a color that represents the availability value given by the color bar on the right. For coverage results shown with white
text, each grid point’s availability is scaled by the cosine of the latitude. This accounts for the fact that grid points are taken at regular latitude
intervals, but they represent di�erent areas at low versus high latitude locations.
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7. CONCLUSIONS

In this paper, we quantified integrity for a GNSS-MC-PPP system using GPS, Galileo, and a Starlink-like MC. An algorithm was
developed using dual-frequency, multi-constellation Advanced Receiver Autonomous Integrity Monitoring (ARAIM), but incorpo-
rating measurements over time. Robust models of measurement error time correlation were included as well. A GNSS-MC-PPP
system architecture is defined based on the existing GNSS-PPP architecture. Given that GNSS faults can cascade to constellation-wide
MC faults in the proposed architecture, the sensitive parameter defining the conditions where GNSS-MC improves integrity is
derived using the integrity risk equations. A sensitivity analysis was implemented at an example user location to investigate the
e�ect of cascading faults on GNSS-MC integrity, by varying the probability of failed spaceborne detection at the MC receiver. This
analysis identified the need for a layer of integrity monitoring at the MC spaceborne receiver, in addition to integrity monitoring at
the ground user, and ground control segment.

Appendix A. ERROR AUTOCORRELATION BOUNDING

We first define the estimator vector

su =
�

αT
u S
�

1×N
(43)

where subscript u can stand for the North, East, and Down directions, and S is the estimator matrix that uses the maximum time
constants for the error models used in V. The first term αT

u is a row vector of length equal to the number of states, composed of zeros
except for the element corresponding to the uth position state at current time. We rewrite the estimation error variance for the uth
position using an equivalent expression [19]

σ2
u =

N
∑

i=1

N
∑

j=1
[M ◦V]i , j (44)

where M =
�

sT
u su

�

N×N , and the symbol "◦" represents element-wise matrix multiplication. We derive a practical way to implement
the method in [19]. Following the method in [19], we add up the variance contributions in the worst-conspiring manner using the
following equations.

σ2
+ =

N
∑

i=1

N
∑

j=1
[M+ ◦V (Tma x )]i , j where [M+]i , j =

(
�

sT
u su

�

i , j if
�

sT
u su

�

i , j ≥ 0

0 otherwise
(45)

σ2
− =

N
∑

i=1

N
∑

j=1
[M− ◦V (Tmi n)]i , j where [M−]i , j =

(
�

sT
u su

�

i , j if
�

sT
u su

�

i , j < 0

0 otherwise
(46)

σ2
u,b = σ

2
+ + σ

2
− ≥ σ

2
u (47)

where σ2
u,b is the bound on the variance produced by simply using the maximum time constants in V.

Appendix B. EXAMPLE PH (i ) CALCULATION FOR HYPOTHESES NOT MONITORED

We want to determine the prior probability of H (i ) occurrence that accounts for the number of independent samples. For example,
hypothesis i = 1 corresponding to a fault on satellite 1 and no other faults could be expressed as

PH (1) (TEXP ) = Psat,1 (TEXP )
nsat
∏

i=2

�

1− Psat,i (TEXP )
�

nconst
∏

j=1

�

1− Pconst,j (TEXP )
�

(48)

where Psat,i (TEXP ) and Pconst,j (TEXP ) are computed following Eq. (37) to get

Psat,i (TEXP ) =
�

1+
TEXP,int

MTTN sat,i

�

Psat,i , Pconst,j (TEXP ) =
�

1+
TEXP,int

MTTN const,j

�

Pconst,j (49)

using the values for Psat,i and Pconst,j given in Table 2.

3067



Appendix C. COMPARISON BETWEEN P (HMIG ) AND P (HMI GM )

We show the comparison between terms in Eq. (41) and terms in the GNSS-only case in Eq. (40). For the first term, we know that
PFF ,G ≥ PFF ,GM , and have proven in [15] that

P
�

HMI G , HFF ,G
�

≥ P
�

HMI GM , HFF ,GM
�

(50)

therefore, this first contribution pleads in favor of adding MC. The third term in Eq. (41) has no counterpart in the GNSS-only
case, and

P (HMI GM , HM )PM ≥ 0 (51)

therefore this contribution pleads against adding MC. For the second terms in Eq. (41)-(42), we can show that

P (HMI G , HG ) ≤ P (HMI GM , HG ) (52)

in three steps. First, using multiple hypothesis solution separation,

P (HMI G , HG ) ≤ P
�

|εG |+ kFA,G σ∆,G > AL
�

PG (53)

where εG is the subset solution excluding all faulted GNSS SVs, kFA,G is the false alarm probability multiplier, and

σ∆,G ≡
q

σ2
G − σ

2
0,G (54)

with σ2
G the variance of εG and σ2

0,G the variance of the full-set solution including all GNSS satellites. In parallel,

P (HMI GM , HG ) ≤ P
�

|εG |+ kFA,GM σ∆,GM > AL
�

PG (55)

where εG is still the same subset solution excluding all faulted GNSS SVs and all MC SVs, kFA,G is a di�erent false alarm probability
multiplier, and

σ∆,GM ≡
q

σ2
G − σ

2
0,GM (56)

with σ2
G still the variance of εG and σ2

0,GM the variance of the full-set solution including all GNSS and MC satellites. Finally, we
have

σ∆,G ≤ σ∆,GM because σ2
0,G ≥ σ

2
0,GM , and kFA,G ≤ kFA,GM (57)

because there are more hypotheses between which the false alarm risk requirement must be allocated. Thus,

kFA,G σ∆,G ≤ kFA,GM σ∆,GM (58)

and

P
�

|εG |+ kFA,G σ∆,G > AL
�

PG ≤ P
�

|εG |+ kFA,GM σ∆,GM > AL
�

PG (59)

therefore this contribution pleads against adding MC.
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