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I. INTRODUCTION

This paper describes the derivation, analysis, and
evaluation of two new fault detection and exclusion (FDE)
methods using receiver autonomous integrity monitoring
(RAIM) [1, 2]: the first method is based on solution
separation (SS) RAIM [2–4], and the second one on
chi-squared residual-based (χ2) RAIM [5, 6]. The SS and
χ2 approaches are the two most widely implemented
RAIM methods for fault detection. This paper provides
complete integrity and continuity risk equations, which
extend the use of SS and χ2 RAIM from detection only to
FDE.

Global Navigation Satellite System (GNSS)
measurements are vulnerable to rare-event faults including
satellite failures, which can potentially lead to major
integrity threats for users. To mitigate their impact,
fault-detection algorithms such as RAIM can be
implemented. RAIM exploits redundant ranging signals to
achieve self-contained fault detection at the user receiver
[1, 2]. With the modernization of the United States’
Global Positioning System (GPS), the full deployment of
Russia’s GLONASS, and the emergence of Europe’s
Galileo and of China’s Beidou, the number of redundant
ranging signals increases dramatically, which opens the
possibility to fulfill stringent navigation integrity
requirements using RAIM [7]. In particular, RAIM can
help alleviate requirements on ground monitors. For
example, researchers in the European Union and in the
U.S. are investigating advanced RAIM (ARAIM) for
worldwide vertical guidance of aircraft [8–10].

To further emphasize the impact of future
multiconstellation GNSS on satellite redundancy, which is
key to RAIM performance, Fig. 1 shows nominal space
vehicle (SV) constellations for four GNSS. In this regard,
it is worth reminding that using measurements from a
single constellation, four satellites are required for
positioning, five are needed for RAIM-based detection of
single-SV faults, and six are needed for exclusion of
single-SV faults [11]. In Fig. 1, signals received at an
example location (Chicago, USA) are represented with
thick black lines. Whereas each individual constellation
only provides about five to ten ranging measurements, the
joint constellation can provide continuous, global
coverage of 25 to 35 satellites.

Two conflicting aspects of RAIM-based fault detection
arise from the addition of new redundant ranging signals
in multiconstellation GNSS. On the one hand, the integrity
monitoring performance using ARAIM is improving [10].
On the other hand, the heightened likelihood of satellite
faults because of the larger number of SVs causes more
occurrences of mission interruptions due to faults being
detected, thereby increasing the continuity risk.

In response, fault-exclusion algorithms have been
designed and implemented in [9, 11, 12]. The word
“exclusion” is employed to designate the choice of an
estimator, which uses a subset of measurements rather
than the full set [13]. Other terms in place of exclusion
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Fig. 1. Nominal satellite constellations for future GNSS. Signals
received at example location (Chicago, USA) are represented by thick

black lines.

have been used in the literature, including “isolation” [12],
“identification” [14], and “reconfiguration” [11].

One of the primary motivations for implementing
exclusion is to reduce continuity risk. (Another objective
of fault exclusion can be to reduce the length of
continuous unavailability periods, which is discussed in
[15].) The interpretation of continuity risk requirements
must therefore be clarified as it can vary, for example,
depending on approach category in aircraft landing
operations [16]. This paper takes a conservative
interpretation of the continuity requirement, assuming that
the detection function is not used before starting the
approach, and that continuity is evaluated in a specific
sense (for each approach) rather than in an averaged sense
(over multiple approaches). A different interpretation can
often be adopted, as is the case in ARAIM, which targets
localizer performance with vertical guidance (LPV)
requirements [9, 10, 17]. But, in this work, we derive
continuity and integrity risk evaluation methods that are
intended to be generally applicable, even under the more
conservative approach-specific interpretation.

Under this assumption, one crucial element, which has
been described as missing in [5] and [18], is a rigorous
derivation of the integrity risk and continuity risk for
RAIM FDE. Integrity risk evaluation is challenging
because it involves quantifying the impact on state
estimate errors of undetected faults and of wrong
exclusions. A priori integrity and continuity risk
evaluation is needed when designing navigation systems

to meet specific requirements, and it is needed
operationally to predict if a mission (e.g., an aircraft
approach) can be safely initiated.

In order to avoid making assumptions on the unknown
fault distribution, integrity risk evaluation can be carried
out using either of two implementations: either by directly
searching for the worst case fault through the threat space,
or using an integrity risk bounding process to formulate
compact-form, easy-to-compute protection levels (PLs)
(which are probabilistic bounds on the position estimate
errors). The direct search approach is computationally
more expensive than using PLs, but can provide a tighter
integrity risk bound [19] under assumptions on nominal
measurement error probability distributions that are
detailed in this work.

Section II of this paper describes the two baseline
detection methods: SS RAIM [5, 6] and χ2 RAIM [2–4].
The SS RAIM test statistics are derived in the position
domain, which is well suited for PL derivation. In parallel,
χ2 RAIM is derived at the measurement level, and in this
work, is implemented using a direct search method. A
detailed comparison of SS and χ2 RAIM, for detection
only, can be found in [19].

In Section III, general integrity and continuity risk
equations for detection and exclusion are derived, which
are valid even under the conservative interpretation of an
approach-specific continuity risk requirement. The
continuity risk equation focuses on mission interruptions
due to fault detection without the possibility to exclude,
but other sources of loss of continuity such as unscheduled
satellite outages are also included [20, 21]. The integrity
and continuity equations express the fact that the reduction
in continuity risk, achieved using exclusion, comes at the
cost of a higher integrity risk. They are used as a common
starting point to establish the SS and χ2 RAIM FDE
methods in Sections IV and V, respectively.

In Section IV, an integrity risk bound for SS RAIM
FDE is derived, which enables computationally efficient
risk evaluation. A continuity risk bound is also given,
which provides the means to determine detection and
exclusion thresholds ensuring that the overall continuity
risk requirement is satisfied.

In addition, in Section V, a χ2 RAIM FDE method
is devised based on parity space representations of
the χ2 RAIM detection and exclusion test statistics. Parity
space representations are instrumental because the parity
vector, which can be used to derive both the SS and χ2

test statistics [22, 23], is the simplest, most fundamental
measure of fault detection capability [12]. The paper will
show that in parity space, for single-satellite faults, the no-
detection and exclusion regions for SS RAIM are polytopic
and prismatic, respectively, whereas for χ2 RAIM,
they are hyperspherical and cylindrical, respectively.

Finally, in Section VI, a performance analysis is
carried out to assess worldwide availability of ARAIM
FDE for an example aircraft approach navigation
application using GPS, Galileo, GLONASS, and Beidou
satellite constellations. Availability maps are established
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assuming a conservative interpretation of the continuity
risk requirement. The new SS and χ2 RAIM methods are
implemented to quantify integrity and continuity using
both fault detection and exclusion.

II. BACKGROUND ON FAULT DETECTION USING
RAIM

In this section, the integrity and continuity risks are
defined for fault detection only, followed by notations for
the least-squares (LS) estimator. Then, the baseline
detection test statistics for χ2 RAIM and SS RAIM are
derived, and represented in parity space for a canonical
example. The content of this section is used in the
remainder of the paper to analyze fault-exclusion methods.

A. Integrity and Continuity Risks for Fault Detection

The integrity risk criterion is defined in [24] as

h∑
i=0

P
(|ε0| > �, |q| < T

∣∣ Hi

)
PHi ≤ IREQ − PNM (1)

where

ε0 is the error on the estimated parameter of interest
(called “state” of interest)

� is a specified alert limit that defines hazardous
situations (e.g., specified in [20] for aircraft
approach navigation)

q is the detection test statistic (q is used here to
represent both the χ2 and the SS test statistics)

T is the detection threshold
Hi for i = 0, ..., h is a set of mutually exclusive, jointly

exhaustive hypotheses. H0 is the fault-free
hypothesis. The remaining h fault hypotheses
correspond to faults on subset measurement “I”
(including single-satellite and multisatellite faults)

PHi is the prior probability of Hi occurrence
IREQ is the integrity risk requirement (also specified in

[20] for example aviation applications).
PNM is the prior probability of very rarely occurring faults

that need not be monitored against (such that
PNM < IREQ). References [9] and [25] describe
procedures to define the number h of fault
hypotheses that must be monitored against, while
conservatively accounting for the remaining fault
combinations using PNM in (1). The smaller h is,
the lighter the computational load of evaluating the
left hand side in (1) gets, but the larger PNM

becomes.

We call integrity risk, or probability of hazardous
misleading information (HMI) PHMI , the left hand side in
(1). To be rigorous, this term is the integrity risk under the
h + 1 cases that are being monitored. The complete
integrity risk bound is PHMI + PNM . To simplify
terminology and notations in the remainder of the paper,
PHMI is referred to as the integrity risk.

The detection threshold T is typically set based on an
allocated continuity risk requirement allocation CREQ,0

(e.g., also specified in [20] for aviation applications) to
limit the probability of false alarms (i.e., alarms under H0)
[11]. For detection only, T can be defined as

P
(
q ≥ T |H0

)
PH0

≤ CREQ,0. (2)

In addition, let n and m, respectively, be the number of
measurements and number of parameters to be estimated
(i.e., the “states”). The n × 1 measurement vector z∗ is
assumed normally distributed with covariance matrix V∗.
Vector z∗ is premultiplied by V−1/2

∗ to obtain the
“normalized” measurement equation:

z = Hx + v + f (3)

where

z = V−1/2
∗ z∗ is the normalized measurement vector

H is the n × m normalized observation matrix
x is the m × 1 state vector
f is the n × 1 normalized fault vector
v is the n × 1 normalized measurement noise vector

composed of zero-mean, unit-variance independent
and identically distributed (IID) random variables.

We use the notation:

v ∼ N
(
0n×1, In

)
(4)

where

0a×b is an a × b matrix of zeros (in this case, it is an
n × 1 vector of zeros)

In is an n × n identity matrix

In order to avoid making assumptions on unknown
fault distributions, a bound on the probability of HMI
given Hi can be evaluated for the worst case n × 1 fault
vector f̄i :

P
(|ε0| > �, |q| < T | Hi

) ≤ P
(|ε0| > �, |q| < T

∣∣ f̄i
)
.

(5)
The worst case fault vector f̄i , which maximizes the
integrity risk given Hi , is derived in [19] for multi-SV
faults: the worst case fault direction can be expressed
analytically, and the worst case magnitude is found using a
straightforward line search algorithm. Thus, vector f̄i can
be interpreted as a vector of deterministic measurement
biases. For the fault-free case (i = 0), we use the notation
f̄0 = 0. The χ2 RAIM approach adopted in this work
directly uses the bound on the right hand side in (5),
whereas in SS RAIM, a looser bound (given in Section
IV) is typically implemented, which does not require
determination of f̄i .

It is a known result that ε0 and q (for both χ2 and SS
RAIM) are statistically independent (see for example
[22]), so that the joint probability in (5) can be expressed
as

P
(|ε0| > �, |q| < T

∣∣ f̄i
)

= P
(|ε0| > �

∣∣ f̄i
)
P

(|q| < T
∣∣ f̄i

)
. (6)
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B. Baseline LS Estimator Used in RAIM

This section defines the estimate error ε0 obtained using
an LS estimator. Let x be the state of interest, for example
the vertical position coordinate, which is often of primary
concern for aircraft approach navigation. Let α be an
m × 1 vector used to extract x out of the full state vector:

αT =
[

0T
mA×1 1 0T

mB×1

]
(7)

where, in the order in which states
are stacked in x, mA and mB are the number of states,
respectively, before and after state x. Assuming that H is
full rank and that n ≥ m, the LS estimate of x is defined as

x̂0 ≡ sT
0 z (8)

where

sT
0 ≡ αT P0HT , and P0 ≡ (

HT H
)−1

. (9)

The LS estimate error appearing in (1) is given by

ε0 ≡ x̂0 − x = sT
0 (v + f) (10)

ε0 ∼ N
(

sT
0 f, σ 2

0 ≡ αT P0α
)
. (11)

C. χ2 RAIM Detection Test Statistic

The χ2 RAIM detection test statistic is derived from
the (n − m) × 1 parity vector p, which lies in the
(n − m)-dimensional parity space, or left null space of H,
and can be expressed as [3, 22]

p ≡ Qz = Q (v + f) (12)

where the (n − m) × n parity matrix Q is defined as

QQT = In−m and QH = 0(n−m)×m. (13)

The χ2 RAIM detection test statistic is the square of the
norm of p, and can be written as [3, 22]

q2
χ ≡ pT p = rT r (14)

where r is the LS residual vector defined as

r ≡ Rz (15)

where R ≡ (In − HP0HT ). q2
χ follows a noncentral

chi-square distribution with (n − m) degrees of freedom
and noncentrality parameter λ2

χ given by [22]

λ2
χ ≡ fT QT Qf. (16)

D. SS RAIM Detection Test Statistics

As an alternative to χ2 RAIM, a second integrity
monitoring method called SS RAIM [5, 6] is considered.
Let ni be the number of simultaneously faulted SVs under
a given fault hypothesis Hi . Without loss of generality, it
is assumed that under Hi , the faulty measurements are the
first ni elements of z. The measurement equation (3) can
be partitioned following the equation:[

AT
i z

BT
i z

]
=

[
AT

i H

BT
i H

]
x +

[
AT

i v

BT
i v

]
+

[
AT

i f

0(n−ni )×1

]
(17)

with

Ai ≡ [
Ini

0ni×(n−ni )

]T
and Bi ≡ [

0(n−ni )×ni
In−ni

]T
.

(18)
Equation (17) is employed to distinguish the full-set

solution x̂0 in (8), obtained using all n measurements in z,
from the subset solution x̂i , derived using only the (n − ni)
fault-free measurements BT

i z under Hi . Assuming that
n − ni ≥ m and that BT

i H is full rank, x̂i is defined as

x̂i ≡ sT
i z, for i = 1, ..., h (19)

where

sT
i ≡ αT PiH

T BiB
T
i , and Pi ≡ (

HT BiB
T
i H

)−1
. (20)

It follows that, under Hi , the estimate error εi is given by

εi ≡ sT
i (v + f) = sT

i v ∼ N
(
0, σ 2

i ≡ αT Piα
)
. (21)

The solution separations are defined as [1, 5]

�i ≡ x̂0 − x̂i = ε0 − εi, for i = 1, ..., h. (22)

�i can also be expressed as [5, 6]

�i = sT
�iz and �i ∼ N

(
sT
�if, σ 2

�i

)
(23)

where

s�i ≡ s0 − si and σ 2
�i = σ 2

i − σ 2
0 . (24)

(Proof of (24) can be found in [6] and [19].)
For single-measurement faults, i.e., for ni = 1, �i can

be written in terms of the parity vector p as [14, 23]

�i/σ�i = uT
i p (25)

where

ui ≡ QAi

(
AT

i QT QAi

)−1/2
for i = 1, ..., n (26)

with

Ai = [
01×(i−1) 1 01×(n−i)

]T
, (27)

i.e., QAi is the ith column of Q. Vector ui is the unit
direction vector of the ith “fault mode line,” which is the
line described in parity space by the mean of p as the
magnitude of a fault on the ith measurement varies from
−∞ to +∞. Parity space representations are introduced
below. Equation (25) expresses the fact that the n solution
separations (there are h = n solution separations when
ni = 1) are projections of the parity vector on their
corresponding fault mode lines.

E. Parity Space Representations for a Canonical
Example

In this section, both χ2 RAIM and SS RAIM are
represented in parity space for a canonical example used
in [22, 23]. Let us consider a scalar state x and a 3 × 1
measurement vector z that are expressed as

z = Hx + v + f (28)
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Fig. 2. Detection boundaries for χ2 (circle) and SS (hexagon) in parity
space. Detection is established if parity vector lands outside boundary.

where

H = [
1 1 1

]T
and v ∼ N(03×1, I3). (29)

Since m = 1 and n = 3, the (n − m) parity space is two
dimensional, which is convenient for display. The fault
vector f represents three single-measurement faults with
unknown fault magnitude fi , for i = 1, 2, 3:

f = [
f1 0 0

]T
, or f = [

0 f2 0
]T

, or

f = [
0 0 f3

]T
. (30)

Their three fault mode lines, i.e., the lines described by the
mean of p as fi varies from −∞ to +∞, have direction
vectors ui defined in (26), and are represented in Fig. 2.

The detection boundaries for SS and χ2 RAIM,
respectively, are a polygon (or a polytope in higher
dimensional parity space) and a circle (or a hypersphere).
If the normalized SS thresholds are all the same
(T1/σ�1 = T2/σ�2 = T3/σ�3), then the polygon is a
hexagon.

If the measurement vector z were noise free and fault
free, the parity vector p would be the null vector.
However, because of the combined effect of v and f, p
may land outside the detection boundary in Fig. 2, thereby
establishing detection. Therefore, the probability of no
detection is the probability of being inside the dash-dotted
circle for χ2 RAIM, and inside the hexagon for SS RAIM.

III. GENERAL INTEGRITY AND CONTINUITY RISK
DEFINITIONS FOR FDE

This section defines general integrity and continuity
risk equations for FDE, which are used as a common
starting point to develop SS and χ2 RAIM FDE methods
in Sections IV and V.

Section II was limited to fault detection and did not
address exclusion. For detection only, the probability of
false alarms is limited by setting the detection thresholds
to meet a continuity risk allocation CREQ,0 as expressed in

(2). However, the complete continuity risk accounts for all
events causing mission interruptions. These events not
only include cases of detection under fault-free conditions
(i.e., false alarms), but also cases of detection under
faulted conditions. Thus, the continuity risk equation for
detection only is given by

PCONT = P
(
D|H0

)
PH0 +

h∑
i=1

P
(
D|Hi

)
PHi + Pother

(31)
where D is the detection event. The term Pother

encompasses all other sources of loss of continuity,
including the probability of unscheduled SV outages [20,
21]. When using a single constellation, Pother can
represent a large portion of the continuity risk, but its
contribution decreases in multiconstellation GNSS [15].
Since the focus of this paper is on exclusion, and since
exclusion will not impact on Pother , performance
evaluations will assume Pother = 0. Pother is included in
the next equations for completeness.

It is worth noting that, in aviation applications that
specify a lower severity level for events causing loss of
continuity, PHi in (31) can be assumed lower than the state
probability of fault used in the integrity risk equation (1).
This is because for continuity, the requirement can
sometimes be interpreted in an averaged sense, contrary to
the integrity risk requirement, which is given in an
approach-specific sense [15]. The details of this other
interpretation are beyond the scope of this paper. In this
work, the same conservative interpretation is applied to
continuity and integrity, so that the same value of PHi is
used in (1) and (31).

Under this interpretation, if the detector is efficient,
then the second right hand side term in (31) is
approximately equal to the prior probability of any fault
occurring, i.e.,

∑h
i=1 P (D|Hi)PHi ≈ ∑h

i=1 PHi . If this
probability is larger than the overall continuity risk
requirement, noted CREQ, which is likely to occur in
multiconstellation GNSS, then faults need to be excluded
to continue using the system. This is why fault-exclusion
procedures were designed in [9, 11, 12]. However, this
prior work does not provide the means to reliably predict
the resulting integrity and continuity risks [5, 13].

FDE procedures can be described in three main steps:

1) The first step is the detection test described in
Section II.

2) If a fault is detected, candidate subset measurements to
be excluded are considered. A second set of tests,
similar to the detection test, is carried out to ensure that
the remaining nonexcluded measurements, which will
be used for positioning, are fault free. An “exclusion
test” is passed if no fault is detected in the remaining
measurements.

3) Finally, if none of the exclusion tests are satisfied,
the mission is interrupted, which impacts continuity.
Conversely, if one or more candidate subsets meet
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the exclusion test, then any one of these subsets
can be excluded, which impacts integrity.

In this paper, the integrity risk bound for FDE is
defined as

PHMI ≤
h∑

i=0

P (HI0, ND|Hi)PHi

+
h∑

j=1

h∑
i=0

P (HIj , D, Ej |Hi)PHi (32)

where

HIj : hazardous information when using an LS
estimator, defined in (8) for the full-set estimator s0,
and in (20) for subset estimators sj , for,j 
= 0

ND : no detection,
Ej : exclusion test passed for subset j .

The first term in (32) is the same as the integrity risk given
in (1) for detection only. The second term in (32) accounts
for all fault hypotheses (subscript i) and all exclusion
candidates (subscript j ).

It is worth clarifying that the h fault hypotheses Hi are
defined as mutually exclusive events in (1). For example,
the following two hypotheses are mutually exclusive: 1) a
fault affecting the first satellite only, and 2) a fault
simultaneously affecting the first two satellites. In
contrast, events Ej are not generally mutually exclusive: if
the exclusion test is passed for removing the first satellite
(e.g., if all but the first SV are fault free), then the test may
also be satisfied for excluding the first two satellites.

In this regard, the sum over j in (32) provides an upper
bound on the integrity risk, which accounts for the
possibility of multiple exclusion tests being
simultaneously satisfied. However, in practice, only one of
the subsets verifying Ej is actually excluded. The choice
of this subset is not imposed by (32). This approach is
adopted because, in the event where more than one subset
could be excluded, evaluating the risk of choosing one
subset over another would be cumbersome. Instead, in this
work, any candidate subset verifying Ej can be selected.
Equation (32) remains bounding because PHMI

contributions under simultaneous Ej events are all added
together, and this sum of probabilities is larger than the
value of any individual term. Equality is obtained in (32) if
events Ej , for j = 1, ..., h, compose a set of mutually
exclusive events.

In parallel, the continuity risk is redefined to express
that mission interruptions occur if a fault is detected, but
cannot be excluded

PCONT ≡ P (D, NE|H0)PH0

+
h∑

i=1

P (D, NE|Hi)PHi + Pother (33)

where NE is the “no exclusion” event, described in the
third step of the above exclusion procedure. Equation (33)

assumes that the exclusion function at the receiver has no
impact on Pother , which is the case, for example, for SV
outages.

Equations (32) and (33) capture a fundamental tradeoff
of exclusion methods, which aim at reducing continuity
risk at the expense of integrity risk. On the one hand, the
continuity risk in (33) is lowered using exclusion as
compared with using detection only in (31). The price to
pay for this continuity risk reduction is expressed as the
second term in (32), which is the integrity risk of
performing an exclusion.

In Section IV and V, the above PHMI and PCONT

definitions are implemented for SS RAIM and χ2 RAIM.

IV. SS RAIM FDE

This section describes the SS RAIM FDE method. In
Section IV-A, the three-step procedure outlined in Section
III is applied to SS RAIM FDE. Then, in Section IV-B,
integrity and continuity risk equations for SS FDE are
derived. Finally, Section III-C provides parity space
representations, which motivate the derivation of the new
χ2 RAIM FDE method in Section V.

A. Solution Separation FDE Exclusion Procedure

The following three-step SS RAIM FDE procedure is
considered. First, the SS detection tests described in
Section II are performed. A fault is detected if

|�k| ≡ ∣∣x̂0 − x̂k

∣∣ ≥ Tk for any k, k = 1, ..., h. (34)

As expressed in (22), �k can also be written as
�k = ε0 − εk .

Then, in case of detection, an attempt is made at
exclusion. All exclusion candidate subsets “j,” noted Sj ,
for j = 1, ..., h are considered. Let x̂j be the subset
solution using the measurements remaining after
exclusion of Sj , and let εj be the corresponding estimation
error. In order to find x̂j that can be assumed fault free, a
second layer of detection is carried out using all subset
solutions x̂j,l within x̂j . Thus, Sj is excluded only if

|�j,l| ≡ ∣∣x̂j − x̂j,l

∣∣ < Tj,l ∀l,

{
l = 1, ..., h

∀Sl 
⊂ Sj

(35)

where x̂j,l is the subset solution that excludes both subsets
Sj and Sl . Equivalently, �j,l can be expressed as
�j,l = εj − εj,l , where εj,l is the estimation error in x̂j,l .
It is noteworthy that |�j,l| 
= |�l,j |.

Finally, if the exclusion test in (35) passes, then
candidate solution x̂j can be used for positioning and (32)
provides a bound on the integrity risk. Conversely, if the
exclusion test in (35) fails for all candidates x̂j being
tested (for j = 1, ..., h), then the mission is interrupted,
which is the “NE”-event accounted for in (33).

Let τj be the number of SS exclusion tests needed to
validate x̂j in (35). τj is the total number of fault
hypotheses h minus the number of hypotheses eliminated
when excluding subset Sj . τj can be expressed as
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τj = h − ∑nj

k=1 C
nj

k , where nj is the number of
measurements in Sj , and Cn

k is the binomial coefficient. In
addition, let τ be the total number of SS exclusion tests.
Since τj exclusion tests are carried out for candidate
subset Sj , for j = 1, ..., h, the number τ is given by

τ = ∑h
j=1 τj . Thus, the total number of SS RAIM FDE

tests is the sum of h detection tests and τ exclusion tests.
Assuming single-SV faults (i.e., for nj = 1), τj takes a
much simpler expression: τj = h − 1. In this case, the
total number of SS tests is h2, including h detection tests
and h(h − 1) exclusion tests.

The integrity and continuity risk equations derived in
Section IV-B for SS RAIM, and in Section V-A to V-C for
χ2 RAIM fully account for both single-SV and multi-SV
faults. For clarity of explanation when discussing τ , and
for graphical representation purposes in Sections IV-C and
V-D, the single-SV fault case will be used as an example.

B. Integrity and Continuity Risk Bounds for SS FDE

Integrity risk evaluation using (32) is challenging
because the estimation error and the detection and
exclusion test statistics in the joint probabilities under the
double-sum are correlated. In response, an upper bound
for PHMI is derived in Appendix A. The derivation is valid
for estimators other than the LS estimator and is not
restricted to single measurement faults. The resulting
integrity risk bound is expressed as

PHMI ≤ P
(|ε0| > �

∣∣ H0

)
PH0

+
h∑

i=1

P
(|εi | + Ti > �

∣∣ Hi

)
PHi

+
h∑

j=1

⎛
⎜⎜⎜⎜⎝

h∑
i=0

Si⊂Sj

P
(
|εj | > �

∣∣ Hi

)
PHi

+
h∑

i=1
Si⊂Sj

P
(|εj,i | + Tj,i > �

∣∣ Hi

)
PHi

⎞
⎟⎟⎟⎟⎠

(36)

This bound is independent of the fault vector f̄i expressed
in (5) and (6), which will not be the case in χ2 RAIM.

The first two terms on the right hand side of (36) are a
bound on the probability of hazardous information and no
detection. A PL formulation equivalent to these two terms
is typically used in SS RAIM for detection only [5, 6, 9].
Then, in (36), the sum over j accounts for all cases of
hazardous information following detection, and exclusion.
The first term within this sum is a bound on the probability
of excluding a subset Sj that includes the faulted subset Si

(Si ⊂ Sj ). This term incorporates the fault-free hypothesis
H0, for which the notation S0 designates an empty subset
included in all Sj , for j = 1, ..., h. The second term under
the j -indexed sum is a bound on the probability of wrong
exclusion (defined as Si 
⊂ Sj ) under faulty conditions.
(This second term is a sum over τj terms, following the
definition of τj in Section IV-A.)

The integrity risk bound in (36) is designed to enable
risk evaluation in implementations where computational
resources are limited. Appendix A identifies the key
conservative assumptions required to obtain (36). In
particular, the following two upper bounds are used in the
derivation:

P (|�i | < Ti |Hi) = 1, and P (|�j,i | < Tj,i |Hi) = 1.

(37)
These bounds are loose because in both cases, for large
fault magnitudes, the probability of no-detection is much
smaller than one. These key assumptions will later explain
that our implementation of χ2 RAIM provides a tighter
integrity risk bound than SS RAIM.

In addition, in Appendix B, a bound on the continuity
risk PCONT is derived, which is expressed as

PCONT ≤
h∑

i=1

P
(|�i | ≥ Ti

∣∣ H0

)
PH0

+
h∑

j=1

h∑
i=1
Si 
⊂Sj

P
(|�j,i | ≥ Tj,i

∣∣ H0

)
PHi + Pother

(38)

This inequality provides the means to determine the h

detection thresholds and the τ exclusion thresholds, while
ensuring that the overall continuity risk requirement CREQ

is met.
The detection and exclusion thresholds can be written

as

Ti = Q−1
{
βCREQ,i

/
(2PH0)

}
σ�i (39)

Tj,i = Q−1
{
αj (1 − β)CREQ,i

/
2PHi

}
σ�j,i (40)

where

Q−1{} is the inverse tail probability distribution of the
two-tailed standard normal distribution (i.e.,
Q{} = 1 − �{}, where �{} is the standard normal
cumulative distribution function).

σ 2
�j,i = σ 2

j,i − σ 2
j , and σj,i is the standard deviation of

the subset solution that excludes both Si and Sj

and where the continuity risk allocation is performed in
three steps. First, assuming Pother < CREQ, a fraction
CREQ,i of CREQ − Pother , is allocated to each of the h

fault hypotheses. CREQ,i is defined as

CREQ − Pother =
h∑

i=1

CREQ,i, e.g.,

CREQ,i = (CREQ − Pother )
/
h (41)

Then, under each fault hypothesis Hi , CREQ,i is allocated
between the detection and the exclusion tests through
parameter β, which is defined as

0 < β ≤ 1, e.g., β = 1/2 (42)
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Fig. 3. No-detection and exclusion areas for SS RAIM in
two-dimensional parity space. Measurement is excluded if parity vector

lands in dark-shaded band surrounding measurement’s fault line.

An allocation of βCREQ,i is given for the detection test.
Finally, the remaining continuity risk allocation of
(1 − β)CREQ,i is divided between the τi SS exclusion tests
using parameters αj defined as

τi∑
j=1

αj = 1, e.g., αj = 1/τi . (43)

C. Parity Space Representation of SS RAIM FDE

This section assumes single-SV faults. The
no-detection and exclusion regions can directly be
represented in Fig. 3, for the canonical example described
in Section II-E, by sampling the parity space and
identifying points passing the detection and exclusion tests
in (34) and (35). First, one can recognize the fair-gray,
hexagonal SS-based no-detection area introduced earlier
in Fig. 2. Then, Fig. 3 shows that the SS exclusion areas
(dark gray) are bands surrounding the fault mode lines.
These bands are sensible criteria for exclusion. If the
parity vector is near a fault line, then it is easy to figure out
which measurement to exclude. On the contrary, if the
parity vector lands in between two fault mode lines, then it
becomes extremely challenging to determine which of the
two fault modes caused the error that was detected, and it
may be safer not to exclude.

Fig. 3 displays disjoint exclusion regions (i.e.,
exclusion tests cannot be simultaneously satisfied for more
than one candidate subset). But, it is worth reminding that
the PHMI -bounds in (32) and (36) do account for cases
where exclusion regions overlap.

Exclusion regions can also be represented in higher
dimensional parity space. For example, to obtain a
three-dimensional parity space representation, the
measurement vector z in (28) is augmented with one
additional measurement, so that the observation matrix
becomes H = [ 1 1 1 1 ]T . The 4 × 1 measurement noise
vector v is still zero-mean normally distributed with
covariance I4 and the 4 × 1 fault vector now includes one
additional single-measurement fault mode.

Fig. 4. No-detection and exclusion zones for SS RAIM in
three-dimensional parity space.

Fig. 5. Visualization of SS RAIM exclusion region. Multiple SS tests
are required for each fault hypothesis to define exclusion regions.

The resulting no-detection and exclusion spaces are
respectively shown in fair gray and dark gray in Fig. 4.
Focusing on a single fault mode and looking at a plane
normal to the corresponding fault mode line reveals the
shape of the SS exclusion region, which is displayed in
Fig. 5. For each fault hypothesis, SS RAIM uses (h − 1)
test statistics to define an exclusion region. These SS test
statistics are normally distributed, which is convenient for
practical risk evaluation using PLs.

However, it can seem inefficient to use (h − 1) SS
exclusion tests to describe a region surrounding a fault
line. Instead, the number of tests can be reduced to one by
defining a cylindrical exclusion region around the fault
line. This is similar to the fact that the number of tests for
detection only is h for SS RAIM versus one for χ2 RAIM.
This idea motivated the derivation of a χ2 RAIM FDE
method in Section V.

V. CHI-SQUARED RESIDUAL-BASED RAIM FDE

In this section, a new χ2 RAIM FDE method is
developed. First, Section V-A presents the derivation of
new χ2 RAIM exclusion test statistics, which are
measures of the distance between the parity vector and the
fault lines. The derivation deals with cases of multiple
simultaneous SV faults. Then, Sections V-B and V-C
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establish the χ2 RAIM FDE integrity and continuity risk
equations. Finally, in Section V-D, a parity space
representation of this new method is provided.

A. Definition of the χ2 RAIM Exclusion Test Statistic

Following the observation made at the end of Section
IV, a χ2 RAIM exclusion test statistic is derived, which
provides a measure of the distance to the fault line. To
achieve this, we determine the projection q⊥,j of the parity
vector p on the plane normal to the fault line with unit
direction vector uj under single-SV fault hypothesis Hj .

Let q⊥,j be the norm of q⊥,j (q2
⊥,j ≡ qT

⊥,j q⊥,j ).
Appendix C shows that, for single-SV and multi-SV fault
hypotheses Hj , for j = 1, ..., h, q⊥,j is equivalent to the
norm of the LS subset residual vector rj (rj ≡ Rj z)
obtained using all measurements except subset Sj . The
exclusion test statistic q2

⊥,j can be expressed as

q2
⊥,j = rT

j rj = zT Rj z (44)

q2
⊥,j ∼ χ2

(
fT Rj f, n − m − nj

)
. (45)

where

Rj ≡ Bj BT
j

(
In − H

(
HT Bj BT

j H
)−1

HT
)

Bj BT
j (46)

(As a reminder, nj is defined in (17) as the number of
simultaneously faulted SVs under Hj , and the
(n − nj ) × n matrix BT

j is defined in (18) as a matrix of
zeros and ones extracting the (n − nj ) fault-free elements
of z.)

The χ2 RAIM FDE procedure is identical to the SS
approach described in Section IV-A, with the detection
and exclusion test statistics q2

χ and q2
⊥,j respectively

replacing |�k| and |�j,l|.
It follows that, using q2

χ and q2
⊥,j instead of |�k| and

|�j,l|, the total number of detection and exclusion tests
drops from h + τ for SS RAIM FDE to h + 1 for χ2

RAIM FDE. For example, for single-SV faults, this
number is reduced from h2 using SS RAIM down to h + 1
using χ2 RAIM (including one detection test and h

exclusion tests for χ2 RAIM).

B. Integrity Risk Bound for χ2 RAIM FDE

A bound on the χ2 RAIM FDE integrity risk is derived
from the general PHMI equation in (32). First, the
following inequality is considered (same approach used
for SS in Appendix A):

P (HIj , D, Ej |Hi) ≤ P (HIj , Ej |Hi) (47)

Then, a worst case approach is implemented based on
fault vectors f̄i and f̄⊥,j,i , which respectively maximize the
integrity risk in case of no-detection of a fault on subset Si

[same approach as in (5)], and in case of detection of a
fault on Si but exclusion of Sj . Assuming an LS estimator
as in (6), the definitions of events HI0, ND, HIj , and Ej

for χ2 RAIM are used in (32) to directly express the

PHMI -bound as

PHMI ≤
h∑

i=0

P
(|ε0| > �

∣∣ f̄i
)
P

(
q2

χ < T 2
χ

∣∣ f̄i
)
PHi

+
h∑

j=1

h∑
i=0

P
(|εj | > �

∣∣ f̄⊥,j,i

)
P

(
q2

⊥,j < T 2
⊥,j

∣∣ f̄⊥,j,i

)
PHi

(48)

For exclusion, the worst case direction of a fault
impacting subset Si is derived in the same manner as for
detection [19], but using a set of measurements that
excludes Sj . This worst case direction is expressed as

f̄⊥,j,i = Ai

(
AT

i Rj Ai

)−1
AT

i sj , (49)

In addition, (48) exploits the fact that εj and q2
⊥,j are

statistically independent [for the exact same reason as ε0
and q are independent in (6)]. Statistical independence
between estimate error and test statistic is required to
express the joint probabilities in (32) as products of
probabilities in (48). This independence is only achievable
using LS estimators [19], which places a constraint on the
χ2 RAIM estimator. The same constraint is not imposed
on SS RAIM, which instead evaluates PHMI using the
bounding process described in Appendix A.

Finally, the χ2 RAIM integrity risk bound in (48) does
not require the conservative assumptions made in (36), so
that χ2 RAIM provides a tighter PHMI -bound than SS
RAIM. Also, (48) only uses h + 1 test statistics, versus h2

for SS RAIM. However, in χ2 RAIM, although the worst
case fault direction is given by (49), the worst case fault
magnitude still needs to be determined using a line-search
algorithm. This search process ultimately causes χ2 RAIM
to be computationally more expensive than SS RAIM.

C. Continuity Risk Bound for χ2 Residual-Based FDE

The χ2 RAIM FDE continuity risk bound is derived in
two steps, based on the general continuity risk definition
in (33). First, the term of the sum corresponding to the
fault-free hypothesis in (33) is rewritten as

P
(
D, NE|H0

)
= P

(
q2

χ ≥ T 2
χ , q2

⊥,1 ≥ T 2
⊥,1, ..., q2

⊥,h ≥ T 2
⊥,h|H0

)
≤ P

(
q2

χ ≥ T 2
χ |H0

)
(50)

Then, the remaining terms are addressed using the
following inequality:

P
(
D, NE|Hi

)
= P

(
q2

χ ≥ T 2
χ , q2

⊥,1 ≥ T 2
⊥,1, ..., q

2
⊥,h ≥ T 2

⊥,h|Hi

)
≤ P

(
q2

⊥,i ≥ T 2
⊥,i |Hi

)
≤ P

(
q2

⊥,i ≥ T 2
⊥,i |H0

)
(51)

The two upper bounds P (q2
⊥,i≥ T 2

⊥,i |Hi) and
P (q2

⊥,i≥ T 2
⊥,i |H0) are equivalent because, as expressed in
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(44), the faulted measurement subset Si is not included in
the derivation of q⊥,i (i.e., q⊥,i is fault free under Hi).

Substituting (50) and (51) into (33), the χ2 RAIM
continuity risk bound can be expressed as

PCONT ≤ P (q2
χ ≥ T 2

χ |H0)PH0

+
h∑

i=1

P (q2
⊥,i ≥ T 2

⊥,i |H0)PHi + Pother . (52)

The detection thresholds can therefore be written as

T 2
χ = χ−2

{
1 − β (CREQ − Pother )

/
PH0, n − m

}
(53)

T 2
⊥,j =

χ−2 {
1 − (1 − β)(CREQ − Pother )

/
PHj , n − m − nj

}
(54)

where β is defined in (42) and χ−2{P, δ} is the inverse
cumulative distribution function of the chi-square
distribution with δ degrees of freedom at the probability
value P . The continuity risk requirement allocations
CREQ,i and parameters αj defined in (41) and (43) for SS
RAIM are not needed here since a single detection test and
a single exclusion test per subset candidate are used in χ2

RAIM.
The continuity risk requirement is allocated between

(h + 1) test statistics for χ2 RAIM, versus (h + τ )
statistics for SS RAIM (i.e., assuming single-SV faults,
(h + 1) χ2 tests versus h2 SS tests), which would suggest
that the allocation can be more efficiently done using χ2

RAIM. However, a detailed comparison in terms of
continuity risk is beyond the scope of this paper, and is
further discussed for detection only in [14, 24, 25].

D. Parity Space Representation of χ2 RAIM FDE

This section presents parity space representations of χ2

RAIM FDE. For the three- dimensional canonical example
described in Section IV-C, Figs. 6 and 7 display the
fair-gray spherical no-detection region at the origin, and
the dark-gray cylindrical exclusion regions surrounding
the faults lines. These regions are analogous to the SS
RAIM polytopic and prismatic detection and exclusion
regions shown in Figs. 4 and 5. Figs. 6 and 7 confirm that
the χ2 RAIM exclusion test statistic q2

⊥,i defined in (44)
accomplishes the objective set at the beginning of this
section of obtaining a cylindrical exclusion region using a
single test statistic per fault hypothesis.

VI. Performance Evaluation

Sections IV and V have described two integrity and
continuity risk evaluation methods for RAIM FDE. χ2

RAIM enables direct integrity risk evaluation in (48) using
(h + 1) detection and exclusion test statistics defined in
(14) and (44), but requires that the worst case fault
magnitudes for f̄i and f̄⊥,j,i be determined. In parallel, SS
RAIM uses (h + τ ) test statistics defined in (22) and (35)
to provide a looser integrity risk bound given in (36),

Fig. 6. No-detection and exclusion zones for χ2 RAIM in
three-dimensional parity space.

Fig. 7. Visualization of χ2 RAIM exclusion region. In contrast with SS
RAIM, single χ2 test per fault hypothesis is sufficient to define exclusion

regions.

which is independent of fault magnitudes, thereby
enabling computationally efficient implementations.

This section aims at quantifying the integrity and
continuity risks using SS and χ2 RAIM, not only for fault
detection, but also for fault exclusion.

A. Benchmark ARAIM Application, Requirements and
Measurement Error Models

The SS and χ2 RAIM methods derived in the previous
sections are evaluated in an example ARAIM application
for vertical guidance of aircraft using dual-frequency GPS,
Galileo, GLONASS, and Beidou. Nominal satellite
constellations used in this work comprise 24 GPS satellites
[26], 24 Galileo satellites [27], 23 GLONASS satellites,
and 27 Beidou satellites [28]. The simulation parameters,
which include ARAIM measurement error models, and
LPV-200 navigation requirements (to support localizer
precision vertical aircraft approach operations down to 200
ft above the ground), are listed in Table I and described in
detail in [9, 10]. Table I mentions that constellation-wide
faults are not addressed in this paper. Constellation faults
are faults that simultaneously impact all SVs in a same
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TABLE I
Simulation Parameters

Value

Parameter GPS Galileo GLO-NASS Beidou
SV clock, orbit error,b URE [9] 0.5 m 0.67 m 0.8 m 0.8 m
SV clock, orbit error,b URA [9] 0.75 m 0.96 m 1 m 1 m

Residual tropo. errora,b 0.12 1.001
(0.002001+sin2ξ )1/2 m

Smoothed code multipatha,b 0.13 + 0.53e−ξ/10 m lookup table [9] same as GPS same as GPS
Smoothed code receiver noisea,b 0.15 + 0.43e−ξ/6.9 m lookup table [9] same as GPS same as GPS

Fault-free range biasc bMAX 0 m, or 0.75 m 0 m, or 1 m 0 m, or 1 m 0 m, or 1 m
IREQ

d 10−7

CREQ
d 2·10−6

PHi
d 10−5 10−5 10−5 10−5

Pother 0
Constellation-wide faults none considered

aξ is the satellite elevation angle in degrees
bstandard deviation
cmaximum value of mean error
dprobability requirement

constellation [17]. For dual-GNSS ARAIM, exclusion is
ineffective against such faults due to lack of constellation
redundancy. In this case, other means of dealing with
constellation faults must be considered [15, 29].

Also, ARAIM assumes two different error models, one
“for continuity” and one “for integrity” (refer to [9] for
details on implementing both error models). The standard
deviations of the SV clock and orbit errors for the
continuity and integrity models are, respectively, described
in the first and second rows of Table I. The ARAIM error
model for integrity assumes nonzero mean nominal
measurement errors bounded by a bias bMAX (even under
fault-free conditions). Sections VI-B and VI-C first
assume bMAX = 0 for consistency with (4). Nonzero
nominal biases bMAX are then addressed in Section VI-D.

The performance analysis will focus on the vertical
position coordinate, for which the aircraft approach
navigation requirements are often the most difficult to
fulfill. Sensitivity to the vertical alert limit � is evaluated
for values ranging from 10 m to 35 m (LPV 200 requires
� = 35 m).

B. Integrity Risk Evaluation

In Fig. 8, the integrity risk PHMI is evaluated over 24 h
at an example Chicago location, for an example vertical
alert limit � = 10 m, for the joint GPS / Galileo system.
PHMI -bounds for χ2 and SS RAIM FDE are, respectively,
displayed with a thick, solid line and with a dotted line
with black diamond markers. Despite a tight 10 m alert
limit �, the two curves are mostly below the 10−7 integrity
risk requirement IREQ, which is optimistic because, for
now, the fault-free measurement bias bMAX is assumed to
be zero. The focus in Fig. 8 is on the comparison between
the two proposed implementations of χ2 and SS RAIM
FDE. In this regard, χ2 RAIM achieves PHMI -values five
to ten times lower than for SS RAIM. The fact that the χ2

approach, based on a direct search for the worst case fault

Fig. 8. Integrity risk evaluated using SS and χ2 RAIM over 24 h at
Chicago location, for bMAX= 0, for example alert limit of 10 m.

magnitude, provides a tighter integrity risk bound than SS
RAIM is consistent with the theoretical analysis of
Sections IV and V.

C. Worldwide Availability Evaluation

To further quantify the performance of χ2 and SS
RAIM FDE, availability maps are presented in Figs. 9 and
10 for an example 15 m alert limit �, for a 10 deg × 10
deg latitude-longitude grid of locations, for GPS/Galileo
satellite geometries simulated at regular 10 min intervals
over a 24 h period. Availability is computed at each
location as the fraction of time where the PHMI -bound
meets the integrity risk requirement IREQ. In Figs. 9 and
10, availability is color-coded: white color corresponds to
a value of 100%, black represents 98%. Constant
availability contours are also shown for 99% and 100%
probability levels. Fig. 9 displays darker areas than in Fig.
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Fig. 9. Availability map for SS RAIM using GPS/Galileo, for bMAX=
0, for alert limit of 15 m (coverage of 99.9% availability is 85.04%).

Fig. 10. Availability map for χ2 RAIM using GPS/Galileo, for bMAX=
0, for alert limit of 15 m (coverage of 99.9% availability is 93.44%).

10, which expresses again that lower availability is
obtained using SS RAIM versus χ2 RAIM.

In addition, the captions of Figs. 9 and 10 give a
worldwide availability metric: the weighted coverage of
99.9% availability is defined as the percentage of grid
point locations exceeding 99.9% availability; the coverage
computation is weighted at each location by the cosine of
the location’s latitude, because grid point locations near
the equator represent larger areas than near the poles. The
figures show that the coverage of 99.9% availability
increases from 85.04% for SS RAIM, to 93.44% for χ2

RAIM, assuming � = 15 m.

D. Sensitivity of Coverage to Alert Limit

1) Case of Nonzero Mean Nominal Measurement
Errors: In this section, the fault-free nominal biases are
assumed unknown, but bounded by the nonzero values of
bMAX listed in Table I. For nonzero values of bMAX, the
assumption made in (4) is no longer satisfied. In response,
Appendix D provides methods to evaluate the impact of
bMAX on PHMI for SS and χ2 RAIM FDE. In Appendix
D, assumptions are made, which, contrary to Appendix A,
are more conservative for χ2 RAIM than for SS RAIM. It
follows that, assuming bMAX > 0, availability may or may
not improve using χ2 RAIM as compared with SS RAIM.

To illustrate this point, sensitivity of coverage to alert
limit � is evaluated in Fig. 11, for values of � ranging from
10 m to 35 m. These preliminary results (not accounting

Fig. 11. Sensitivity of 99.9% availability coverage to alert limit, for
bMAX > 0, using SS RAIM versus using χ2 RAIM.

for constellation faults, as mentioned in Table I) suggest
that, using GPS/Galileo, the χ2 RAIM availability curve
(shown with a thick, solid line) is slightly above the SS
RAIM curve (square markers), achieving 100% coverage
for χ2 RAIM for � = 35 m, versus 99.9% coverage for SS
RAIM. In contrast, for the system using all four
constellations (GPS, Galileo, GLONASS, and Beidou),
the χ2 RAIM availability curve (thin solid line) is below
the SS curve (circular markers), but both methods reach
100% coverage for � = 20 m. In both cases (using two or
four constellations), the processing time for χ2 RAIM
FDE was about 4.5 times longer than that of SS RAIM
FDE. In this ARAIM application, for the parameter values
given in Table I, the SS approach may be preferred.

The comparison between the proposed
implementations of SS and χ2 RAIM FDE can be
summarized as follows. The χ2 approach can provide
tighter integrity risk bounds, and therefore higher
availability, when assuming zero-mean nominal
measurement errors (bMAX = 0). This is because a direct
search of the worst case fault is used in our
implementation of χ2 RAIM. On the other hand, this
direct search makes χ2 RAIM computationally more
intensive than SS RAIM, which uses an efficient integrity
risk bounding process. Additional complications arise in
χ2 RAIM when measurement errors are not zero mean
(bMAX > 0), which can cause the χ2 approach to provide
lower availability than SS RAIM (e.g., this is the case
when using four GNSS in Fig. 11). Other implementations
of SS and χ2 RAIM FDE are possible (and will be
investigated in future work), as for example, performing a
direct search in SS RAIM, or deriving a different bound on
the χ2 RAIM FDE integrity risk.

VII. CONCLUSION

The emergence of multiconstellation GNSS opens a
new era in navigation integrity monitoring, which may no
longer require costly ground infrastructure, but instead
may be performed at the user receiver using RAIM.
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In this paper, two methods for FDE were considered,
based on SS RAIM and on χ2 RAIM. A new χ2 RAIM
exclusion test statistic was defined. It was shown that in
parity space, for single-satellite faults, the SS RAIM
no-detection and exclusion regions are polytopic and
prismatic, respectively, whereas for χ2 RAIM, they are
hyperspherical and cylindrical, respectively. Integrity and
continuity risk equations were then derived for both SS
RAIM and χ2 RAIM FDE, under hypotheses of single and
multimeasurement faults. These equations mathematically
express the tradeoff between continuity and integrity risk
presented by the introduction of an exclusion function into
RAIM.

A performance analysis was carried out for an example
ARAIM application for worldwide vertical guidance of
aircraft using measurements from GPS, Galileo,
GLONASS, and Beidou satellites. Availability maps were
established using methods that rigorously account for the
integrity and continuity risk requirements, even when
these are interpreted in a conservative, mission-specific
sense. The new SS and χ2 RAIM algorithms enable risk
evaluation using both fault detection and exclusion.

APPENDIX A. INTEGRITY RISK BOUND FOR
SS RAIM FDE

This Appendix provides a derivation of an integrity
risk bound for SS RAIM FDE. In order to generate an SS
integrity risk bound that is independent of fault
magnitude, the general integrity risk equation (32) is
rewritten to distinguish cases of: 1) no detection under
fault-free conditions H0, 2) no detection under faulty
conditions Hi , 3) detection and exclusion of subset Sj that
includes the faulted subset Si , 4) detection and exclusion
of Sj that does not include Si :

PHMI ≤ P (HI0, ND |H0)PH0

+
h∑

i=1

P (HI0, ND|Hi)PHi

+
h∑

j=1

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

h∑
i=0

Si⊂Sj

P (HIj , D, Ej |Hi)PHi

+
h∑

i=1
Si 
⊂Sj

P (HIj , D, Ej |Hi)PHi

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(55)

The following paragraphs provide upper bounds for each
group of terms in (55).

For a set of events Ak, for k = 1, ..., K , we use the
following notations:

{Ak ∀k} ≡ {
A1, ..., AK

} = {
A1 ∩ ... ∩ AK

}
{

(Ak)anyk

}
≡ {

A1 ∪ ... ∪ AK

}
.

Whenever it is appropriate to keep the same notations,
subscripts i, j , and k, respectively, designate indices of

fault hypotheses, exclusion hypotheses, and detection test
statistics.

The first and second terms in (55) can be bounded
using the following inequalities:

P (HI, ND |H0)

= P
(|ε0| > �, |�k| < Tk ∀k

∣∣ H0

)
≤ P

(|ε0| > �
∣∣ H0

)
(56)

P (HI, ND|Hi)

= P
(|ε0| > �, |�k| < Tk ∀k

∣∣ Hi

)
≤ P

(|ε0| > �, |�i | < Ti

∣∣ Hi

)
≤ P

(|ε0| > �
∣∣ Hi, |�i | < Ti

)
P

(|�i | < Ti

∣∣ Hi

)
≤ P

(|ε0| > �
∣∣ Hi, |�i | < Ti

)
(57)

Equations (56) and (57) are integrity risk bounds
corresponding to PLs typically used in SS RAIM for
detection only [5, 6, 9]. The last inequality in (57) uses the
bound:

P (|�i | < Ti |Hi) = 1 (58)

which is a loose bound: the probability of no detection
under fault hypothesis Hi decreases as the fault magnitude
increases. The bound in (58) causes the integrity risk
bound to be larger for SS RAIM than for χ2 RAIM. This
bound was identified in [14] as a key difference between
SS and χ2 RAIM integrity risk bounds for detection only.

In addition, it is worth noting that no assumption needs
be made in (57) on the correlation between ε0 and �i , so
that these equations hold for estimators other than the LS
estimator (ε0 and �i are only independent when using an
LS estimator [19]). This will not be the case for χ2 RAIM,
which requires LS estimators to enable integrity risk
evaluation using (48).

Then, the first term under the j -indexed sum in (55)
accounts for the probability of hazardous information
when excluding a subset Sj that includes the faulted
subset Si . This probability is upper-bounded using the
following inequality:

P (HIj , D, Ej |Hi)

= P
(
|εj |>�, |�k|anyk ≥ Tk, |�j,l| < Tj,l ∀Sl 
⊂ Sj

∣∣Hi

)
≤ P

(|εj | > �
∣∣ Hi

) = P
(|εj | > �

∣∣ H0

)
(59)

In the first equation, event Ej is a joint-event of all τj SS
exclusion tests |�j,l| < Tj,l being simultaneously
satisfied, for all subsets Sl that are not included in Sj (by
definition of �j,l in (35), if Sl is included in Sj , then �j,l

is not defined – or �j,lwould be zero). The last equation in
(59) conditioned on H0 instead of Hi expresses the fact
that εj is fault free: the faulted subset Si is excluded as
part of Sj . Therefore, the distribution of εj is known.

The second sum of terms under the j -indexed sum in
(55) deals with cases of wrong exclusions, also noted
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WEj , where the excluded subset Sj does not entirely
eliminate the faulted subset Si (Si 
⊂ Sj ), and is
upper-bounded using the following inequality:

P (HIj , D, WEj |Hi)

= P

( |εj | > �, |�k|any k ≥ Tk,

|�j,l| < Tj,l ∀Sl 
⊂ Sj

∣∣ Hi

)

≤ P
(|εj | > �, |�j,i | < Tj,i

∣∣ Hi

)
≤ P

(|εj | > �
∣∣ Hi, |�j,i | < Tj,i

)
P

(|�j,i | < Tj,i

∣∣ Hi

)
≤ P

(|εj | > �
∣∣ Hi, |�j,i | < Tj,i

)
(60)

In the last step of (60), the distribution of εj under Hi is
biased by an unknown quantity because of the fault. The
next paragraph shows that the condition on �j,i sets a
limit on the mean of εj . It is also worth noting that, similar
to (58), the assumption that P (|�j,i | < Tj,i |Hi) = 1
generates a loose bound because, for large fault
magnitudes, the probability of not detecting a fault in Si

using �j,i is significantly smaller than one.
Finally, consider the following inequalities:∣∣ε0

∣∣ ≤ ∣∣εi

∣∣ + ∣∣ε0 − εi

∣∣ = ∣∣εi

∣∣ + ∣∣�i

∣∣ (61)

∣∣εj

∣∣ ≤ ∣∣εj,i

∣∣ + ∣∣εj − εj,i

∣∣ = ∣∣εj,i

∣∣ + ∣∣�j,i

∣∣ . (62)

Substituting (61) into (57) and (62) into (60), making use
of the conditions on |�i | and |�j,i | in (57) and (60),
respectively, and substituting the resulting bounds together
with (56) and (59) into (55), we obtain (36).

APPENDIX B. CONTINUITY RISK EQUATION FOR SS
RAIM FDE

This Appendix provides a derivation of a continuity
risk bound for SS RAIM FDE. First, the general
continuity risk (33) is broken down to distinguish cases of
no-exclusion under fault-free and under fault hypotheses:

PCONT = P
(
D, NE|H0

)
PH0

+
h∑

i=1

P
(
D, NE|Hi

)
PHi + Pother . (63)

The same notations as in Appendix A are used.
The first term in (63) can be bounded using the

following inequality:

P
(
D, NE|H0

)
= P

(
|�k|any k ≥ Tk, |�j,l|any l 
=j ≥ Tj,l ∀j

∣∣ H0

)
≤ P

(
|�k|any k ≥ Tk

∣∣ H0

)

≤
h∑

k=1

P
(|�k| ≥ Tk

∣∣ H0

)
(64)

This bound is similar to the one typically used in SS for
detection only to limit the probability of false alarms (a

detailed explanation on the last inequality can be found in
[14]).

The second term in (63) can be bounded in the
following manner:

P
(
D, NE|Hi

)
= P

(
|�k|any k ≥ Tk, |�j,l|any l 
=j ≥ Tj,l ∀j

∣∣ Hi

)
≤ P

(
|�i,l|any l 
=i ≥ Ti,l

∣∣ Hi

)
= P

(
|�i,l|any l 
=i ≥ Ti,l

∣∣ H0

)

≤
h∑

j=1
j 
=i

P
(|�i,j | ≥ Ti,j

∣∣ H0

)
(65)

The probabilities in the final sum in (65) are conditioned
upon H0 although the initial term is conditioned upon Hi .
This is essential because the test statistic distribution is
known under H0. This was achieved by isolating |�i,l|,
defined in (35), which fully excludes faulty measurements
Si under Hi .

Finally, substituting (64) and (65) into (63) provides
the continuity risk bound in (38).

APPENDIX C. TWO EQUIVALENT EXPRESSIONS OF
THE CHI-SQUARED RAIM EXCLUSION TEST STATISTIC

This Appendix aims at proving that the exclusion test
statistic q⊥,j can be evaluated as the distance of p to the jth
fault line in parity space, or equivalently, as the norm of
the LS subset measurement residual (excluding subset Sj ).

The first paragraph of Section V-A explains that the χ2

RAIM exclusion test statistic can be derived from the
projection q⊥,j of the parity vector p on the plane normal
to the fault line with unit direction vector uj under
single-SV fault hypothesis Hj .

For multi-SV faults, graphical representations are not
as useful as for single-SV faults. But, the mathematical
derivation is identical, starting with the definition of uj in
(26), which can directly be applied to multi-SV faults to
define an (n − m) × nj matrix Uj as

Uj ≡ QAj

(
AT

j QT QAj

)−1/2
. (66)

Uj provides the means to determine projections of p for
multi-SV faults. The projected vector is expressed as

q⊥,j ≡ [
In−m − Uj UT

j

]
p (67)

where the (n − m) × (n − m) matrix [In−m − Uj UT
j ] is an

orthogonal projection operator [30].
The χ2 RAIM exclusion test statistic, defined as

q2
⊥,j ≡ qT

⊥,j q⊥,j , can be written as

q2
⊥,j = zT QT

[
In−m − Uj UT

j

]T [
In−m − Uj UT

j

]
Qz

= zT Rz − zT RT Aj

(
AT

j RAj

)−1
AT

j Rz

= zT RT
[
I − Aj

(
AT

j RAj

)−1
AT

j

]
Rz (68)
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where we used the facts that QT Q = R [22], and that
matrix Uj UT

j is symmetric and idempotent. We use the
notation:

Tj ≡ RT
[
In − Aj

(
AT

j RAj

)−1
AT

j

]
R. (69)

The rest of the derivation aims at proving that Tj is
equivalent to Rj in (46). This will accomplish the goal
stated in the first sentence of this Appendix.

Let us define the symmetric idempotent matrices X
and Y of dimensions nj × nj and n × n, respectively, as

X ≡ (AT
j RAj )−1, Y ≡ HP0HT , hence R = In − Y

(70)
Substituting R into (69) and expanding, Tj becomes

Tj = In − Y − YAj XAT
j Y

−Aj XAT
j + Aj XAT

j Y + YAj XAT
j (71)

In parallel, premultiplying and postmultiplying Tj by
In = Aj AT

j + Bj BT
j , the following equation can be

written:

Tj = Bj BT
j Tj Bj BT

j + Aj AT
j Tj Bj BT

j

+Bj BT
j Tj Aj AT

j + Aj AT
j Tj Aj AT

j (72)

Substituting (71) into (72), and using the fact that

BT
j Aj = 0(n−nj )×nj

and AT
j Bj = 0nj ×(n−nj ), (73)

the four terms in (72) simplify considerably. First,
Substituting Bj BT

j = In − Aj AT
j into (46), using the

matrix inversion lemma, and rearranging terms, Rj

becomes

Rj = Bj BT
j

(
In − Y − YAj XAT

j Y
)

Bj BT
j (74)

so that, the first term in (72) is Bj BT
j Tj Bj BT

j = Rj .
Each of the remaining three terms in (72) is equal to

0n×n. This can be proved one term at a time by
substituting (71) and (73) into these terms, expanding and
regrouping to let the term AT

j (In − Y)Aj X appear.
Following definitions of R, X, and Y in (70), it can be seen
that AT

j (In − Y)Aj X = AT
j Aj . This is used to show that

the last three terms on the right hand side in (72) cancel
out, which concludes the derivation.

APPENDIX D. SS AND CHI-SQUARED RAIM FDE
ASSUMING NONZERO MEAN NOMINAL
MEASUREMENT ERRORS

The ARAIM implementation in Section VI-D assumes
nonzero mean measurement errors, with nominal biases
not exceeding ±bMAX. In this case, for SS RAIM FDE,
the following four terms, respectively, are the means of the
position estimate errors ε0, εi , εj , and εj,i in the four
groups of terms on the right hand side in (36):∑n

l=1 |s0,l|bMAX,
∑n

l=1 |si,l|bMAX,
∑n

l=1 |sj,l|bMAX, and∑n
l=1 |sji,l|bMAX, where si,l is the lth element of the

(n − ni) × 1 vector si defined in (20), and sji,l is the lth
element of the (n − ni − nj ) × 1 vector sji , which is the

LS estimator vector for the state of interest, for the subset
solution that excludes both Si and Sj .

For χ2 RAIM FDE, the fault vector f is redefined to
incorporate the impact of the nominal measurement biases
on faulted measurements Aiz. Let b be the n × 1 vector of
nominal biases, i.e., the mean of v in (3). The contributions
of f and b on Aiz are indistinguishable, and can be lumped
together. Under Hi , the new fault vector fi is defined as

fi ≡ f + AiA
T
i b (75)

The impact of b on the remaining measurements is noted
bi : bi ≡ BiB

T
i b. It is worth noting for upcoming

derivations that

f + b = fi + bi , BiB
T
i fi = 0n×1 and AiA

T
i bi = 0n×1

(76)
First, the means of the estimate errors ε0 and εj in (48)

can, respectively, be bounded by |sT
0 |BiB

T
i 1n×1bMAX and

|sT
j |BiB

T
i 1n×1bMAX, where 1n×1 is an n × 1 vector of

ones, and the operator | • | designates the element-wise
absolute value of the vector argument. Then, the
noncentrality parameters of the detection and exclusion
test statistics in (48) can be lower-bounded to take into
account the worst case impact of b, which maximizes
PHMI . Let D be an n × n positive semidefinite, symmetric
matrix used to generate the test statistic zT Dz (D = R for
detection, and D = Tj for exclusion). Also, let λ2

designate the noncentrality parameter of this test statistic.
λ2 can be written as

λ2 = (f + b)T D (f + b)

= fT
i AiA

T
i DAiA

T
i fi + 2fT

i AiA
T
i DBiB

T
i bi

+bT
i BiB

T
i DBiB

T
i bi (77)

All terms in (77) are known, except for bi whose elements
are bounded by ±bMAX. The worst case fi can be
determined using [19], so that the first of the three terms in
(77) is known. Also, since D is positive semidefinite, the
third term is a quadratic form larger than zero. Thus, λ2

can be lower-bounded using the following expression:

λ2 ≥ fT
i AiA

T
i DAiA

T
i fi − 2

∣∣fT
i AiA

T
i DBiB

T
i

∣∣ 1n×1bMAX

(78)
where | • | is again the element-wise absolute value of the
vector argument. Lower-bounding the noncentrality
parameters of q2

χ and q2
⊥,j in (48) using (78) provides an

upper bound on PHMI . Depending on the value of bMAX,
the conservative assumptions made to obtain (78) for χ2

RAIM may or may not overweight the ones made for SS
RAIM in Appendix A.
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