
Approved for Public Release; Distribution Unlimited. Public Release Case Number 21-00138-1.

Evaluation of PNT Situational Awareness
Algorithms and Methods

Sandeep Jada, Mark Psiaki, Sean Landerkin, Virginia Tech
Steven Langel, Arthur Scholz, The MITRE Corporation

Mathieu Joerger, Virginia Tech

BIOGRAPHY
Sandeep Jada obtained a masters degree (2011) in aerospace engineering from Indian Institute of Science, Bangalore, India. He
worked for Airbus India (2011 to 2018). He is a doctoral candidate at Virginia Tech working with Dr Mathieu Joerger, with a
focus on error time correlation modeling and GNSS interference detection.

Mark Psiaki is Professor and Kevin T. Crofton Faculty Chair of Aerospace and Ocean Engineering at Virginia Tech. He is
also Professor Emeritus of Mechanical and Aerospace Engineering at Cornell University. He holds a Ph.D. in Mechanical and
Aerospace Engineering from Princeton University. He is a Fellow of both the ION and the AIAA. His research interests are in the
areas of navigation, spacecraft attitude and orbit determination, remote sensing, and general methods for estimation, filtering, and
detection.

Sean Landerkin obtained a bachelor’s degree in aerospace engineering from Virginia Tech in 2021. He is currently working for
Raytheon Technologies as a systems engineer on NOAA’s Joint Polar Satellite System (JPSS).

Steven Langel received his Ph.D. in mechanical and aerospace engineering from the Illinois Institute of Technology (IIT),
Chicago, IL, USA. He is currently a lead signal processing engineer at The MITRE Corporation, Bedford, MA, USA, focusing
on the development of multi-sensor navigation and fault detection algorithms. He is also pursuing research in robust estimation
algorithms for safety-critical applications. Steve has been a member of the MITRE technical staff since 2014.

Arthur Scholz is a Principal Engineer and leads the NAVWAR and Robust PNT Group at the MITRE Corporation where he has
worked on PNT projects across the defense and civilian sectors. Prior to joining MITRE in 2015, Arthur worked as a research
scientist in the chemical industry. He received his Ph.D in Materials Science from the University of California, Santa Barbara.

Mathieu Joerger (M.S., INSA Strasbourg - Illinois Tech, 2002; Ph.D., Illinois Tech 2009) is assistant professor at Virginia Tech,
senior editor of Navigation for IEEE TAES, member of EU/US Cooperation on Satellite Navigation, Working Group C - ARAIM.

ABSTRACT
This paper describes the design and evaluation of new GNSS jamming detection methods for position, navigation and timing
(PNT) situational awareness (SA). These methods are intended for implementation over large networks of GNSS receivers. We
focus on jamming threats caused by personal privacy devices (PPDs). We first derive two new jamming detection tests to identify
events of simultaneous drops in C/N0 impacting all satellites in view. To limit the risk of false alerts, we develop an automated
process to model satellite-specific and receiver-station-specific C/N0 measurement variations under jamming-free conditions.
These models are then incorporated in our new detectors and evaluated using months of GPS L1 C/N0 data from continuously
operating reference stations (CORS). Tens to hundreds of events are detected monthly at CORS sites located next to highways. To
confirm that the detected events are caused by jamming, we analyze CORS data over multiple days at multiple locations, and find
patterns in jamming schedules. In addition, we process ADS-B-reported aircraft receiver data during two known radio-frequency
interference (RFI) events that also impacted CORS data.

I. INTRODUCTION
In this paper, we describe the design and preliminary evaluation of algorithms and methods for positioning, navigation and timing
(PNT) situational awareness. We focus on detection of jamming events, including those caused by Personal Privacy Devices
(PPDs) [1], because the probability of occurrence of such events is high, which increases opportunities for observations “in
the wild” of illegal Radio Frequency Interference (RFI) in GNSS bands. This paper shows that tens of events can be observed
monthly at locations next to major highways using data that is publicly available.
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The threat of RFI on GNSS-based PNT, including jamming and spoofing, has been growing over the past decade [2]. Multiple
localized research efforts have provided innovative means to detect such threats [3]. The methods proposed in [4–7] use
sophisticated signal processing techniques and dedicated hardware. However, such approaches may be too expensive for
widespread deployment, and therefore do not address the need for a wide-scale RFI detection system. Automatic Gain Control
(AGC) was used as a measure of signal power to detect jamming incidents at an example location over multiple weeks in [8].
Unfortunately, AGC is not readily provided by existing networks of GNSS receivers. Other attempts at detecting RFI are
based on aircraft Automatic Dependent Surveillance – Broadcast (ADS-B), for example using absence of responses or the
Navigational Integrity Category (NIC) [9, 10]. Non-RFI factors, however, impact these parameters, which cause false detections,
and publicly-available ADS-B databases rely on unknown third-party sources that are prone to recording, storing, and formatting
errors [11]. Promising results for jamming detection using crowd-sourced Carrier-to-Noise ratio (C/N0) parameters are found
in [12–16]. An effective C/N0-based jamming detector was also proposed in [17].

In this paper, we evaluate the potential of receiver network C/N0-based and ADS-B parameter-based monitoring methods to
detect jamming incidents over wide areas, and over periods of several months.

A major challenge in C/N0-based monitoring over wide areas is in detection threshold setting at different network receivers. We
want to set thresholds to limit the risk of false alert, i.e., the probability of detection under nominal, no-jamming conditions.
Nominal C/N0 conditions vary widely from one location to another depending on the receiver’s multipath environment. In
addition, receivers and antennas at different locations may not be of the same model and brand, as is the case in the National
Geodetic Survey’s (NGS) Continuously Operating Reference Stations (CORS) network. We must develop a systematic method,
which can be automated for use at hundreds of locations, to determine a receiver’s nominal C/N0 variations. This method must
account for the facts that nominal C/N0 values differ across satellites, and that the impact of multipath varies as the line-of-sight
from static reference-station antenna to satellite changes over time.

We implement the resulting jamming-free C/N0 models in detection tests aimed at minimizing the probability of no detection
while achieving a predefined risk of false alert. Rather than using chi-squared C/N0-residuals to monitor any type of C/N0
variation, we derive two new, more sensitive test statistics specifically designed to detect simultaneous C/N0-drops on all satellites
in view caused by jamming. We evaluate these detection methods using publicly-available CORS GPS L1 C/N0 data.

In order to gain confidence that the detected events are jamming events, which we suspect are caused by personal privacy devices
(PPD) on road vehicles, we process data from multiple CORS sites along a highway. In addition, we analyze CORS and ADS-B
data during known RFI events caused by military testing.

The organization of this paper is as follows. In Sec. II we derive two optimal hypothesis tests, one using C/N0 and another using
time-differenced C/N0. Then, in Sec. III, we develop probabilistic models of nominal C/N0 variations as a function of space
vehicle (SV) azimuth and elevation angles to a ground reference receiver antenna. Sec. IV shows the CORS data analysis using
the two new jamming detection methods at an example location over May to July 2021. Sec. V describes the multi-location
CORS and ADS-B data analyses to consolidate the detection of actual jamming events. Sec. VI presents our conclusions.

II. C/N0-BASED JAMMING DETECTION TEST DERIVATION
In this section, we derive two new methods to detect the presence of jamming using C/N0 measurements of all SVs in view.

1. C/N0-Residual Projection Test for Jamming Detection
Let ‘Ci,k’ be the received power in watts from SV i, at time-step k, and let ‘N0’ be the thermal noise power density in watts/Hz
(W/Hz). On a log scale, C/N0 can be expressed in decibel-Hz (dB-Hz) as:(

Ci,k
N0

)
dB−Hz

, 10 log10

(
Ci,k
N0

)
(1)

We assume that C/N0 in dB-Hz is normally distributed with mean µi,k and variance σ2
i,k. We use the notation:(

Ci,k
N0

)
dB−Hz

∼ N(µi,k, σ
2
i,k). (2)

We will evaluate and refine this assumption in Sec. III. In the presence of a jammer broadcasting in the bandwidth of the
radio-frequency (RF) front end, the jamming power density Jk is added to N0 in the denominator of Eq.1. Jk (in W/Hz) is the
average jamming power density at time-step k: it is the received jamming power divided by the bandwidth of RF front-end. We
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can write the carrier-to-noise-plus-jamming ratio as,(
Ci,k

N0 + Jk

)
dB−Hz

= 10 log10

(
Ci,k

N0 + Jk

)
=

(
Ci,k
N0

)
dB−Hz

− γk (3)

where the jamming power density parameter is defined as:

γk , 10 log10

(
1 +

Jk
N0

)
(4)

Parameter γk varies with Jk. Thus, in the presence of a jammer, a receiver’s measured C/N0 distribution can be expressed as:

ci,k ,

(
Ci,k

N0 + Jk

)
dB−Hz

∼ N(µi,k − γk, σ2
i,k) (5)

The unknown quantity γk in Eq.5 is an indicator of the jamming events we want to detect.

We want to derive a test to detect jamming using C/N0 measurements from all SVs in view at time k. We first define the
observation vector, when jamming is present (Jk 6= 0) or not (Jk = 0), as:

ccck = [c1,k, . . . , cn,k]
T (6)

where n is the number of SVs in view at time k. Boldface fonts are used for vectors and matrices. C/N0 measurements are
assumed to be uncorrelated across satellites.

We distinguish two mutually-exclusive, exhaustive hypotheses of no jamming,H0, and jamming, H1, which are defined as:

null hypothesis H0 : γk = 0 =⇒ Jk = 0 (no jamming)
alternate hypothesis H1 : γk > 0 =⇒ Jk > 0 (jamming) (7)

The probability density functions (PDF) of measured C/N0 under the two hypotheses can be written as:

p (ccck|H0) =
1√

(2π)n|SSSk|
exp

(
−1

2
(ccck −µµµk)TSSS−1

k (ccck −µµµk)

)
p (ccck|H1) =

1√
(2π)n|SSSk|

exp

(
−1

2
(ccck −µµµk + 111γk)TSSS−1

k (ccck −µµµk + 111γk)

)
(8)

where, |SSSk| is the determinant of the positive definite matrix SSSk, µµµk = [µ1,k, . . . , µn,k]
T is the vector of mean C/N0s for all

SVs in view, 111 = [1, . . . , 1]
T is an n × 1 vector of ones, and SSSk = diag

([
σ2

1,k, . . . , σ
2
n,k

])
is the covariance matrix of the

observation vector. We use the Neyman-Pearson lemma to express the test statistic that minimizes the probability of missed
detection (PMD) as:

Λk(ccck, γk) = ln

(
P (ccck|H1)

P (ccck|H0)

)
(9)

where, ln() is the natural logarithm function. Substituting Eq. 8 into Eq. 9, we obtain the following test statistic equation:

Λk(ccck, γk) = −(ccck −µµµk)TSSS−1
k 111γk −

1

2
111TSSS−1

k 111γ2
k (10)

Since the jamming power and jammer locations are unknown, parameter γk is unknown. We can derive the locally most powerful
test statistic for small jamming power (γk → 0) as:

αk ,
∂Λk(ccck, γk)

∂γk

∣∣∣∣
γk=0

= −(ccck −µµµk)TSSS−1
k 111 (11)
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Under H0, the test statistic αk is distributed as:

αk ∼ N
(
0,111TSSS−1

k 111
)

(12)

The detection threshold Tk is set to meet a predefined requirement on the probability of false alert PFA,REQ. Tk is derived from
the following equation:

PFA,REQ = P (αk > Tk|H0) (13)

The detection test is locally optimal at γk = 0, i.e., for detecting simultaneous drops in C/N0 even if these are small in magnitude.
The test is one-sided, i.e., it aims at detecting drops in C/N0 without triggering an alert in the case of C/N0-increases. It is worth
noting that this test can not only be used at one instant but also over fixed time-intervals. In the latter case, observation vectors ccck
can be stacked over a time-window, and the test can be implemented using a sliding window mechanism. This method would
efficiently detect lasting jamming events. It is not implemented in this paper because the events we seek are of short duration,
caused by PPDs on road vehicles passing by static CORS receivers.

The computation of αk in Eq.11 using the observation vector ccck requires an estimate of the mean jamming-free C/N0 vector
µµµk = [µ1,k . . . µn,k]

T and covariance matrix SSSk = diag
([
σ2

1,k . . . σ
2
n,k

])
. We describe our approach for modeling the mean

and variance of C/N0 using experimental data in SectionIII.

2. Time-Differenced C/N0 Test for Jamming Detection
In contrast to the method described above, jamming detection using time-differenced C/N0 only requires a variance model
because time-differencing C/N0 over short time-intervals eliminates the mean C/N0 value. This test is useful, especially when
first processing a set of data for which the mean C/N0 model is unknown. A time-differenced C/N0 measurement ∆ci,k under
jamming is defined as:

∆ci,k , 10 log10

(
Ci,k

N0 + Jk

)
− 10 log10

(
Ci,k−1

N0 + Jk−1

)
(14)

Rearranging terms and substituting Eq. 3 into the resulting equation gives the following expression:

∆ci,k =

(
Ci,k
N0

)
dB−Hz

−
(
Ci,k−1

N0

)
dB−Hz

−∆γk (15)

where ∆γk is defined as: ∆γk , (γk − γk−1). Jamming power variations impact ∆γk. The distribution of ∆ci,k can be
expressed as:

∆ci,k ∼ N(−∆γk, σ
2
∆i,k) (16)

where the variance σ2
∆i,k will be evaluated in Sec. III and the mean of ∆ci,k is −∆γk because (µi,k − µi,k−1 ∼ 0) over short

time intervals, e.g., over k − (k − 1) = 1s.

We want to derive a test to detect jamming signal from time-differenced C/N0s for all n SVs in view at time-step k. We define the
observation vector as:

∆c∆c∆ck , ccck − ccck−1 = [∆c1,k . . .∆cn,k]
T (17)

For any two SVs i and j, ∆ci,k is assumed to be statistically uncorrelated from ∆cj,k. We distinguish two hypotheses, H0 and
H1, which we define as:

null hypothesis H0 : ∆γk = 0 =⇒ Jk = Jk−1 (no change jamming power)
alternate hypothesis H1 : ∆γk > 0 =⇒ Jk > Jk−1 (jamming power density increasing) (18)

The PDF of the time-differenced C/N0 measurements underH0 and H1 can be written as:

p (∆c∆c∆ck|H0) =
1√

(2π)n|SSS∆k|
exp

(
−1

2
∆c∆c∆cTkSSS

−1
∆k∆c∆c∆ck

)
p (∆c∆c∆ck|H1) =

1√
(2π)n|SSS∆k|

exp

(
−1

2
(∆c∆c∆ck + 111∆γk)TSSS−1

∆k(∆c∆c∆ck + 111∆γk)

)
(19)
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where SSS∆k = diag
([
σ2

∆1,k . . . σ
2
∆n,k

])
. The Neyman-Pearson optimal test using time-differenced C/N0s can be expressed as:

Λk(∆c∆c∆ck,∆γk) = ln

(
P (∆c∆c∆ck|H1)

P (∆c∆c∆ck|H0)

)
(20)

Substituting Eq. 19 into Eq. 20 and simplifying, we get the following expression:

Λk(∆c∆c∆ck,∆γk) = −∆c∆c∆cTkSSS
−1
∆k111∆γk −

1

2
111TSSS−1

∆k111∆γ2
k (21)

The locally most powerful test statistic as ∆γk → 0 can be expressed as:

βk ,
∂Λk(∆c∆c∆ck,∆γk)

∂∆γk

∣∣∣∣
∆γk=0

= −∆c∆c∆cTkSSS
−1
∆k111 (22)

Under H0, the detection test statistic βk is distributed as follows:

βk ∼ N
(
0,111TSSS−1

∆k111
)

(23)

This test statistic is optimal for detecting small simultaneous drops in C/N0 across satellites.

The computation of βk requires a model for the diagonal covariance matrix SSS∆k, which is evaluated as a function of satellite
azimuth and elevation angle in Sec. III.

III. NOMINAL MODELS OF C/N0 MEASUREMENTS
In this section we develop a method for modeling the nominal mean and variance of C/N0 measurements, and the variance of
time-differenced C/N0. The models are determined underH0, i.e., using jamming-free C/N0 data.

Figure 1: LEFT: GPS L1 C/N0 measurements for PRN8 at Charlotte, NC (CORS site index: NC77) during a week in May 2021, (a) as a
function of elevation, and (b) as a function time over a sidereal day. The plots show 7 color-coded curves corresponding to 7 days. RIGHT:
Color-coded C/N0 on an azimuth-elevation sky-plot for PRN8 on May 1, 2021. A single day is shown because azimuth-elevation curves overlap
over multiple days.

In Fig.1, we used one month of GPS L1 C/N0 data from an NGS CORS station in Charlotte, North Carolina (NC) (CORS site
index: NC77) [18]. Fig.1 shows that the mean and variance of C/N0 are repeatable from one sidereal day to another, and that
C/N0 primarily varies with satellite elevation angle, and secondarily with satellite PRN and with azimuth angle.
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Figure 2: LEFT: GPS L1 C/N0 measurements for all SVs (color-coded) at Charlotte, NC over 24 hours as a function of elevation. RIGHT:
Color-coded GPS L1 C/N0 measurements on an azimuth-elevation plot: elevation is clearly a major cause for C/N0 variations, but C/N0 values
also vary with satellite and azimuth angle.

1. Elevation-Dependent C/N0 Mean and Overbounding Variance Model
Based on Figs.1 and 3, we model mean C/N0 variations versus elevation using a second-order polynomial, one per uninterrupted
satellite pass, that can be expressed as:

µi,k = a0,i + a1,iθi,k + a2,iθ
2
i,k (24)

where, θi,k is the elevation of SV ‘i’ at time step ‘k’, and [a0,i a2,i a1,i] are the coefficients of the second order polynomial
determined by curve fitting of experimental data.

Figure 3: Mean C/N0 measurement model for PRN 8 at the example location of Charlotte, NC. We develop an automated method to derive
such models for each satellite pass at each CORS station.

We determine the GPS L1 C/N0 variance model versus satellite elevation angle by first computing C/N0 residuals. These
residuals are obtained by subtracting the mean model from sample C/N0 measurements, as shown in Fig.4. The elevation range is
divided into 2.5 degree elevation bins. In each bin, the C/N0 residual sample standard deviation is computed. We use a two-term
exponential function to fit the model to sample standard deviations versus elevation. The C/N0 standard deviations model at time
step k for SV i is expressed as:

σ̂i,k = b1e
−c1θi,k + b2e

−c2θi,k (25)
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Figure 4: Sample and modeled standard deviations of C/N0 residuals (sample ’minus’ mean) over 2.5-degree elevation bins. The grey data
points are GPS L1 C/N0 residuals for all the SV over 24 hour at an example location (Charlotte, NC): variance decreases with SV elevation.
The model (solid black line) is an elevation-dependent two-term exponential function.

Figure 5: Normalized C/N0 measurement residuals (i.e., sample ‘minus’ mean model, divided by modeled standard deviation) as a function of
elevation.

where we chose the coefficients b1, b2, c1 and c2 to be the same for all SVs. Fig.5 shows that C/N0 residuals normalized by their
modeled standard deviation are zero mean with unit variance.

At this point, the elevation-dependent variance model accounts for 68% of the data, corresponding to one standard deviation
(1-σ). However, the sample C/N0 distribution has wide tails, which must be accounted for when seeking a risk of false alert
PFA,REQ < 32%. The quantile-to-quantile (QQ) representation in Fig.6 emphasizes the tails of the distribution. It shows
the sample residual distribution (y-axis) versus the standard normal distribution (x-axis). For the model to be valid more than
68% of the time, the model’s standard deviation must be inflated by a factor ζOB , which we determine using overbounding
methods [19–21]. (The overbounding process had to account for all elevations and quantiles; we chose to model variations over
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elevations first, and then consider quantiles.) The overbounding, elevation-dependent standard deviation is expressed as:

σ̂OB,i,k = ζOB σ̂i,k(θi,k). (26)

Figure 6: Gaussian overbounding of sample distribution of normalized C/N0 residuals.

2. Azimuth and Elevation Dependent C/N0 Measurement Variance Model
The left charts in Fig.1 show that C/N0 measurements are elevation-dependent, and that high-frequency variations repeat
themselves from one satellite pass to the next over multiple sidereal days. These variations are not captured by the mean C/N0
model in Eq.24. If we account for such mean variations using a higher order model, then the C/N0 model variance can be
tightened, which reduces detection thresholds and increases jamming detector sensitivity. On the other hand, for a fixed data set,
the number of variance model parameters may increase, and fewer samples will be available to overbound the residual error
(sample ‘minus’ mean) distribution. We will explore the trade-off between mean model accuracy and variance model fidelity to
data. We derive a C/N0 measurement model as function of both satellite azimuth and elevation angles.

The top two charts in Fig.7 show again that the GPS L1 C/N0 measurement variations versus azimuth-elevation at the Charlotte,
NC location are repeatable over the month month of May 2021. The mean C/N0 model shown with a black curve in the upper
right-hand-side chart was obtained by partitioning data points for all jamming-free days in to azimuth-elevation bins along the
trajectory. Eight days of data partitioned in 2880 bins are shown in the top right chart in Fig.7. In each bin, we computed the
sample mean: the model (black curve) associates sample C/N0 mean values with azimuth-elevation bin centers.

The lower left-hand-side chart shows the residual C/N0 variations obtained by removing the mean model from the data. In each
azimuth-elevation bin, similar to the mean model, we derive an azimuth-elevation-dependent variance model derived from the
residual sample variance. The lower right-hand-side chart shows the residual normalized by the standard deviation model. An
inflation factor is applied using the same overbounding method as in Eq.26.

As compared to the elevation-dependent model, each variance parameter here, one per bin, is derived using a much lower number
of data points. This higher-dimensional model more accurately captures the mean C/N0 variations, but the variance model is of
lower-fidelity because each parameter represents a smaller fraction of nominal conditions.

3. Elevation-Dependent Time-Differenced C/N0 Measurement Variance Model
The mean value of time-differenced C/N0 is negligibly small when the time interval between C/N0 measurements is one second
or lower. We therefore assume that it is zero. Fig.8 illustrates this point by showing time-differenced C/N0 for all 32 GPS SVs
over a day versus time, and versus satellite elevation. The time-differenced C/N0 nominal variance model is derived using the
approach described in Sec.III.1.
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Figure 7: Overview of the azimuth-and-elevation-dependent C/N0 measurement modeling method. (a) Azimuth-elevation sky-plot for PRN2
at Charlotte, NC on May 1, 2021. (b) C/N0 measurements (blue) and C/N0 mean model (black). (c) C/N0 measurement residuals: samples
‘minus’ mean model. (d) Normalized C/N0 residuals: C/N0 residuals divided by modeled standard deviation.

Figure 8: Time-differenced C/N0 measurements from all SVs over 24 hours (top). Time-differenced C/N0 measurements from all SVs over 24
hours as a function of elevation angle (bottom).

IV. EXPERIMENTAL EVALUATION OF C/N0-BASED JAMMING DETECTION METHODS
In this section, we evaluate the jamming detection methods using GPS L1 C/N0 data from CORS at an example location of
Charlotte, NC (site index NC77; latitude: 35◦7’21"N, longitude: 80◦54’58"W). This site is located within 200 m from the
intersection of Interstates I-77 and I-485, and next to a truck stop. It also provides data at 1 Hz sampling rate. It is therefore a
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good location for observing jamming events from PPDs.

The block diagram in Fig.9 gives an overview of the automated jamming detection method using CORS GPS observations data.
The method includes deriving a nominal CORS-site-specific and satellite-specific C/N0 measurement model, incorporating this
model in a jamming detector, and recording detected events. In order to derive the nominal model, jamming-event-free data must
be selected. We have been using the time-differenced C/N0 detector to identify event-free data because it is effective with a
coarse variance model and does not require a mean C/N0 model. Once event-free data is identified, nominal models are derived
using one or more days of data and stored for each CORS site and satellite.

Figure 9: Block diagram illustrating the modeling process and jamming detection from CORS data.

1. What to Expect: Geometry of a Jammer Passing By a Static Roadside Receiver
In this subsection we present a theoretical model of an expected C/N0 drop caused by a PPD-type jammer passing by a static
receiver, e.g., at a CORS site. The Friis equation for free-space propagation of signals is given by [22]:

Pr = Pt +Gr +Gt + 20 log10

(
λ

4πd

)
(27)

where
Pr is the received power in dB,
Pt is the transmitted power in dB,
Gt is the receiving antenna gain in dB, in the direction of the transmitter,
Gt is the transmitting antenna gain in dB, in the direction of the receiver,
λ is the wavelength of the GPS L1 signal,
d is the distance between the transmitting and receiving antennas.

We make simplifying assumptions to get a rough idea of what jamming events to observe. Experimental results in [1] are
insightful as well. We assume loss-less isotropic antennas with unit gains for both the receiver and transmitter. The GPS signal
power is assumed to be -157 dBW and the thermal noise power density, N0 is -201 dBW/Hz [23]. The jammer power is 9.5 mW
for an RF-front end bandwidth of 20 MHz centered at GPS L1 frequency [24]. In actual data, we expect the observed C/N0
variations to vary with the type of PPD and receiver, the antenna gain patterns, and the antennas environment.

Still, can these assumptions inform us on how far away can a jammer be detected? For the scenario in Fig. 10, we simulate a
truck-mounted jammer being driven at 70 mph by a CORS receiver located 250 m away from the road. The time-history of the
distance between jammer and receiver is plotted on the bottom chart in Fig. 10 (c). The C/N0 curve over time is shown in the top
chart. It shows that at the receiver may manage to keep track of the signal (C/N0 > 23 dB-Hz, and that detection must occur within
a few seconds. We used data to verify that test statistics using time-windows are not more effective than instantaneous detectors.
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Figure 10: The geometry of Interstates around CORS site NC77 is shown on a map in (a). A schematic of a jammer passing by the CORS site
is shown in (b). The resulting C/N0 time-history when a jammer is passing by the CORS site is shown in (c)

Figure 11: LEFT: Time history of the test statistic to threshold ratio on May 11, 2021. RIGHT: C/N0 from all SVs in view during an event.

2. Impact of C/N0 Modeling on Detection
This section evaluates the two detectors using the elevation-dependent model, and the azimuth-elevation dependent model
described in Sec.III.1 and Sec.III.2. Both models can be used in the residual-projection test statistic in Eq.11 and its detection
threshold in Eq.12. We implement a false alert requirement: PFA,REQ = 10−6. Fig.11 displays the ratio of the test statistic over
the detection threshold on May 11, 2021. Jamming events are detected when this ratio exceeds 1. The right-hand-side chart in
Fig.11 shows the GPS L1 C/N0 profile during one of the four detected events. The simultaneous decrease in C/N0 over all SVs is
consistent with jamming by a PPD.

Fig.12 extends this analysis to multiple days. It complements the analysis of Fig.11 and it will reveal patterns in the detected
events, for example, caused by PPD on trucks following a weekly schedule. The left-hand-side in Fig.11 shows the the test statistic
to threshold ratio for the month of May: marker sizes are proportional to this ratio; weekends and weekdays are color-coded; red
edges indicate ratios exceeding 1, i.e., detected events. The right-hand-side plot shows actual C/N0 profiles during one of the
detected events.

Fig.13 shows the detection performance of the residual-projection test using the azimuth-elevation-dependent model. In this case,
the detector is more sensitive and captures more events as compared to the elevation-dependent nominal model in 11. Also, test
statistic variations causing "watermarks" in 11 are no longer present.
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Figure 12: LEFT: One month of C/N0-based jamming monitoring using the elevation-dependent model at NC77 during May 2021. Two colors
are used to distinguish weekends from weekdays. Marker size is proportional to the ratio of detection test-statistic to threshold. When this ratio
exceeds the value of 1, the marker’s edge is shown in red to indicate detection. Data is missing from the database on the 29th of May. A
watermark-like pattern appears caused by test statistic variations that repeat themselves daily with a 4-minute offset on this 24-hour range axis
(variations repeat every sidereal day). RIGHT: C/N0 measurement profile for an example detected jamming event; satellites are color-coded.

Figure 13: LEFT: Ratio of C/N0 test statistic over threshold using the azimuth-elevation-dependent model. Detected events shown with red
marker edge. RIGHT: Example C/N0 measurement profile during one of the events.

3. Results of Time-Differenced C/N0 test
The time-differenced C/N0 test statistic in Eq.22 and its threshold in Eq.23 are evaluated in Fig.14 at NC77 over the month of May
2021. The time-differenced C/N0 detector’s sensitivity is comparable to that of the C/N0 residual projection detector in Fig.13.
We checked that all events on these two figures corresponds to simultaneous C/N0 drops on multiple satellites. Noteworthy in
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Figure 14: LEFT: Ratio of time-differenced C/N0 test statistic over threshold. Detected events shown with red marker edge. RIGHT: Example
C/N0 time-profile during one of the events.

Fig.14 are the events occurring every Wednesday at midnight. We show the pattern of occurrence of events on Wednesdays over
four months in Fig. 15.

Figure 15: Detected events occurring on Wednesdays over four months at NC77. Repeated occurrences are found around midnight, local time.

V. CONSOLIDATING THE ANALYSIS OF DETECTED JAMMING EVENTS
In order to gain confidence on the fact that the detected events are actual jamming events, we use additional independent data
from the following cases.

1. To identify jamming events caused by PPD devices onboard moving road vehicles, we analyze multiple CORS sites along
a highway with the intention to observe sequences of events.
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2. For strong jamming events affecting ground and air receivers over tens of kilometers, we evaluate whether events detected
at CORS sites can also be observed using ADS-B data.

1. C/N0 Data Analysis for Multiple CORS Sites Along a Highway
We analyzed data from a pair of CORS sites along interstate I-40 in North Carolina over the month of May. The idea is to find
pairs of events corresponding to road vehicles equipped with a jammer driving on I-40. The CORS site pair is NCCH and NCKN,
which are separated by a 30-50 min drive time. The NCCH receiver and antenna is located 500 m from I-40 and NCKN is 5 km
from I-40, but also 750 m from another state highway. Fig.16 shows jamming events detected over a month: red for detection
at NCCH, blue for detection at NCKN. Pairs of detected events that could originate from a same jammer are boxed in black
rectangles; the separation time between events are indicated. In future work, we will analyze other sites to find further evidence
of jamming.

Figure 16: Detection events at two CORS sites along North Carolina Interstate 40 (NCKN and NCCH) over the month of May 2021. Detection
pairs that could be caused by a same jammer are boxed, and the time-between-events is indicated.

2. ADS-B Data Analysis for Jamming Detection
ADS-B data was used from jamming detection in [9, 10]. These methods leverage aircraft receivers whose containment radius
parameters broadcast in the ADS-B position messages can be used as RFI-indicators. Similarly, we analyze navigation integrity
category (NIC) values over a region of interest to detect jamming.

Jamming of aircraft GNSS is likely caused by stronger signals than PPDs. We also count on the fact that the ground jammer is
not only transmitting towards the sky, so that the jamming radius on the ground can reach several tens of kilometers. Therefore,
we analyze CORS data in the region where we collect ADS-B data during two known jamming events. The two jamming events
are the following.

1. The Marines Special Operations Command (MARSOC) performed GPS testing at Camp Lejeune, NC from the 1st to the
21st of March 2021. The details of the test are given in a Federal Aviation Administration (FAA)’s Notice to Airmen
(NOTAM) [25]. The NOTAM stated that “testing may cause unreliable or unavailable GPS signal” over a radius of 45
nautical miles around Camp Lejeune.

2. A utility company’s wireless control system signals was jamming GPS around the Wilmington, NC airport. Pilots reported
interruptions to GPS at that time [26]. A notice to airmen (NOTAM) was issued on 18 November, 2020 about possible
jamming over a 20 nautical mile radius around the Wilmington, NC airport.

We accessed the OpenSky-network ADS-B message database [27]. We collected ADS-B messages sent both during these events
and under nominal jamming-free days, and within the regions mentioned in the NOTAMS. We parsed the messages to extract the
aircraft positions and NIC values.
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Figure 17: Comparison of NIC values over time during a nominal day (left) and during a military GPS testing day (right).

Figure 18: Color-coded NIC values for aircraft trajectories during MARSOC GPS testing at Camp Lejeune, NC. The marker size is proportional
to the aircraft radius of containment. NIC values of 6 or lower are highlighted with red marker edges.

For the MARSOC GPS testing in March 2021, we found drops in NIC values on testing days which do not appear during nominal
days. Fig.17 shows ADS-B NIC values over time on February 28, 2021 (when no testing occurred) and on March 1, 2021 (Day 1
of the test). We further analyzed the NIC drops at noon on March 1. We found that a military aircraft was reporting an NIC drop
to zero and then a break in messages for 5 seconds. Within few minutes a commercial airliner reported a NIC drop from 9 to 6
due to a potential RFI.

Fig.18 shows one-minute intervals of reported aircraft positions in the test area. The marker size is inversely proportional to NIC
values, i.e., proportional to the aircraft radius of containment. NIC values lower than or equal to 6 are indicated with a red marker
edge. When an event is detected, the aircraft identifying information is displayed.

In parallel, we analyzed data from a CORS site (site index: NCJV) that is 20 km from the test center. Fig.19 shows an instance
where ADS-B and CORS data both showed signs of a potential RFI. A commercial airliner flying over test site sent ADS-B
messages with NIC values below 6 while CORS-site NCJV C/N0 data decreased for all satellites in view with an unusual
wave-like pattern.

The second incident we investigated is one of unintended GPS jamming by a utility company near the Wilmington, NC airport [26].
On November 16 2020, commercial airliners flying near the Wilmington Airport reported NIC drops to 6. Fig.20 shows two
time-intervals showing the NIC drops. We were not able to corroborate these events using CORS data.

VI. CONCLUSIONS AND FUTUREWORK
In this paper, we developed and evaluated new GNSS jamming detection methods for position navigation and timing (PNT)
situational awareness. These methods must be automated because they are intended for data processing over large networks of
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Figure 19: NCJV CORS site C/N0 data (right) during an NIC drop (left) during GPS testing by MARSOC at Camp Lejeune, NC

Figure 20: ADS-B reported NIC values showing possible jamming around the Wilmington Airport prior to issuance of a NOTAM by the FAA.
Marker sizes are proportional to aircraft radii of containment. NIC values of 6 or lower are highlighted with red marker edges.

receivers. First, we derived C/N0-based jamming monitors aimed at detecting simultaneous drops in C/N0 across satellites. Then,
we developed satellite and receiver-site-specific models of jamming-free C/N0 measurements. These models were incorporated
in the jamming detection monitors to limit the risk of false alerts. This process was automated. Next, we analyzed GPS L1 data
from continuously operating reference station (CORS). We evaluated the performance of the jamming monitors. We consolidated
the fact that the detected events were caused by jamming by visual inspection, by data analysis over multiple days at multiple
locations, and by further processing of ADS-B-reported aircraft receiver data during two known RFI events.
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