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ABSTRACT 

As part of the development of the Advanced RAIM, a baseline user algorithm was developed to 

demonstrate the feasibility of the concept.  A first version was published in 2012 and subsequent 

modifications were made available in different forums.  The purpose of this paper is to describe a possible 

set of updates to the original baseline algorithm that integrates the latest safety analyses (the effect of 

temporal exposure and the effect of exclusion), that exploits the proposed default Integrity Support Data 

(the parameters describing the nominal error model and the faults), and that enables the use of 

techniques to drastically reduce the computational complexity. 

 

INTRODUCTION 

The Advanced Receiver Autonomous Integrity Monitoring (ARAIM) concept, an evolution of RAIM to 

multi-constellation and dual frequency signals, is currently being standardized within ICAO and 

RTCA/EUROCAE.  A reference user algorithm was part of the report describing the initial ARAIM concept 

developed within the bilateral US-EU Working Group C [1,2,3].   This reference algorithm has been used 

to evaluate the expected ARAIM performance [4] and for early prototyping [5].  Although there is no plan 

to make the baseline algorithm a requirement in the standards, it remains a key input for their 

development, because it provides an acceptable method to implement ARAIM at the user receiver and 

demonstrates how the integrity support data must be interpreted.   

As part of this standardization process, the initial baseline user algorithm needs to be updated and refined 

to address recent integrity and continuity analyses [6,7], and to reduce the computational load [8].  Also, 

proposed default values for the Integrity Support Data are now available for all the GNSS constellations 

that could be used in ARAIM.  These default values are expected to be valid even if no Integrity Support 

Message is received and they may be seen as a lower bound on the expected performance.  These lower 

bounds can be exploited to simplify the design of the algorithm and to improve the computational 

efficiency. 
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The purpose of this paper is to describe updates to the baseline algorithm that integrates these latest 

developments, and to clarify certain design choices.  After reviewing the basic elements of an Advanced 

RAIM user algorithm, we will focus on the following points: 

1) Subset selection: in [3], the subset selection is designed to minimize the number of subsets in the 

fault detection mode.  For algorithms where the integrity allocation among exclusion modes is 

not optimized (to limit computational load), it can lead to less-than-ideal subset choices.  Now 

that we have a set of default ISD, we can define a subset selection approach that is both simpler 

and better in terms of performance (computation and availability) 

2) Exclusion function: after going over why we need to allocate the integrity budget to each exclusion 

option, we will justify the choice of exclusion options based on the continuity requirement [7].  

More precisely, we will show that for the proposed ISD default values, it is sufficient to consider 

single fault modes (either satellite or constellation). 

3) Temporal exposure integrity analysis:  we will refine the Equations introduced in [6] and show 

how to exploit the maximum possible integrity risk contribution from a given fault mode.  To do 

this, we will go over the impact of the faults that are not monitored on the integrity risk. 

4) Methods to reduce computational load: we will integrate in the algorithm description the 

techniques described in [8,9].  These techniques can drastically reduce the computational load 

with very little performance impact, both in availability simulations and in real time 

implementations 

 

 

OVERVIEW OF THE ALGORITHM 

The structure of the baseline algorithm, as described in [1], [2], [3], and [6] at different stages of 

development, has not changed.  Although we will attempt to have a complete description of the proposed 

updated algorithm, we will direct the user to the references for some of the details and justifications.   

The main purpose of the algorithm is to provide a position estimate and protection levels such that both 

integrity and continuity requirements are met.  For this algorithm, our intent is that these two 

requirements are demonstrated using mathematical proofs.  At the same time, we also attempt to keep 

the algorithm relatively simple and computationally tractable.  This does result in steps that may appear 

to be overly conservative.  We try to point out where those tradeoffs occur. 

To compute the position estimate and the protection level, the algorithm goes through the following 

steps: 

1. Determine the nominal pseudorange error model 

2. Determine the fault modes that need to be monitored as well as the probability of the faults 

that are not monitored (this is done based on the Integrity Support Data and the geometry) 

3. Determine the candidates for exclusion (note that this is necessary even if the exclusion function 

is not triggered) 

4. Test the consistency of the measurements using the fault detection statistics, or of one of the 

subsets in case the all-in-view set does not pass (this is the exclusion function) 

5. Compute the protection level 
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We note that this order is not strict, and there may be advantages in performing some of those steps 

simultaneously.  For example, performance may be optimized by doing 2, 4, and 5 simultaneously. 

 

 

 

INTEGRITY REQUIREMENTS 

The main change in the integrity requirement formulation with respect to previous versions has consisted 

in explicitly considering the effect of temporal exposure [6] (rather than relying on ad hoc justifications 

for the use of an instantaneous integrity risk).  For LPV operations, the time interval associated to the 

integrity risk is 150 s.  For RNP operations, the integrity risk is expressed as a probability per hour.  Due to 

edge effects on the integrity risk computation over an interval, it turns out that the probability over a 

given interval is not proportional to the length of the interval, even for small probabilities.  As a result, for 

RNP, we need to choose a length of interval TEXP to assess the integrity risk.  The equations that are 

presented here will assume one hour, but other choices may be acceptable.   

An expression of the integrity risk (IR) that accounts for the Time-to-alert (TTA) and the exposure is given 

by: 
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Where: 

IEXP is the exposure interval (of length TEXP) 

VPE(τ) and HPE(τ) are the vertical and horizontal position errors at time τ 

VAL and HAL are the vertical and horizontal alert limits (may be infinite) 

To shorten the notations, we will note as HMI (for hazardously misleading information) the event specified 

in Equation (1). 

 

Fault modes 

We can go further in the evaluation of the IR by developing Equation (1) using the formula of total 

probability.  Note that here the fault modes form a partition of the state of the measurements: 

( )fault ,  fault 0P k j =  if k j  

( )fault 1
k

P k =  

231



The expression for IR becomes: 

( ), fault 
k

IR P HMI k=  

 

Effect of temporal exposure on monitored faults 

As described in [6], we can account for the effect of temporal exposure using two distinct bounds.  For 

the modes that are monitored, we write that the probability of HMI over the interval can be replaced by 

the sum of the instantaneous HMI at discrete times t0 to tNes: 

( ) ( )
1

0

, fault  at , fault 
ESN

i

i

P HMI k P HMI t k
−

=

=   

The determination of the number of NES is discussed in [6].  The definition of the HMI in Equation (1) 

implies that if there are no HMI events at a discrete temporal grid separated by TTA, then there is no HMI 

over the interval IEXP.  As a result, an upper bound on NES is given by TEXP/TTA (this is 360 – 450) for RNP 

and 25 for LPV.  Other methods can be used to exploit the temporal correlation of the nominal error to 

further reduce Nes.  Let us now sum over all fault modes k that will be monitored: 

 

( ) ( ) ( )
1 1

monitored faults monitored faults 0 0 monitored faults

, fault  at , fault  at , fault 
ES ESN N

i i
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− −

= =

= =      

 

After this step, we can see that the term inside the sum over the time steps is an instantaneous integrity 

risk. An important consequence of this relationship is that we now only need to classify the fault states as 

they affect time ti only.  In other words, we can write 

 

( ) ( )
monitored faults monitored faults

 at ,fault  at ,fault  present at i i iP HMI t k P HMI t k t=   

 

Note that in the previous equation we have changed the partition of the fault states.   We further develop 

this equation to make appear the prior probability of a fault being present at ti: 

 

( )

( ) ( )
monitored faults

monitored faults

 at , fault  present at 

 at |fault  present at fault  present at 

i i
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Now, if we assume a frozen geometry at time ti, we can write that: 

 

( ) ( ) ,

monitored faults monitored faults

, fault  at |fault  present at ES i i fault kP HMI k N P HMI t k t p=   

 

where 

( ), fault  present at fault k ip P k t=  

 

Upper bound on integrity risk 

Using the previous relationships, an upper bound on the integrity risk IR is then given by: 

( ) ( ), ,

monitored faults not monitored faults

 at |fault  present at ES i i fault k fault k EXPIR N P HMI t k t p p T +   (2) 

where 

( ) ( ), expfault  at any time over fault k EXPp T P k I=  

 

CONTINUITY REQUIREMENT 

The effect of the temporal exposure extends to the continuity requirement in a similar way.  For our 

purposes, here we will focus on the probability of alert: this is the probability that the user algorithm is 

unable to find a solution whose set of measurements appear to be consistent with the nominal error 

model (the consistency being defined by the solution separation statistic, as in defined in [1], [2], [3]).  The 

equation for the probability of alert can be written as: 

( ) ( ) ( ), , , ,

faults  faults  

Alert at |fault  present at ES CONT i i fault k fault k EXP CONT

J J

P Alert N P t k t p p T
 

 +   

 (3) 

where J is the set of candidates for exclusion (including the all-in-view case, which is the fault-free 

candidate) and NES,CONT is the number of effective samples for continuity (which may be different than NES, 

the number of effective samples for integrity [6]).  As with the integrity, the probability of alert is 

expressed per unit of time hour, so there is a choice to be made for the exposure time TEXP,CONT.  In [7] and 

[11], it is argued that assuming an overall continuity requirement of 10-5/hour and with the expected 

values of the integrity support data, it is sufficient to consider single faults.  For the algorithm we will 

consider that it is sufficient to have: 

( ), ,

faults  

Alert at |fault  present at ES CONT i i fault k FA

J

N P t k t p P


   (4) 
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where 75 10FAP −=  (note that this probability includes the alerts due to a failed exclusion) 

 

In the description of the exclusion function below, we will see how this inequality is linked to the definition 

of the fault detection thresholds (under each of the subsets). 

 

INTEGRITY SUPPORT DATA 

At this point it is necessary to introduce the parameters that will allow the receiver to bound the terms 

,fault kp  and ( ),fault k EXPp T .  Table 1 shows the parameters that constitute the Integrity Support Data (ISD) 

– note that this nomenclature has evolved to consider the fact that the integrity parameters may not be 

broadcast in an Integrity Support Message (ISM).  Of those, the first three ones describe the nominal 

model.  The next four ones describe the fault modes. 

Table 1.  List of parameters derived from the ISD 

 Description Source 

σURA,i standard deviation of the clock 

and ephemeris error of satellite i 

used for integrity 

ISD + 

navigation 

data 

σURE,i standard deviation of the clock 

and ephemeris error of satellite i 

used for accuracy and continuity 

ISD + 

navigation 

data 

bnom,i maximum nominal bias for 

satellite i used for integrity 

ISD 

Rsat,i fault rate of fault in satellite i  ISD 

Rconst,j rate of a fault affecting more 

than one satellite in constellation 

j  

ISD 

MFDsat,i Mean time to notify for satellite i ISD 

MFDconst,i Mean time to notify for 

constellation j 

ISD 

 

We note that the parameters included in Table 1 might be dependent on the frequency combination 

(single frequency or dual frequency), or on the mode of operation (horizontal guidance or vertical 

guidance) -this will be specified in the descriptions of the ISD for each constellation.    We have: 
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, , ,sat i sat i sat iP R MFD=   

, , ,const j const j const jP R MFD=       (5) 

where Psat,i is the prior probability of fault in satellite i at a given time and Pconst,j is the prior probability of 

a fault affecting more than one satellite in constellation j at a given time.  We note that constellation 

providers might choose to either provide prior probability or a rate (more generally, out of the three fault 

parameters – rate, probability, and MFD-, two must be provided).  The faults described by the ISD should 

be treated as independent events. 

 

UPPER BOUND ON THE PROBABILITY OF A FAULT AFFECTING A USER OVER A GIVEN INTERVAL 

In this section we go over the methods to evaluate the second term in Equation (2).  The probability that 

a fault affects any part of an interval Iexp of length Texp is given by: 

    ( ) exp

exp exp ,  in interval 1k k k fault k

k

T
P fault k I MFD R T R p

MFD

 
=  +  = + 

 
 (6) 

where 

MFDk is the mean fault duration of a fault 

Rk is the corresponding fault rate 

There are two contributors in this expression: the first term is the probability that the fault is present at 

the beginning of the exposure interval, and the second term is the probability that it appears during the 

exposure interval.  If fault k corresponds to one of the primary events that is described in the ISD, then 

Equation (6) can be applied directly.  If not, we either need to compute the parameters MFDk and Rk (or 

pfault,k), or compute an upper bound using the ISD parameters. 

 

Mean fault duration for simultaneous faults 

The mean fault duration MFDk of a fault composed of simultaneous primary faults is given by [6], [10]: 

  
,

1

/ 1 ,

1

i k

k

i B event i

MFD
MFD

−

=

 
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 
      (7) 

where Bi,k is an function indicating whether the primary event i is included in fault k  

(in this formula, the label ‘event’ replaces both ‘sat’ and ‘const’ and refers to the primary events defined 

in the ISD) 

A consequence of this formula is that the probability of fault k in the interval I is given by: 
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The state probability 
,fault kp is derived as in [1], [2], and [3]. 

 

Probability of events occurring in the same time interval 

To simplify the computations, we define Pevent,i(T) the probability that one of the primary events has 

occurred during the interval of length T.  According to Equation (6), the probability is noted: 

   ( ), ,

,

1event i event i

event i

T
P T P

MFD

 
= +  
 

    (9) 

Similarly we define the probability pfault,k(T) that the set of faults defined by Bi,k  above has occurred at 

any point during an interval T.  We have: 

 ( ) ( ) ( )( ) ( )
,,

1

, ,i , ,

1

1
events

i ki k

N
BB

fault k event event i fault k

i

p T P T P T p T
−

=

 − =   (10) 

These formulas can be used to conservatively determine the set of faults to be monitored.  

 

DETERMINATION OF FAULT MODES  

The ISD does not specify explicitly which fault modes need to be monitored or their corresponding prior 

probabilities. (This is because this list is potentially dependent on the user geometry.)  This determination 

must be made by the receiver based on the contents of the ISD, which specifies the probabilities of events 

that can be treated as independent. 

The determination of this list must consider the computational load and the effect on performance.  These 

two objectives are not always competing. 

This paragraph provides one possible method to establish a list of event combinations (the fault modes) 

to be monitored.  The objective is to make sure that the sum of the probabilities of the modes that are 

not monitored do not exceed a pre-defined fraction of the total integrity budget (PTHRES).  The list of fault 

modes that need to be monitored described here is only sufficient (there could be shorter lists that also 

meet the integrity requirements).  The approach consists in moving fault modes from the list of not-

monitored to the monitored list one by one until the remaining modes have a total probability below a 

pre-defined threshold.  We want: 

( ),

 not monitored

fault k EXP THRES

k

p T P       (11) 

This approach is practical because we know that the sum of all the probabilities is one: 
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( )
2

,

0

1

Nevents

fault k EXP

k

p T
=

=       (12) 

(The sum above goes through all the possible combinations of the primary events, of which there are 

2 eventsN .) 

The condition expressed in Equation (11) can therefore be written: 

( ),

 monitored

1fault k EXP THRES

k

p T P −      (13) 

 

This way, it is only necessary to compute the probabilities (using Equation (10)) of the modes that will be 

monitored.  We then need to decide the order in which the faults are considered.  For fault detection only, 

the choice of modes is not critical, and the order included in [3] is adequate.  For fault detection and 

exclusion, because we might be pre-allocating the integrity risk among exclusion choices, the choice of 

monitored faults can have a large impact on performance. For this reason, it is preferable to order the 

monitored modes from stronger to weaker (for all exclusion candidates).  The order defined below was 

intended to work well with the ISD parameters defined in the draft ICAO SARPS Annex 10 (which we will 

refer as default ISD).  

The order can be defined as follows:  

1) the modes for which ( ),fault k EXPp T PHMI , where PHMI is the predefined IR requirement.  

These modes need to be monitored.  For the default ISD settings, this will include all the single 

satellites fault modes, and the constellation fault modes such that ( ),fault k EXPp T PHMI

(Galileo, Beidou, and GLONASS) 
2) the dual satellite faults (except GPS-GPS, which are very weak in the case of a Galileo constellation 

exclusion) 
3) the satellite-constellation wide fault modes corresponding the constellation wide fault modes 

that are included in step 1 from stronger geometry to weaker geometry (GPS satellite – Galileo 
constellation, in the case of the default ISD parameters) 

4) the remaining constellation wide fault modes with ( ), 0fault k EXPp T   

For the cases where faults with a higher degree need to be considered (where we define the degree as 

the number of primary events forming the composite fault mode), the faults can be removed by order of 

increasing degree.  Within one degree it is recommended to start with the faults composed of 

independent satellite faults. 

In this process, if a fault cannot be monitored (either in the all-in-view case or the exclusion options), it is 

not included in the list of fault modes and we move to the next one.  Each fault mode k is characterized 

by the set of indices corresponding to the measurements that are not affected by the fault, which will be 

noted idxk.  The set idx0  corresponds to the full set of indices. 

The integrity risk from the fault modes that are not monitored is bounded by ,fault not  monitoredP , which is 

defined as: 
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( ), ,fault not  monitored fault k EXP

k  not monitored

P p T=       (14) 

Note that it is possible to have a finer bound on Pfault,not monitored by using Equation (8). 

 

Fault consolidation 

Fault consolidation (or grouping) can be used to reduce the number of monitored modes without a 

significant impact on performance. 

After establishing the initial list above, the algorithm consolidates multiple satellite faults from the same 

constellation with the constellation wide fault.  This is done as follows: for each constellation j, we note kj 

the fault mode corresponding to the fault of constellation j only, and Cj the set of fault modes that are 

formed of satellite faults included in constellation j (and included in the list established above). If the 

following inequality holds: 

, , j

j

fault k C fault k

k C

p F p


        (15) 

where FC is a tunable parameter, the fault modes in Cj are removed from the list and the probability of 

fault mode kj is updated as follows: 

( )
, , ,j j

j

updated

fault k fault k fault k

k C

p p p


= +      (16) 

Quasi-fixed subset list 

As an alternative to the previous algorithm, the following orderworks well for the proposed default values: 

1. faults for which ( ),fault k EXPp T PHMI  

2. dual satellite faults from two different constellations 

3. dual constellation–satellite faults for the constellations for which ( ),fault k EXPp T PHMI  (as few 

as possible, and choosing the strongest geometries under the weaker exclusion option) 

The dual satellite faults within one constellation are grouped within the corresponding constellation fault. 

When determining how many of the subsets in 3) need to be included, it is possible to use the less 

conservative bounds on the ( ),fault k EXPp T described above. 

 

Effect of exclusion function on the list of faults 

The list of faults to be monitored is the list determined above. The new sets of indices used to compute 

the fault tolerant position solution will be given by: 

  
j kidx idx      (17) 

where j refers to the exclusion candidate and k to the fault mode. 

238



 

However, now this set of subsets will contain elements that are identical.  We reduce this list by identifying 

a set of unique elements, which are re-indexed from k = 0 to Nfault_modes,j where Nfault_modes,j is the new 

number of fault modes (after identifying the identical sets).  We label the new sets of indices ( )j
kidx . 

For example, let us suppose that there are 6 satellites in view {1,2,3,4,5,6}, and that satellite 2 was 

excluded.  If the original subsets k and k’ were: {1,2,3,4,5} and {1,3,4,5} and satellite 2 is excluded, the 

resulting subsets from applying (17) will be identical.  We can therefore group them. 

The probabilities of the new list of fault modes will need to account for the grouping.  Therefore, the 

probability of fault for each mode is given by: 

 

  
( )

( )
'

, , '

'|
j

k jk

j

fault k fault k

k idx idx idx

p p
= 

=      (18) 

 

The index k=0 corresponds to the new all-in-view solution (that is, we have  ( )
0

j

jidx idx= ). 

 

EXCLUSION FUNCTION 

We will not repeat the description of the computation of the fault tolerant estimates and the associated 

covariance, as these remain the same as in [1], [2], and [3].  We will however briefly go over the exclusion 

function and how it affects the evaluation of both the integrity and continuity. 

The first step of the exclusion algorithm consists in finding a subset of measurements that is consistent 

(among the list of candidates, which we have labeled J above).  A subset is determined to be consistent if 

it passes the solution separation tests.   As shown in [1], it is possible to avoid testing all possible subsets 

by checking the chi-square statistic of each of the subsets.  Because this statistic is an upper bound on the 

maximum solution separation statistic, the subset with the smallest chi-square statistic is very likely to be 

consistent, and thus a good candidate for exclusion.  In this algorithm, any set among J that passes the 

consistency checks can be chosen. 

 

Effect on integrity 

The effect of the exclusion function is to choose one of the subset solutions 
( )ˆ j

x as the new position 

solution.  Let us now go back to our upper bound on the integrity risk in Equation (2).  It is important to 

note that this expression must consider the exclusion process.  The HMI event includes all the possible 

exclusion options (see the paragraph “Integrity allocation across exclusion options” for the determination 

of the exclusion options).  We can write as: 

( )( )ˆ ˆ&
j

j J
HMI HMI x x


=  =  
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Using this decomposition and the fact that the probability of the union of a set of events is bounded by 

the sum of the probability of each event, we have the upper bound: 

( )( )

( )

,

monitored faults

,

not monitored faults

ˆ ˆ&  |fault  present at 
j

es i fault k

j J

fault k EXP

IR N P HMI x x k t p

p T



 =

+

 


(19) 

This is the inequality that is at the root of the allocation of integrity across the exclusion candidates.  We 

do point out that there are alternatives to this upper bound that can be used [11]. 

One of the conditions to choose candidate j is that the solution separations statistics for each of the 

monitored modes is below the detection threshold.  This means that we can use the same bounding 

approach as in [1].  It does mean, however, that we must decide an allocation to each of the exclusion 

candidates, and that allocation must be independent of the measurements.  The parameter that regulates 

this allocation will be labeled ρj. 

 

Effect on continuity 

The effect of the exclusion function on continuity can be seen in Equation (3).  To go further, we will use 

the upper bound: 

( ) ( )( )ˆ ˆAlert|fault 
j

P j P x x =     (20) 

A condition for 
( )ˆ ˆ j

x x= is that the solution separation tests between j (as the new all-in-view solution) 

and the subset solutions pass.  This condition will set a constraint on the solution separation thresholds 

that will be exploited in the next section. 

 

PROTECTION LEVEL EQUATION 

The equations defining the protection levels with fault exclusion are formally identical to the fault 

detection protection levels as shown in [1].  The proposed changes are meant to account for the temporal 

exposure [6], and the fault exclusion function.  For the fault exclusion function (already present in [3]), 

the changes are: 

-  the set of satellites that is considered (the subset determined to be consistent is now 

the all-in-view) 

-  the integrity allocation (which is now reduced to account for exclusion)  

 

Horizontal Protection Level 

As in [1], the horizontal protection level is computed by computing a protection level on the East and the 

North coordinate (q=1 and 2).  Also, the script j corresponds to the exclusion candidate that has passed 
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the solution separation test. Based on the Equations above, we can define the  (j)HPLq (for q = 1 and 2) as 

the solution of the equation: 

( ) ( ) ( )

( ) ( )
( )

( ) ( ) ( ) ( )

( ) ( )

0

,

,0
1

,

2

1
2

fault  modes,j
j j j j j kN

q q j q k q q

fault kj j k
kq q

fault not  monitoredHOR
j

ES VERT HOR

HPL b HPL T b
Q p Q

PPHMI

N PHMI PHMI

 



=

   − − −
+ =   

   
   

 
−  + 


  (21) 

where: 

,fault not  monitoredP  is a bound on 
,fault not  monitoredP ( for example computed as described in Equation (14) to 

account to TEXP), 

( ) ( )j k

qb  are the nominal biases for the subset solution using the subset 
( )j
kidx  

( ) ( )j k

q  are the standard deviation of the subset position solution using the subset 
( )j
kidx  

( )
,

j

k qT  is the solution separation thresholds for the exclusion candidate j. and the subset position solution 

using 
( )j
kidx .  We will go over their definition below. 

Q  is a modified normal tail cdf, which we will discuss below. 

,VERT HORPHMI PHMI  are the integrity allocations to the vertical and horizontal coordinates (see 

[1],[2],[3]) 

ESN is the number of effective samples discussed in the first section of this paper and in [6] 

ρj is a parameter adjusting the integrity allocation defined in the previous section.  The set of parameters 

ρj is selected without the knowledge of the measurements (in particular, it must be independent of the 

exclusion option) and be such that: 

0

1
fault  modesN

j

j


=

=        

If the exclusion process results in the choice of j as the consistent solution, the HPL is given by: 

( ) ( ) ( )2 2

1 2

j j j
HPL HPL HPL= +     (22) 

 

Vertical Protection Level 

 

Similarly, the Vertical Protection Level (j)VPL satisfies the following equation: 
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( ) ( ) ( )

( ) ( )
( )

( ) ( ) ( ) ( )

( ) ( )

0

,3 33
,0

13 3

,

2

1

fault  modes,j
j j j kNj j

j k

fault kj j k
k

fault not  monitoredVERT
j

ES VERT HOR

VPL T bVPL b
Q p Q

PPHMI

N PHMI PHMI

 



=

   − −−
+ =     

   

 
−  + 


  (23) 

 

 

Integrity allocation across exclusion options (ρj) 

The choice of the parameters ρj will be dependent on the continuity requirements and the receiver 

capabilities.  One possible approach is to pre-select (that is, before knowing the measurements) the set 

of exclusion options that will be attempted, J.   This set will be a subset of all the monitored fault modes 

and includes the all-in-view (j=0).  For example, above we argued that in Horizontal ARAIM, it is likely that 

this set would only need to include all single satellite faults and constellation-wide faults that must be 

monitored (Pconst equal or larger than 10-7).  For the indices j corresponding to these exclusion options, we 

can set: 

1

1
j

excN
 =

+
      (24) 

where Nexc is the number of pre-selected exclusion options (excluding the all-in-view).  Note that the PLs 

above will only be defined for the pre-selected exclusion options. 

 

If the receiver has sufficient computational power, the HPL can be computed by solving the equation (as 

suggested in [12]): 

( ) ( )

( ) ( )

( )
( ) ( ) ( )

( ) ( )

0

,

,0
1

,

2

1
2

fault  modes,j
j j j kN

q q j q k q q

fault kj j k
j J kq q

fault not  monitoredHOR

ES VERT HOR

HPL b HPL T b
Q p Q

PPHMI

N PHMI PHMI

  =

    − − −
 + =   

        

 
−  + 

 
  (25) 

Such approach corresponds to a choice of the allocations ρj that makes all (j)HPLq equal under all exclusion 

options.  It will make the receiver more robust to faults, in the sense that it minimizes the worst-case PL 

in the case of a fault. It might however make it less robust to outages, in the sense that the PL will be 

worse when there is an outage and no fault, (because the PL will be close a FD PL corresponding to a 

geometry missing the satellites due a worst-case fault –in addition to the outage). 

 

Threshold computation 

The detection thresholds are defined by: 
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( ) ( ) ( ) ( ) ( )
, , ,

j j k j k

k q fa q ss qT K =         (26) 

where  ( ) ( )
,

j k

ss q  is the standard deviation of the solution separation statistic between the candidate 

subset j and the subset k.  To meet the probability of Alert constraint, the containments ( ) ( )
,

j k

fa qK can be  

constrained by Equation (4) and (20).  We get: 

( ) ( )( )
 3

, , ,

0 1

2
fault modes, jN

j k

ES CONT fault j fa q FA

j J k q

N p Q K P
 = =

      (27) 

For the baseline algorithm, we propose to further simplify the constraint by exploiting the fact that 

, 1fault j

j J

p


 .  It is sufficient to have: 

( ) ( )( )
 3

,

0 1 ,

2
fault modes, jN

j k FA
fa q

k q ES CONT

P
Q K

N= =

   

For this to be true, it is sufficient to have  

( ) ( ) ( ) ( ) _1

,1 ,2

 ,4

j k j k FA HOR

fa fa

fault modes ES CONT

P
K K Q

N N

−
 

= =   
 

   (28) 

( ) ( ) _1

,3

 ,2

j k FA VERT

fa

fault modes ES CONT

P
K Q

N N

−
 

=   
 

 

with the constraint 
_ _FA FA HOR FA VERTP P P= + . 

 

Modified Q function for the PL equation 

The Q function is defined as: 

  ( )
2

2
1

2

t

u

Q u e dt


+
−

=                         (29) 

In the PL equation, we use a modified version, which is labeled Q .  It is defined by 

( ) ( )

( )

 for 0

1 for 0

Q u Q u u

Q u u

= 

= 
    (30) 

This modification ensures that a smaller standard deviation always results in a smaller contribution of 

the integrity risk. 

Bounding the effect of imprecision in the Q function 
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Assume that there is an approximation function to 𝑄̅, denoted as 𝑄̅′ with the knowledge of its relative 

accuracy 𝐴. This section argues that the protection level equation using 𝑄̅′ with a modified requirement 

results in a valid PL. 

2𝑄̄ (
𝑃𝐿𝑞 − 𝑏𝑞

(0)

𝜎𝑞
(0)

) + ∑ 𝑝𝑓𝑎𝑢𝑙𝑡,𝑘𝑄̄ (
𝑃𝐿𝑞 − 𝑇𝑘,𝑞 − 𝑏𝑞

(𝑘)

𝜎𝑞
(𝑘)

) =
𝑃𝐻𝑀𝐼𝑞

𝑁𝐸𝑆
(1 −

𝑃𝑓𝑎𝑢𝑙𝑡,𝑛𝑜𝑡 𝑚𝑜𝑛𝑖𝑡𝑜𝑟𝑒𝑑

𝑃𝐻𝑀𝐼
)

𝑁𝑓𝑎𝑢𝑙𝑡 𝑚𝑜𝑑𝑒𝑠 

𝑘=1

 

(31) 

Here 𝐼𝑅(𝑃𝐿𝑞) is the IR requirement usually given by 
𝑃𝐻𝑀𝐼𝑞

𝑁𝐸𝑆
(1 −

𝑃𝑛𝑜𝑡 𝑚𝑜𝑛𝑖𝑡𝑜𝑟𝑒𝑑

 𝑃𝐻𝑀𝐼
). Therefore, the protection 

level equation is: 

 𝐼𝑅(𝑃𝐿𝑞)  > 2𝑄̄ (
𝑃𝐿𝑞 − 𝑏𝑞

(0)

𝜎𝑞
(0)

) + ∑ 𝑝𝑓𝑎𝑢𝑙𝑡,𝑘𝑄̄ (
𝑃𝐿𝑞 − 𝑇𝑘,𝑞 − 𝑏𝑞

(𝑘)

𝜎𝑞
(𝑘)

)

𝑁𝑓𝑎𝑢𝑙𝑡 𝑚𝑜𝑑𝑒𝑠 

𝑘=1

 

(32) 

If we replace the true 𝑄̅ with approximation 𝑄̅′ where 
𝑄̅

𝑄̅′ < 𝐴 and 𝐴 is known i.e. 10% maximum relative 

error à 𝐴 = 1.1 then: 

2𝑄̄ (
𝑃𝐿𝑞 − 𝑏𝑞

(0)

𝜎𝑞
(0)

) + ∑ 𝑝𝑓𝑎𝑢𝑙𝑡,𝑘𝑄̄ (
𝑃𝐿𝑞 − 𝑇𝑘,𝑞 − 𝑏𝑞

(𝑘)

𝜎𝑞
(𝑘)

)

𝑁𝑓𝑎𝑢𝑙𝑡 𝑚𝑜𝑑𝑒𝑠 

𝑘=1

< 𝐴 × [2𝑄̅′ (
𝑃𝐿𝑞 − 𝑏𝑞

(0)

𝜎𝑞
(0)

) + ∑ 𝑝𝑓𝑎𝑢𝑙𝑡,𝑘𝑄̅′ (
𝑃𝐿𝑞 − 𝑇𝑘,𝑞 − 𝑏𝑞

(𝑘)

𝜎𝑞
(𝑘)

)

𝑁𝑓𝑎𝑢𝑙𝑡 𝑚𝑜𝑑𝑒𝑠

𝑘=1

] .

 

(33) 

The requirement 𝐼𝑅(𝑃𝐿𝑞) can be rewritten to account for inaccuracy of the 𝑄̅′, so we need to reduce the 

requirement from 𝐼𝑅(𝑃𝐿𝑞) to 
𝐼𝑅(𝑃𝐿𝑞)

𝐴
=  𝐼𝑅′(𝑃𝐿𝑞) < 𝐼𝑅(𝑃𝐿𝑞) which will have very small impact on the 

𝑃𝐿𝑞 obtained - it will increase from the value which solves (32). 

Meeting the following rule (using the approximation 𝑄̅′): 

𝐼𝑅′(𝑃𝐿𝑞) > 2𝑄̅′ (
𝑃𝐿𝑞 − 𝑏𝑞

(0)

𝜎𝑞
(0)

) + ∑ 𝑝𝑓𝑎𝑢𝑙𝑡,𝑘𝑄̅′ (
𝑃𝐿𝑞 − 𝑇𝑘,𝑞 − 𝑏𝑞

(𝑘)

𝜎𝑞
(𝑘)

)

𝑘=𝑁

𝑘=1

 

(34) 

ensures that the global requirement (32) is met since: 

𝐼𝑅(𝑃𝐿𝑞) = 𝐴 × 𝐼𝑅′(𝑃𝐿𝑞) > 𝐴 × 2𝑄̅′ (
𝑃𝐿𝑞−𝑏𝑞

(0)

𝜎𝑞
(0) ) + 𝐴 × ∑ 𝑝𝑓𝑎𝑢𝑙𝑡,𝑘𝑄̅′ (

𝑃𝐿𝑞−𝑇𝑘,𝑞−𝑏𝑞
(𝑘)

𝜎𝑞
(𝑘) )𝑘=𝑁

𝑘=1

> 2𝑄̅ (
𝑃𝐿𝑞−𝑏𝑞

(0)

𝜎𝑞
(0) ) + ∑ 𝑝𝑓𝑎𝑢𝑙𝑡,𝑘𝑄̅ (

𝑃𝐿𝑞−𝑇𝑘,𝑞−𝑏𝑞
(𝑘)

𝜎𝑞
(𝑘) )𝑘=𝑁

𝑘=1
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(35) 

Therefore, it is sufficient to use the relative accuracy as a performance indicator for the assessment of 

any approximation function 𝑄̅′. 

 

 

 

 

 

REDUCING THE COMPUTATIONAL LOAD 

With the proposed default ISD parameters and the proposed subset selection method, the number of 

terms in the PL equation will be about 100.  Most of those fault modes correspond to dual satellite faults.  

The subsets corresponding to these fault modes usually correspond to strong geometries (at least 

compared to the constellation wide fault modes).  The contribution of those modes to the integrity risk is 

therefore expected to be small.  It is possible to significantly reduce the computational load by exploiting 

the approach described in [9].  In this description, we will assume that nominal error parameters are the 

same for continuity and integrity (if they are not, the equations must be adapted). 

 

Replacing the solution separation statistic by the sum of square residuals 

In [1], we showed that the square root of the sum of squared normalized residuals is a bound on the 

normalized solution separation, that is: 

   

( ) ( )

( ) ( )( )
0

1

,

ˆ ˆ
  

k

q q T T T

k

ss q

x x
k y W WG G WG G W y



−−
  −    (36)  

wherewe follow the notations of [1].. 

This bound implies that we do not need to evaluate the subset position solutions to check the consistency 

of the measurements.  It also means that we must use the chi-square statistics to define the threshold [9].  

 

Computing a Protection Level without evaluating all subset solutions 

Let us now consider a subset Ω of the list of fault modes.  For example, it could designate all the n-2 and 

n-1 subsets.  In [1] we showed that when using the all-in-view least squares position solution, we 
have the identity: 

 
( ) ( ) ( )2 2 0 2

,

k k

ss q q q  = −      (37) 
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Now let us assume that that we have an upper bound 
q    of all the standard deviations 

( )k

q  for 

all the subsets k in Ω: 

 
( )

  
k

q qk          (38) 

For any value of L and any k in Ω we have: 

 
( )

( )2 0 22

,, fa q q qk q

k

qq

L KL T
Q Q

  







   − −−
  

   
   

     (39) 

where 
2

,fa qK  is a containment defined by the chi-square statistic.  

The important feature of this upper bound is that it does not depend on the index k.  We can 
further write: 

( )

( )2 0 22

,,

, ,

fa q q qk q

fault k fault kk
k k qq

L KL T
p Q p Q

  






 

   − −−              

      

 (40) 

This bound shows that we can replace many terms in the PL equation by one, as long as we have an 

upper bound on ( )k

q . 

 

Upper Bound on the Error Covariances of Subsets with N-2 measurements  

To obtain an upper bound on the standard deviations corresponding to the dual faults, we exploit the 
matrix inversion lemma as described in [9].  After some algebra, we get the key relationship: 

( ) ( )
( ) ( )( ) ( )

1
2 0 2J T T

q q J JJ J
e S P S e 

−

= +    (41) 

where 

J  refers to the subset of measurements that is removed from the all-in-view (note that 

this J is not related to the list of exclusion candidates) 

e  is the vector projecting the position solution on the coordinate of interest 

 P(JJ)  is obtained by selecting indices J in the rows and columns of the matrix  

  ( )
1

T TP W WG G WG G W
−

= −   

 eTS(J)   is composed of the indices J of eTS where ( )
1

T TS G WG G W
−

=    

The terms in Equation (41) are byproducts of the all-in-view position solution.   

After normalizing the matrix P, as described in [9], we end up with the relationship: 
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( ) ( )
( ) ( )( ) ( )

1
2 0 2

, , ,

J T

q q norm J norm JJ norm J
s P s 

−

= +  

The new matrix Pnorm has all ones in the diagonal. 

To go further, we use the following inequality [7]: 

   
( ) ( )( ) ( ) ( ) ( )( )( )

1 2
1

, , , , ,
maxT

norm J norm JJ norm J norm J norm JJ
s P s s P

−
−   

 (41) 

Where the term λ refers to the eigenvalue of the matrix.  For a subset J=(i,j) with two elements, the matrix 

( ),norm JJ
P  will have the form: 

,

,

,

1

1

norm ij

norm JJ

norm ij

p
P

p

 
=  
 

 

The eigenvalues of this matrix are given by 
, ,1 ,1norm ij norm ijp p+ − .  For the subsets with two elements, 

we get the upper bound: 

( )( )( )
( )

1

,

,

1
max

1 max
norm JJ

norm ij
i j

P
p

 −




−

 

The term 
( )

2

,norm J
s can be bounded by simply taking the two largest components of snorm. 

 

Nominal biases 

The effect of the nominal biases can be bounded by using the Cauchy-Schwarz inequality, which allows us 

to link the position domain nominal bias to the standard deviation upper bound [9]. 

 

Results 

We show a set of coverage results obtained using the baseline algorithm with and without the proposed 

method to reduce the computational load.  The details of the scenario are described below.  The 

simulations were obtained using MAAST.  The HPL that are computed correspond to the worst-case 

exclusion HPL (which is also very close to the worst-case outage case). 
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Figure 1. Simulation settings 

 

 

Figure 2.  99.9% HPL for proposed baseline algorithm with (left) and without (right) the computational 

reduction method 
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Figure 2.  Coverage of 99.9 availability of HAL=556 m (top) and HAL = 185 m (bottom) for proposed 

baseline algorithm with (left) and without (right) the computational reduction method 

These availability simulations show that the updates proposed in this paper would result in a user 

algorithm that provides excellent coverage of RNP, and that the proposed technique to reduce the 

computational load do not degrade performance significantly. 

 

SUMMARY 

We have described a set of updates to the baseline ARAIM algorithm described in [1],[2], [3].  These 

updates address the effect of temporal exposure on integrity and continuity, and clarify the effect of 

exclusion on the PL.  In addition, the subset selection is modified to ensure that performance remains 

good under these changes.  Finally, to reduce the computational complexity (which has been a concern 

during the development of ARAIM), we propose a technique that can drastically reduce the number of 

subsets while maintaining availability.. 
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