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1  INTRODUCTION

In this paper, we develop, analyze, and test new position and orientation (or 
pose) estimation and integrity monitoring methods using data from light detection 
and ranging (lidar) and an inertial measurement unit (IMU). Testing is performed 
in a mapped laboratory environment.

This research is intended for safety evaluation in autonomous vehicles such as 
automated driving systems (ADSs). ADS testing is necessary but insufficient to pro-
vide navigation safety guarantees because accumulating “autonomously driven” 
road miles does not provide a statistically significant number of traveled miles as 
compared with manned driving incidents (Kalra & Groves, 2017; Kalra & Paddock, 
2016).

To quantify safety risks in ADS navigation, we leverage prior analytical work in 
global navigation satellite system (GNSS)-based aviation navigation, where safety 
is assessed in terms of integrity. Integrity is a measure of trust in sensor informa-
tion (International Civil Aviation Organization, 2006). Several methods have been 
established to predict aircraft GNSS integrity risk (Radio Technical Commission 
for Aeronautics (RTCA) Special Committee 159, 1996; Working Group C, 2016). 

Summary
This paper describes the design, analysis, and experimental evaluation of a new 
landmark-based localization method that integrates light detection and rang-
ing (lidar) with an inertial measurement unit (IMU). We develop a tight IMU/
lidar integration scheme that exploits the complementary properties of the two 
sensors to facilitate safety risk evaluation. Lidar localization updates limit the 
IMU error drift over time while IMU data improve lidar position and orientation 
(or pose) prediction, thereby reducing the risk of incorrectly associating per-
ceived features with mapped landmarks. In addition, lidar return-light intensity 
measurements are incorporated to better distinguish landmarks and to further 
reduce the risk of incorrect associations. We analyze the integrity performance 
of the localization algorithm using an automated testbed that generates analyti-
cal and empirical pose estimation error distributions.
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Unfortunately, these methods do not directly apply to ADS because ground vehi-
cles operate under sky-obstructed areas, where GNSS signals can be altered or 
blocked by buildings and trees.

ADSs require sensors in addition to GNSS, such as IMUs, lidar, camera, and 
radar. This paper focuses on IMUs and lidar. The integration of lidar with an IMU 
improves pose prediction because the IMU can be used to coast between lidar pose 
updates and lidar updates can be used to calibrate IMU biases (Opromolla et al., 
2016). Prior work includes tightly coupled implementations in which an IMU is 
used to determine the lidar tilt angle (Soloviev, 2008; Soloviev et al., 2007). In robot-
ics, lidar-based localization is often achieved by odometry (e.g., from an IMU) and 
simultaneous localization and mapping (SLAM) (Bresson et al., 2015; Dryanovski 
et al., 2013; Guivant & Nebot, 2001; Guivant et al., 2000; He et al., 2018; Hess et al., 
2016; Joerger et al., 2016; Leonard & Feder, 2000; Montemerlo & Thrun, 2003; 
Nerurkar & Roumeliotis, 2011; Zheng & Zhang, 2019). However, SLAM is insuffi-
cient in safety-critical ADS navigation applications because localization errors drift 
over distance and loop closures are trajectory-constraining. 

In this paper, we assume that an a priori map is available. The first category of 
map-based lidar localization approaches includes matching and correlation meth-
ods. These methods aim to maximize data point correspondences between the lidar 
point cloud (PC) and the map, whether the map itself is a PC (Guo et al., 2014; 
Pomerleau et al., 2013; Sappa et al., 2001) or an occupancy grid map, i.e., a tessel-
lated representation of the PC (Fan et al., 2018; Luo et al., 2020; Nuss et al., 2015). 
However, rigorous safety risk quantification via matching methods is an unsolved 
and cumbersome problem. Instead, this research uses a landmark-based localization 
method for which we have developed an integrity risk equation (Hassani et al., 2018; 
Joerger et al., 2017 2016; Joerger & Pervan, 2017). Landmark-based localization aims 
to identify landmarks in the lidar PC and to match them with mapped landmarks 
(Hunde & Ayalew, 2018; Pirovano et al., 2020; Vosselman & Dijkman, 2001).

Landmark-based localization requires two pre-estimator procedures (Hunde & 
Ayalew, 2018; Pirovano et al., 2020). First, feature extraction aims to identify the 
most consistently recognizable, viewpoint-invariant landmarks in the lidar PC. 
Then, data association matches the ordering of mapped landmarks to that of 
PC-extracted features over successive observations (Bailey, 2002; Bar-Shalom et al., 
1990; Cooper, 2005; Joerger & Pervan, 2009). Incorrect association is a well-known 
algorithmic fault that can cause a loss of navigation integrity.

This paper builds upon the multiple-hypothesis extended Kalman filter (EKF) 
innovation-based data association method presented by Joerger et al. (2016). 
This method provides a means for evaluating the incorrect association risk of the 
matching process while considering all possible combinations and permutations of 
sensed landmarks to mapped landmarks. The incorrect association probability is 
then used to bound the integrity risk of lidar-based pose estimation over successive 
iterations. Joerger et al. (2016) and Joerger & Pervan (2017) showed that the incor-
rect association probability grows rapidly in cluttered environments. One approach 
to mitigate this problem is to select a subset of the most distinguishable features 
in the lidar PC (Joerger et al., 2017). However, this approach reduces the number 
of redundant associations and lowers the ability to detect unwanted, unmapped 
landmarks.

In response, in this paper, we enhance data association and integrity monitoring 
performance by tightly integrating lidar with an IMU and by incorporating lidar 
return-light intensity measurements. In addition, we design and implement an 
experimental testbed to evaluate the localization and data association performance 
of the IMU/lidar algorithm.
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We first develop a tightly integrated IMU/lidar process specifically to quantify 
integrity risk. IMU integration can reduce integrity risk not only by improving pose 
prediction but also by lowering the risk of incorrect association. Then, we derive 
a new method to exploit return-light intensity measurements provided by lidar in 
addition to range and bearing angle observations. Light intensity measurements 
can improve the system’s ability to distinguish landmarks if their surfaces have 
different reflectivity properties. For example, lidar intensity can help identify an 
aluminum pole from a pedestrian.

Section  2 of this paper describes the tightly integrated EKF-based IMU/lidar 
algorithm. Nonlinear continuous-time dynamic-propagation and measurement 
equations are derived, linearized, and discretized. Section 3 presents a derivation 
of the multiple-hypothesis data association and integrity risk bounding methods, 
with a focus on the contributions of IMU and lidar intensity measurements. In 
Section 4, we perform direct simulations and a covariance analysis to evaluate the 
risk reduction brought about by the IMU. In Section 5, we experimentally quantify 
the reduction in integrity risk achieved when incorporating (a) IMU data, (b) lidar 
intensity measurements, and (c) both IMU data and lidar intensity.

2  HIGH-INTEGRITY IMU AND LIDAR 
MEASUREMENT MODELS

2.1  IMU Measurement Equations

In this implementation, we use raw IMU accelerometer and gyroscope measure-
ments. The IMU is fixed in the ADS body frame “B,” which can be approximately 
oriented along the vehicle’s principal axes of inertia. The IMU accelerometers mea-
sure inertial acceleration, i.e., second time derivatives of position with respect to 
the inertial frame (labeled “I”), and we are interested in the ADS pose expressed 
in a navigation frame “N” (for example, in the local east, north, up directions). 
We also define an earth-centered, earth-fixed frame “E” because N may move in 
E. We use the Newton and Euler methods to describe the ADS translational and 
rotational motion. The following three equations express the time derivative of 
the ADS velocity with respect to N and expressed in N, the time derivative of the 
position with respect to E and expressed in N, and the time derivative of the rota-
tion matrix from B to N, respectively (following equation [3.26] in Titterton et al. 
(2004)):
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where: 
N Ev ADS   is the 3×1 ground speed vector, i.e., the vehicle velocity vector with 

respect to E expressed in N,
Ad dt/   is a time derivative with respect to frame “A”, where A may stand for B, 

E, I, or N,
CB
N   is the 3×3 rotation matrix from B to N (Titterton et al., 2004),

NxADS   is the 3×1 vehicle position expressed in N,
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B f   is the 3×1 IMU-measured and corrected specific force vector expressed 
in B, as derived in Appendix B,

N IEωω   is the angular velocity vector of E with respect to I expressed in N,
N ENωω   is the angular velocity vector of N with respect to E expressed in N,
B IBωω   is the measured and corrected angular velocity vector of B with respect 

to I expressed in B, as derived in Appendix B,
N g   is the local gravity vector at the IMU axis center expressed in N (Rogers, 

2007),
[ ]a×   is the skew symmetric matrix of vector a.

2.2  Lidar Range and Bearing Angle 
Measurement Equations

A raw lidar PC consists of thousands of data points, each of which individually 
does not carry useful navigation information. Thus, raw measurements must be 
processed before they can be used for localization. Feature extraction aims to con-
sistently extract identifiable static landmark features. Figure 1 shows an example 
of a lidar PC collected in our laboratory testbed. Colors from red to blue designate 
high to low levels of return-light intensity, respectively.

The experimental testbed in Figure 1 includes six static vertical cylinders with 
different surface properties, which are easy-to-distinguish landmarks that facilitate 
feature extraction. We want successful feature extraction because this process is 
not the primary focus of this paper. Feature extraction aims at finding the center 
of quasi-circular ellipses formed by the projection of the cylinders’ edges in the 
lidar zero-elevation angle plane. Figure 2 illustrates our two-step feature extraction 
algorithm. 

• Segmentation: Within an elevation cone, range differences over the azimuth-
angle sequence help distinguish cylinders from the background. Point clusters 
corresponding to cylinders can thus be segmented. 

FIGURE 1 Lidar PC showing return-light intensity (color-coded from blue to red, from low 
to high intensity)
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• Model fitting and feature estimation: The segmented points are projected in the 
zero-elevation plane, and a two-dimensional (2D) circle-fitting algorithm is 
used to fit a circle to the projected points. This step assumes that the cylinders 
are vertical and that the elevation plane is horizontal, which is valid in our lab 
environment. 

The center of the fitted circle, parameterized by its range and bearing angle with 
respect to the lidar, is the extracted point feature. Let i d  and i a,  respectively, be 
the range and bearing angle measurements in B for the point feature of landmark 
‘i’, where i nL= 1  and nL  is the number of extracted features. The horizontal 
position of the extracted point feature is time-invariant in the navigation frame N, 
which, in this paper, is fixed in E. In addition, let i Ep  and i Np ,  respectively, be the 
east and north position coordinates of landmark “i” in N. The ADS position and 
orientation vectors in N, xADS  and eADS ,  respectively, can be expressed as follows:

 xADS E N Ux x x� �� ��
T

 (4)

 eADS � � � ��� ��
T

 (5)

where x x xE N U, ,  are the three-dimensional (3D) ADS position coordinates along 
the east, north, up axes, and � � �, ,  are the ADS Euler angles. Euler angles can be 
extracted from the rotation matrix in Equation (3), as described in Appendix (B).

Using these notations, the nonlinear lidar range and angular measurements are 
respectively given as follows:
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In Equations (6) and (7), νd  and νa  are random feature measurement errors. 
Feature extraction error distributions are not Gaussian, but the error’s cumulative 

FIGURE 2 (a) 3D segmentation of a lidar PC; (b) circle fitting and point-feature measurement 
extraction
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distribution function (CDF) can be overbounded by using zero-mean normal 
CDF models, as described in Appendix (C) (Blanch et al., 2019; DeCleene, 2000; 
Rife et al., 2006). Throughout the paper, the function “arctan(b ∕a)”, for a∈  and  
b∈,  designates a function that equals arctan(b ∕a) when a> 0,  arctan(b ∕a) + π 
when a< 0,  π / 2  when a = 0  and b> 0,  and �� / 2  when a = 0  and b< 0.

We can stack the ranging and angular measurements for all extracted landmarks 
in a 2 1nL ×  vector and write the lidar nonlinear measurement equation as follows:

 = +ˆ ( )z h x ν  (8)

  =   

T
1 1ˆ n nd d a az  (9)

 �� � � � � �d dn a an1 1
 

�
��

�
��

T
 (10)

where: 
x   is an ns ×1  state vector including ADS position, velocity, orientation, and 3D 

IMU gyroscope and accelerometer biases; i.e., ns = 15,
νν   is the 2 1nL ×  feature measurement error vector.
Vector νν  is modeled as a vector of normally distributed random variables with 

zero mean and covariance matrix V.  We use the following notation: νν N .( , )0 V  
Nonzero elements of the diagonal matrix V  are derived in Appendix (C). In 
Equation (8), the vector function h x( )  consists of stacked nonlinear equations 
(Equations (6) and (7)) arranged as indicated in Equation (9).

In addition, the lidar provides return intensity measurements for each PC point. 
We evaluate the mean intensity measurement for landmark “i” by averaging inten-
sity values for all points in a point cluster associated with landmark i. The nL ×1  
return-light intensity measurement vector is modeled as follows:

 = +ˆ ˆand N( , )s ss s s s Vν   (11)

where we use the overbounding distribution derivation in Appendix D to model s  
as normally distributed with mean s  and diagonal covariance matrix Vs .  Vector 
νν s  is an nL ×1  intensity measurement error vector modeled as νν s sN ,(0, )V  as 
described in Appendix D.

2.3  Linearization and Discretization of IMU and 
Lidar Equations

First, we linearize the IMU measurement equations. The continuous-time model 
is linearized by using a first-order Taylor series expansion about reference state 
parameter values. We use the notation “δ” to indicate deviations of state parameters 
relative to the reference values. Using Equations (1)–(3) and the accelerometer and 
gyroscope measurement equations in Appendix B, we can write a continuous-time 
linearized state propagation model as follows:

 � � �x F x w� �  (12)

 � � � � � �x x v e b b� ADS ADS ADS gy ac
T T T T T�� ��  (13)
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where bgy  and bac  are bias vectors of the IMU accelerometers and gyroscopes, 
I  is a 3 3×  identity matrix, N INωω  is the angular velocity vector of I with respect 
to N expressed in N (which can be defined as N IN N IE N EN ),�� �� ��� �  and N f  is 
the corrected specific force expressed in N. Matrices FH2V  and FV2T  are defined 
in Appendix A, and S,  M,  τ ,  n,  and νν  are defined in Appendix B for both the 
accelerometers and gyroscopes.

The discrete-time form of Equation (12) can be written as follows:

 � � �x x wk k k k� �� � � ��1 1 1  (16)

where k  is a discrete time step and ��k�1  is an n ns s×  state transition matrix over 
the IMU sampling interval, i.e., between time steps k −1  and k.  The discrete-time 
IMU measurement equations and the method for computing ��k�1  are found in 
Appendix B. Then, we linearize the lidar measurement equations. We can linearize 
Equation (8) about our best prediction of the vehicle pose xk .  Considering both 
the lidar angular and ranging measurements, the total number of extracted fea-
ture measurements is n nL= 2 .  Let ˆkz  be the n×1  feature measurement vector in 
Equation (8). We use the overbounding distribution derivation in Appendix C to 
model ˆkz  as ˆ N( , ).k k kz z V  Using a first-order Taylor series approximation, the 
linear measurement equation can be written in terms of the predicted state vector 
xk  under the correct-association hypothesis at time step k  as follows:

 − = δ +ˆ ( )k k k k k kz h x H x ν  (17)
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where the observation matrix Hk  is a linearized measurement-to-state coefficient 
matrix. The linearized range and bearing angle measurement vectors and their 
measurement error vectors are denoted as δd,  δa  and ννd ,  ννa ,  respectively. The 
coefficient matrices Fd x, ,  Fa x, ,  and Fa e,  are determined by using the state predic-
tion vector and assuming a correct association, as described in Appendix A. It is 
worth noting that the subscript k  is used in both Equation (16) and Equation (17). 
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However, Equation (17) is only relevant when lidar measurements are available, 
typically at regular 0.1-s intervals (for a 360° azimuth scan), whereas the IMU sam-
pling interval is 10–20 times smaller.

3  INTEGRATED LIDAR/IMU ESTIMATION PROCESS

In this section, we use an EKF to tightly integrate the lidar and IMU, and then, we 
derive an analytical upper bound on the ADS pose integrity risk that accounts for 
incorrect associations. The block diagram in Figure 3 outlines the three main steps 
of this process, which are color-coded and described in detail in Sections 3.1–3.3. 
The inputs to the block diagram are the IMU and lidar measurements and the map; 
the outputs are the pose estimation and integrity risk bound. Section 3.1 describes 
the IMU-based prediction process and includes the EKF initialization. Section 3.2 
presents the EKF measurement update requiring data association; its output feeds 
into the state propagation equation. Section 3.3 describes the integrity risk bound-
ing process, which accounts for the impact of incorrect associations.

3.1  EKF Initialization and IMU-Based Pose Prediction 
Process

Figure 4 shows EKF initialization and prediction of the state vector xk  with IMU 
measurements as input. This figure also shows the initialization of components 
of the integrity risk bound or probability of hazardous misleading information 
(HMI). The IMU specific force and angular velocity measurements are employed 
in two parallel processes. (a) Nonlinear state propagation: We use the discrete-time 
forms of the nonlinear expressions in Equations (1)–(3), the derivation of attitude 
using the rotation matrix from B to N, and the IMU measurements described in 
Appendix B to predict the state vector at each time step (Titterton et al., 2004). 
(b) Linearization, discretization, and covariance propagation: We apply Van Loan’s 
algorithm with the linearized form in Equation (12) to compute the discrete-time 
transition matrix ��k�1  and the process noise covariance matrix Wk−1.  Let x  be 

FIGURE 3 Block diagram of lidar/IMU integration (prediction, estimation, and integrity 
risk evaluation processes)
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the predicted state estimate and P  be the state prediction covariance matrix. The 
other parameters in Figure 4 are defined as follows:

x0  is the ns ×1  initial predicted state estimate vector,
P0  is the n ns s×  initial EKF state prediction covariance matrix,
P HMI( )0  is the initial value of the probability of HMI,
Bk   is the 3 3×  rotation matrix relating navigation axes at time k −1  to 

navigation axes at time k, as given in Appendix B (Titterton et al., 
2004),

Wk   is the n ns s×  process noise covariance at time step k,
xk   is the ns ×1  predicted state estimate vector at time step k,
Pk   is the n ns s×  prediction of the EKF covariance matrix at time step k,
g   is the discrete-time form of Equations (1) and (2), defined in 

Appendix B.
We propagate the state vector xk  by using the nonlinear expressions in 

Equations (1)–(3). After each iteration in the EKF dynamic propagation update, we 
assess whether lidar measurements are present for the current time step k. If such 
measurements are available, we implement a measurement update, as described in 
Section 3.2; otherwise, we continue iterating the dynamic propagation equations 
(Equations (1)–(3)).

3.2  Data Association Criterion and EKF 
Measurement Update

We want to process the linearized lidar measurement equation (Equation (17)) 
using the EKF measurement update to obtain a correction δxk ,  an estimate of 

FIGURE 4 Initialization and EKF prediction process with an IMU
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the ADS state vector = + δˆ ,k k kx x x  and the covariance matrix ˆ .kP  This process 
requires that lidar measurements be correctly associated with mapped landmarks 
because their ordering is not necessarily the same.

To perform data association, we use an innovation-based approach (Joerger 
et al., 2016). The innovation vector under correct association γγ0,k  is given by the 
following:

 ≡ −0, 0,ˆ ( )k k k k kz A h xγ  (18)

where A0,k  is the n n×  permutation matrix that corresponds to the correct associ-
ation. In practice, we do not know which is the correct permutation matrix A0,k ,  
but we can write an exhaustive set of permutation matrices.

The innovation vector can be interpreted as a measure of consistency between 
the extracted feature measurements ˆkz  and the measurement prediction vector 
h x0, ( )k k .  A more accurate state prediction corresponds to a higher likelihood of 
correct association. The state prediction is improved, for example, by using IMU 
data instead of a vehicle kinematic model.

3.2.1  Accounting for Incorrect Data Association

Extracted landmark feature measurements are arbitrarily ordered in vector 
ˆ .kz  In this paper, the number of measured landmarks in the lidar field of view 

(FOV) can be predicted by using a reliable map and vehicle pose prediction. In 
the case of occlusion, if two landmarks are in the same azimuth bin, then only the 
landmark nearest to the lidar is visible. Other cases such as failed extractions or 
extracted-but-unmapped landmarks have been addressed in prior work via combi-
nation matrices and detection (Hassani et al., 2019; Joerger et al., 2017). This paper 
focuses on the incorporation of IMU and intensity measurements. Let nL  be the 
number of extracted landmarks that are visible in the lidar FOV. There are ( !)nL  
potential ways for assigning the observed landmarks to the mapped landmarks, 
which is the number of all possible landmark permutations.

Incorrect association occurs when the ordering of measured landmarks differs 
from that of mapped landmarks. There is only one correct ordering; thus, the num-
ber of incorrect associations is h nIA L� �! 1.  For risk evaluation, we consider all 
possible orderings of measurements, z A h xi k i k k k, , ( )=  and si k,  where i hIA= 0 .  
In an example scenario with nL = 3  landmarks (both extracted and mapped), the 
numbers of possible landmark permutations and incorrect associations are 3!  and 
hIA = 5.

The innovation vector γγi k,  has a zero mean only under correct association. Any 
other (incorrect) association causes the mean of the innovation vector to be non-
zero. Thus, the innovation vector is a good indicator of incorrect association. The 
innovation vector can be expressed as follows:

 = −, ,ˆ ( )i k k i k k kz A h xγ  (19)

where Ai k,  are n n×  permutation matrices for i hIA= 0 .
Based on this criterion, we select the candidate association that satisfies the fol-

lowing equation:

 i
i hIA

i k
i k

* 0 ,
,
1

2�
�

arg min


 ��
Y�

 (20)
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where:
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Figure 5 shows a detailed description of the second block in Figure 3. Lidar mea-
surements, map data, predicted states, and the covariance matrix serve as inputs to 
the data association process in Equation (20). Then, we proceed to the EKF mea-
surement update, calculate the Kalman gain Kk ,  and determine the ns ×1  state 
estimate vector ˆ kx  and the n ns s×  estimation error covariance matrix ˆ .kP  The 
state prediction vector xk  in Equations (18) and (19) is more accurate when a 
tightly integrated IMU is used as compared with an ADS kinematic model, which 
ultimately reduces the risk of incorrect association.

3.2.2  Integration of Lidar Return-Light Intensity to Improve 
Data Association

The association process can be further improved by using lidar return-light 
intensity. The difference between the lidar-extracted mean intensity measurements 
and that provided in the map, which is captured in the intensity-separation vector 
ξξi k, ,  can be expressed as follows:

 = −, ,
ˆi k k S ki k
s A sξ  (21)

��i k k Si k k Si k
S k, , ,
,( , )N s A S A VT �

where: 
sk   is an nL ×1 mean return-light intensity vector for all nL  visible landmarks,
ˆks   is the nL ×1 lidar-measured mean return-light intensity vector; we assume 

,ˆ N( , ),k k S ks s V

FIGURE 5 Data association and EKF measurement update with lidar
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sk   is the mapped mean return-light intensity vector,
Sk   is an n nL L×  covariance matrix capturing the uncertainty in the mean 

intensity values of the mapped landmarks,
ASi k,

  are n nL L×  permutation matrices similar to those in Equation (19) but for 
scalar permutations, for i hIA= 0 .

Similar to the innovation vector in Equation (18), the intensity separation 
vector in Equation (21) has a zero mean only if the correct association is found. 
Landmark intensity parameters are not included in the EKF prediction and esti-
mation processes because they do not provide direct information on ADS states. 
However, we can still improve the association criterion by augmenting the inno-
vation vector with ξξi k, .  The resulting 3 1nL ×  “separation vector” is defined as fol-
lows: �� �� ��i k i k i k, , ,� T T T

�� �� .  The association selection criterion for incorporating the 
return-light intensity is given by the following:

 i
i hIA

i k
i k

* =0 ,
,
1

2� arg min


 ��
Z�

 (22)

where:

Z
A H P H A V 0

0 A S A Vi k
i k k k k i k k

S i k k S i k S k
,

, ,

, , , , ,
�

T T

T

�

�

�

�
�
�

�

�
�
�

3.3  Integrity Risk Bound

The integrity risk P HMIk( ),  or probability of HMI at time step k, is the probabil-
ity of the ADS being outside of a specified alert limit box when the vehicle position 
is estimated to be inside this box (Joerger & Pervan, 2009; Reid et al., 2019). In ADS 
lane-centering applications, lateral deviations are of primary concern, and the alert 
limit is defined as the distance between the edge of the car and the edge of the 
lane when the car is at the center of the lane (Joerger et al., 2016). An analytical 
bound on the integrity risk that considers all possible incorrect associations has 
been given by Joerger & Pervan (2019) and is expressed as follows:

 P HMI P HMI CA P CA CA Ik k K
j

k
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where: 
K  designates a range of time indices: K k= {1 } ,
J  designates a range of time indices: J j= {1 } ,
Q()  is the tail probability function of the standard normal distribution,
  is the specified alert limit that defines a hazardous situation,
σk   is the standard deviation of the estimation error for the vehicle state of 

interest,
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IALLOC k,   is a predefined integrity risk allocation for feature extraction, chosen 
to be a fraction of the overall integrity risk requirement IREQ k, ,

qj2   is a chi-square distributed random variable with a number of degrees 
of freedom that is the sum of the number of measurements and of 
states at time step j,

Lj2   represents the minimum value of the mean landmark feature separa-
tion, including intensity separation, at time step j.

The probability of correct association in Equation (25) is a function of Lj2 ,  which 
defines a probabilistic lower bound on the true value of ζ k  in Equation (22). This 
lower bound on landmark separation is set such that the risk of the true value of 
ζ k  being smaller than Lj2  does not exceed IALLOC k, .

By integrating lidar with an IMU, we can reduce positioning errors, thereby low-
ering the risk P HMI CAk K( | ).  In addition, IMU and return-light intensity mea-
surements are instrumental for increasing the ability of the localization system 
to distinguish landmarks. In Equations (23)–(25), IMU and return-light measure-
ments enable greater separation Lj2  values, which increases the probability of cor-
rect association P CA CAj J( | )1−  and ultimately reduces P HMIk( ).  We will quantify 
this P HMIk( )  reduction using simulation and experimental data in the next two 
sections. Equations (23)–(25) are represented by the “Integrity Risk Evaluation” 
block in Figure 3, and the output is P HMIk( ).

4  INTEGRITY RISK EVALUATION USING 
SIMULATED DATA

In this section, we analyze the integrity performance of a “lidar-only” scheme 
compared with the IMU/lidar scheme described in Section 3. In this 2D hori-
zontal simulation, an ADS roves between two landmarks located 10  m apart. 
The initial pose of the ADS is known, and it is assumed that we have a map of 
landmark positions in the navigation frame N. The surface reflectivity is iden-
tical for all landmarks, and intensity measurements are not used in this first 
evaluation. The simulation settings and lidar and IMU parameters are listed in 
Table 1.

TABLE 1
Lidar and IMU Simulation Settings 

System Parameters Values 

Standard deviation of lidar feature range data 0.12 m 

Standard deviation of lidar feature angular data 4°

Lidar data sampling interval 0.5 s 

Accelerometer velocity random walk 0.022 m/s hr/  

Gyroscope angle random walk 0.15°/ hr  

Accelerometer time constant 3600 s 

Gyroscope time constant 3600 s 

Standard deviation of accelerometer GMP bias 0.05 m ∕ s2 

Standard deviation of gyroscope GMP bias 0.2°

Vehicle speed 1 m/s 

Alert limit 0.25 m 

Note: GMP: Gauss–Markov process.
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4.1  Covariance Analysis and Integrity Risk Bound 
(Analytical vs. Direct Simulation)

In Figure 6, the positions of landmarks are represented by black circles, and the 
ADS trajectory is shown by black triangles. The 2D estimation error covariance 
ellipses, which represent the spread of pose estimation error, are shown in solid 
and dashed red lines and are inflated by a factor of 50 for better visualization. 
The size and shape of the covariance ellipses change as the sensor-to-landmark 
geometry changes because of ADS motion. The relative lengths of the semima-
jor and semiminor axes are also related to the standard deviations of the lidar 
angular and ranging measurements, as explained by Joerger (2009). This figure 
also shows that the integration of IMU with lidar improves the ADS trajectory 
estimation.

In Figure 7, we evaluate the analytical integrity risk bound P HMIk( )  as 
compared with the actual integrity risk calculated by direct simulation over 
50,000 Monte Carlo (MC) trials for the lidar-only and IMU/lidar schemes. We 
focus on lateral deviations for integrity risk evaluation; the lateral alert limit 
is defined in Table 1. As captured in Equation (23), P HMIk( )  accounts not 
only for lateral covariance variations, but also for the probability of correct 
association P CAk( ).

In Figure 7, black and red circles represent the integrity risk curves obtained by 
direct simulation. In parallel, the black and red solid lines are the analytical bounds 
computed from Equation (23). Both direct simulation and analytical bounds for 
the IMU/lidar scheme are orders of magnitudes lower than that for the lidar-only 
scheme at 10–20 m of travel distance when the vehicle is close to the landmarks. 
Simultaneously using the IMU improves the pose estimation and data associa-
tion, which results in a reduced integrity risk. The direct simulation and analytical 
bounds for the lidar-only scheme overlap. Discrepancies occur for low risk values: 
these discrepancies would disappear if we simulated more than 50,000 trials, but 
our computational resources are finite.

FIGURE 6 ADS positioning error covariance ellipses obtained by using lidar-only and IMU/
lidar schemes for a two-landmark scenario
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5  EXPERIMENTAL INTEGRITY RISK EVALUATION

In this section, we quantify navigation integrity for the multi-sensor IMU/lidar 
system described in Sections 2 and 3. We consider three configurations: lidar-only, 
lidar+ (incorporating mean intensity measurements with lidar range and bearing 
angle), and IMU/lidar+ (using all available sensor information). When using lidar 
only, state prediction xk  is obtained by using a coarse kinematic model to replace 
Equation (12). This model propagates ADS states assuming a constant velocity vec-
tor between lidar measurement updates. This approach can be inaccurate for rapid 
ADS dynamics. When using the IMU, we apply Equation (12) to improve state pre-
diction xk  and also to enhance data association. We performed an experimental 
test to quantify the risk reductions brought about by incorporating lidar intensity 
and IMU measurements as compared with the lidar-only approach. An automated 
sensor platform was moving on a figure-eight track next to a predefined set of land-
marks, some of which were occluded over segments of the trajectory. Landmark 
occlusions can cause an increased risk of incorrect association.

Additional testing results and performance comparisons for different sensor 
combinations have been reported by Hassani et al. (2019). In this paper, we focus 
on using lidar with intensity measurements and IMU data. Table 2 lists the param-
eters and settings of the test. In Figure 10, we use four landmarks, each identified 
by a number ranging from 1 to 4. The surface properties of the landmarks are not 
all the same: we use cylinders with a retroreflective surface for Landmark 1, black 
surfaces for Landmarks 2 and 4, and a white surface for Landmark 3.

5.1  Experimental Testbed

We designed and built an automated sensor safety evaluation testbed to quan-
tify the impact of incorrect association on the integrity risk P HMIk( ).  The testbed 
shown in Figure 8 is composed of a rover housing a sensor platform on a figure-eight 
track. The rover can operate unattended for many hours to collect large amounts of 
lidar and IMU data. This testbed provides a means for analyzing the performance 
of a navigation system over repeated trajectories, over a significant number of such 

FIGURE 7 Lateral positioning integrity risk when using the lidar-only and IMU/lidar 
schemes for a two-landmark scenario: analytical bound versus MC simulations over 50,000 trials
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trajectories, and in a controlled environment in which we can focus, for example, 
on the integrity impacts of landmark occlusions and of landmarks with varying 
surface properties. Compared with the approach using only lidar range and angle 
measurements, this approach helps assess the relative performance improvement 
brought about by additional IMU and light-intensity data. Other experiments using 
sensors mounted on a car’s roof rack will be performed in future work.

In this experiment, cardboard cylinders serve as landmarks to facilitate feature 
extraction from the lidar PC. These cylinders are covered with white and black felt 
and retroreflective straps (Landmark 1, first cylinder from the left) to provide differ-
ent surface reflectivities. As the rover moves, the leftmost landmark (Landmark 1) 
is periodically occluded behind another landmark (Landmark 2), which tests the 
ability of the data association process to dynamically distinguish landmarks.

The sensor platform mounted on the rover includes the lidar and IMU 
stacked vertically to minimize lever arm calibration errors. We used Velodyne’s 
VLP-16 Puck LTE lidar and NovAtel’s IMU-IGM-A1 coupled with NovAtel’s 
ProPak6. The IMU was set to record at a 100-Hz sampling rate. Additionally, an 

TABLE 2
Lidar and IMU Parameters and Test Settings 

System Parameters Values 

Overbounding standard deviation of feature extraction ranging 
measurement 

0.15 m 

Overbounding standard deviation of feature extraction angular 
measurement 

3°

Laser data sampling interval 0.1 s 

Accelerometer velocity random walk 4.7 m/s hr/  

Gyroscope angle random walk 17.25°/ hr  

Accelerometer GMP bias correlation time constant 3600 s 

Gyroscope GMP bias correlation time constant 3600 s 

Standard deviation of accelerometer GMP bias 0.67 m ∕ s2 

Standard deviation of gyroscope GMP bias 10°

IMU sampling time 0.01 s 

Vehicle speed 0.6 m/s 

Alert limit   0.35 m 

Note: GMP: Gauss–Markov process.

FIGURE 8 Automated testbed setup with a sensor platform repeatedly moving on a figure-
eight track
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infrared (IR) camera motion capture system (VICON) provides reference truth 
values for the position and orientation of the moving platform and for the static 
landmarks in the navigation frame. Twelve cameras, i.e., four VICON MX-T20 
cameras and eight Vantage 5 cameras, record small retroreflective markers 
placed on the sensors and landmarks, providing sub-centimeter-level position-
ing. All three sensors (IR cameras, lidar, and IMU) are time-tagged using the 
same computer clock.

5.2  Using Lidar Range, Bearing, Intensity, and IMU 
Measurements 

The integrated solution using IMU, lidar range, angle, and intensity measure-
ments is referred to as the IMU/lidar+ configuration. In Figure 10, four landmarks 
are used. The lidar range limit is such that all landmarks are continuously in view 
of the lidar except where Landmark 2 occludes Landmark 1. The estimated tra-
jectory is represented by a blue line and the true trajectory by a black line. The 
estimated and true trajectories overlap. The black arrow shows the direction of 
motion at the starting point. Background colors help identify segments of the rover 

FIGURE 9 (a) IR camera, (b) IR markers on a sensor platform, (c) lidar-VLP-16 Puck, 
(d) IMU-IGM-A1

FIGURE 10 Covariance ellipses obtained by using the IMU/lidar scheme with intensity 
measurements
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trajectory for results presented over time: the rover follows straight line paths in the 
dark gray area, is in the top loop when in the white area, and is in the bottom loop 
when in the light gray area. The purple area represents ADS locations at which 
Landmark 1 is occluded by Landmark 2 in the upper loop of the figure-eight track. 
This arrangement makes data association challenging because Landmarks 1 and 2 
can be mistaken for one another when Landmark 1 comes in and out of sight.

Figure 10 also shows red covariance ellipses representing the 2D positioning 
uncertainty for ADS locations taken at regular 0.8-s intervals. Covariance ellipses 
are inflated by a factor of five to facilitate visualization. Ellipses grow when 
Landmark 1 is hidden (purple area).

In addition, we derived a bound on the risk of the cross-track positioning error 
exceeding an example alert limit of 0.35 m (Reid et al., 2019). This integrity risk 
bound is predictable. The event of the risk bound exceeding the risk requirement 
causes a loss of availability. Thus, in this paper, we want the integrity risk bound 
to be as low as possible to achieve high availability performance. Both the actual 
integrity risk itself and our ability to analytically upper-bound this risk determine 
the value of the predicted risk bound. Thus, as compared with using lidar ranges, 
additional information from the IMU and lidar intensity not only helps reduce the 
actual P HMI( )  but also helps tighten the predicted P HMI( )  bound. Figure 11 
shows P HMI( )  curves for the lidar-only, lidar+, and IMU/lidar+ schemes. We 
find the highest risk bound values in the purple regions because the occlusion of 
Landmark 1 causes relatively poor landmark geometry. The lidar-only approach 
performs poorly, with a P HMI( )  bound approaching a value of 1 as soon as the 
first difficult-to-identify landmark geometry is encountered. The lidar+ approach 
is consistently better except when Landmark 1 is occluded because fewer mea-
surements are available and the risk of incorrect association increases. Finally, as 
expected, the IMU/lidar+ approach outperforms the other configurations, and our 
tests show that the resulting P HMI( )  bound is at least four orders of magnitude 
lower than those of the other cases.

FIGURE 11 Integrity risk bounds obtained by using the lidar-only scheme versus the lidar+ 
and IMU/lidar+ schemes
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5.3  Repeated Trajectories

Figure 12 shows the ADS cross-track positioning error and covariance envelopes 
over 100 laps. The figure-eight track helps evaluate navigation system performance 
repeatability. The “1σ” one-dimensional envelope represents the boundary within 
which 68% of the error samples are expected to occur, assuming a zero-mean error.

The solid red line in Figure 12 is the analytical covariance envelope. The ana-
lytical covariance determines the contribution of P HMI CAk K( | )  to P HMIk( )  in 
Equation (23). The dashed red line is the sample covariance envelope, which is 
smaller than the analytical envelope over the entire 20-s-long trajectory; we want 
the analytical error bound to be larger than the sample envelope. Cross-track posi-
tioning error curves are color-coded from light blue to dark blue as the rover travels 
from the first to the last lap. Small discrepancies can be observed between early and 
late laps (e.g., accentuated at the 12- to 14-s time points), which are due to imper-
fections in the testbed, including a warm-up period causing variations in vehicle 
speed and sensor performance (Reina & Gonzales, 1997; Ye & Borenstein, 2002). 
Overall, we find that the pose estimation error curves are conservatively captured 
by the analytical covariance envelope.

6  CONCLUSIONS

In this paper, we derived a new IMU/lidar integration method that enables integ-
rity risk evaluation while accounting for all possible incorrect associations between 
observed and mapped landmarks. The IMU improves the state prediction and 
reduces incorrect association risks. Our method also incorporates lidar return-light 
intensity measurements with lidar range and bearing data to better distinguish 
landmarks, which also results in a quantifiable reduction in incorrect associa-
tion risk. We implemented a new analytical method to quantify the improvement 
in the probability of correct association. In addition, we evaluated the proposed 

FIGURE 12 Cross-track error of ADS for 100 laps 
The zoomed-in panel shows the IMU-derived positioning drift corrected via lidar updates at 
regular 0.1-s intervals.
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integrity risk bound using empirical data in a structured, well-understood envi-
ronment. Compared with the lidar-only approach in this specific testing environ-
ment, the performance assessment demonstrated a reduction in integrity risk of 
several orders of magnitude when the IMU and lidar intensity are used. Future 
work includes testing these methods in more realistic, unstructured environments.
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APPENDIX

A  IMU AND LIDAR MEASUREMENTS AND 
COEFFICIENTS

The IMU measurement coefficient matrices in Equation (14) are defined as fol-
lows (Titterton et al., 2004):

 FV2T �

0 1 0

1 0 0

0 ( ) 0

R h

R h

R h

�

�
�

�

�

�

�
�
�
�
�
�

�

�

�
�
�
�
�
�

tan �

 (A.1)

https://www.doi.org/10.4271/12-02-03-0012
https://www.doi.org/10.4271/12-02-03-0012
https://www.doi.org/10.1109/IROS.1997.655070
https://doi.org/10.1109/TAES.2006.314579
https://www.doi.org/10.2514/4.861598
https://www.researchgate.net/publication/247330589_Range_Image_Registration_by_using_an_Edge-Based_Representation
https://www.researchgate.net/publication/247330589_Range_Image_Registration_by_using_an_Edge-Based_Representation
https://www.doi.org/10.1109/PLANS.2008.4570059
https://www.doi.org/10.1002/j.2161-4296.2007.tb00404.x
https://doi.org/10.1049/PBRA017E
https://doi.org/10.1049/PBRA017E
http://www.isprs.org/proceedings/XXXIV/3-W4/pdf/Vosselman.pdf
http://www.isprs.org/proceedings/XXXIV/3-W4/pdf/Vosselman.pdf
https://www.gps.gov/policy/cooperation/europe/2016/working-group-c/ARAIM-milestone-3-report.pdf
https://www.gps.gov/policy/cooperation/europe/2016/working-group-c/ARAIM-milestone-3-report.pdf
https://www.doi.org/10.1109/ROBOT.2002.1013609
https://doi.org/10.1155/2019/7637469
https://doi.org/10.33012/navi.623


    HASSANI and JOERGER

 FH2V �
0 0 0
0 0 0

0 0
2 0g
R

�

�

�
�
�
�
�

�

�

�
�
�
�
�

 (A.2)

where: 
R  is the earth’s radius,
h  is the vehicle’s altitude,
λ  is the vehicle’s latitude,
g0  is the acceleration of gravity at zero altitude.
The lidar measurement coefficient matrices in Equation (17) are as follows 

(Joerger, 2009):
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B  DISCRETE-TIME EQUATIONS FOR THE IMU

The ADS specific force is measured with respect to the inertial frame “I” and 
expressed in body frame “B” as B .f  The specific force measurement is imperfect: it 
can be modeled in the continuous-time domain as follows:

 B Bf I S M f b� [ ]� � � �ac ac ac ac��  (B.1)

where: 
B f   is the 3×1 true specific force vector of body B with respect to I expressed 

in body frame B,
B f   is the measured specific force vector of body B with respect to I 

expressed in B,



HASSANI and JOERGER

S Mac ac,   are the true accelerometer calibration scale factor and misalignment 
matrices in B,

bac   is the accelerometer time-varying bias vector in B,
ννac   is accelerometer measurement white noise error component expressed 

in B.
In Equation (B.1), the measured specific force B f  is expressed in terms of the 

scale factor and misalignment matrices for which manufacturers provide esti-
mates ˆ

acS  and ˆ ,acM  respectively. The symbol ( ˆ ) in ˆ
acS  designates the estimate 

of parameter S.
The accelerometer time-varying bias is modeled as a first-order Gauss–Markov 

process (GMP) (Brown & Hwang, 2012). We can write the corrected specific force 
B f  and the continuous-time dynamics of the time-varying bias as follows:

 B 1 B ˆˆ ˆ[ ] ( )ac ac ac
−= + + −f I S M f b  (B.2)

 b b nac
ac

ac ac� � �
1
�

 (B.3)

where: 
τac  is the GMP time constant,
nac  is a 3×1 vector of GMP time-uncorrelated driving noise.
The discrete-time forms of Equations (B.1)–(B.3) can be written as follows:

 B Bf I S M f bk ac ac k ac k ac k� [ ] , ,� � � ���  (B.4)
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where: 
ts  is the IMU sampling interval.
The gyroscope measures the body frame angular velocity with respect to the iner-

tial frame and can be expressed in the body frame as B IB
ωω  (Titterton et al., 2004). 

We can derive equations similar to Equations (B.2)–(B.6) for gyroscope measure-
ments. These equations have been reported by Hassani et al. (2019).

Assuming that the IMU corrected specific force B f  and angular velocity B IBωω  
remain constant over the short IMU sampling interval ts ,  between time steps k −1  
and k, we can write the discrete-time form of Equations (1)–(3) and the attitude 
equations as follows:

  N E N E N N IE N EN N E Nv v u vADS k ADS k s s ADS kt t, , ,( [ ] [ ] )� � � � � � � �� �1 12 �� �� ggtsE  (B.7)

 N N
N E N E

x x
v v

ADS k ADS k
ADS k ADS k

st, , 1
, 1 ,

2
� �

��
�

 (B.8)

 C C BB
N

B
N

, , 1 1k k k� � �  (B.9)

 e

C
C

CADS k

k
k

k

k,

,

,
arctan

( , )
( , )

arcsin�

�
�

�
��

�

�
��

�

�

�

�

�

B
N

B
N

1

1

3 2
3 3

BB
N

B
N

B
N

,

,

,

( , )

arctan
( , )
( , )

k

k
k

k

�

�

�

� �
�

�

�
��

�

�
��

�

�

�

1

1

1

3 1

2 1
1 1

�
C
C

��
�

�

�
�
�

 (B.10)



    HASSANI and JOERGER

where: 
N

B
N B B IB Bu C f f� , 1

2( 0.5[ ] )k k s k k st t� � ���

B Ik k st� � �1 [ ]� B IB��

The notation CB
N
, 1 ( , )k i j−  in Equation (B.10) designates the ( , )i j -th scalar com-

ponent of matrix CB
N ,, 1k−  i.e., the component in the i-th row and j-th column.

Finally, we use the Van Loan algorithm to determine the discrete-time state 
propagation ��k�1  and process noise covariance matrices Wk−1  based on the 
continuous-time matrices F  and spectral density function of δw,  defined as Q  
(Brown & Hwang, 2012).

C  OVERBOUNDING OF MEASUREMENT ERROR 
DISTRIBUTIONS

This appendix describes a method for deriving probabilistic models of the 
extracted feature measurements. This method is based on the overbounding theory 
described by DeCleene (2000). Overbounding theory is used in aviation naviga-
tion to model non-Gaussian sample distributions, even when they are not sym-
metric, unimodal, or zero-mean (Blanch et al., 2019; Rife et al., 2006). We collected 
lidar PC data for 4,250 sensor-to-landmark geometries, processed them using our 
feature extractor, and stored the estimated point-feature range and bearing angle 
measurements. Figure C1 shows the CDF for the range and bearing angle mea-
surement error in quantile-to-quantile plots. The x-axis scales with theoretical 
standard normal distribution quantiles. The y-axis scales with the sample measure-
ment error distribution quantiles. If the empirical measurement error distribution 
were normal, the sample points would lie on a straight line with a slope equal to 
the sample standard deviation and with the y-intercept equal to the sample mean. 
Figure C1 shows that the core of the distribution behaves like a normal distribution 
within �2�  on the x-axis, i.e., 95% of the time. However, the sample distributions 
have wide tails. The black lines in Figure C1 are overbounding Gaussian functions, 

FIGURE C1 Quantile-to-quantile plots of the lidar PC’s extracted feature error distribution 
and Gaussian overbounding model for the (a) range measurement and (b) bearing angle 
measurement (4,250 data points)
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which account for errors occurring 99.5% of the time, i.e., out to “3σ .” The bound-
ing standard deviations are 0.12 m for the range measurement error (versus 0.03 m 
for the sample standard deviation) and 2° for the bearing angle measurement error 
(versus 1° for the sample standard deviation). Thus, Gaussian overbounds are 
conservative compared with sample measurement error distributions, which will 
impact the pose estimation error distribution.

D  LIDAR INTENSITY MEASUREMENT DISTRIBUTION

In this appendix, we follow the same methodology as in Appendix C to study the 
lidar intensity measurement error model. The return-light intensity is a function 
of the object’s surface property and the light beam’s incidence angle. The incidence 

FIGURE D1 Intensity measurement error distribution and Gaussian overbounding model 
for a retroreflective surface with a 70° incidence angle (17,500 data points)

FIGURE D2 Mean and overbounding standard deviations (�1�  and �3� ) of intensity 
measurements for black, white, and retroreflective surfaces at 0°, 30°, and 70° incidence angles 
(total of 166,334 data points, approximately 18,480 data points per configuration over the nine 
configurations)
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angle is defined as the angle between the normal vector to the surface and the laser 
beam. Figure D1 shows a quantile-to-quantile plot of 17,500 intensity samples of a 
retroreflective object at a 70° incidence angle. This example is selected to illustrate 
the fact that overbounding theory can be used to define a Gaussian error model for 
discrete measurements of intensity.

Figure D2 shows the mean values (thick lines) and standard deviations (thin 
lines, solid for 1σ  envelopes, dashed for 3σ  envelopes) of intensity measurement 
overbounding functions for three different surfaces at three incidence angles. The 
mean values decrease with increasing incidence angle.
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