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Abstract 

 
This paper describes the design, analysis, and experimental evaluation of a new spherical-grid-based (SGB) 

localization algorithm. This method combines a light detection and ranging (LiDAR)’s spherically-parametrized point 
cloud with measurements from an inertial measurement units (IMU) to estimate the position and orientation of a 
moving vehicle.  It also quantifies navigation uncertainty. This grid-based method does not require feature extraction 
and data association, which are necessary steps in landmark-based localization.  In addition, we developed an 
automated testbed to analyze the probabilistic performance of a landmark-based method and of the new spherical grid-
based algorithm. The sample and analytical error distributions for both methods are evaluated in a lab environment.  
 
1 Introduction 

 
Ensuring the safety of automated driving systems (ADS) requires the quantification of navigation uncertainty. In 

this paper, we design a new spherical grid-based localization (SGBL) method, and we evaluate its error distribution, 
together with that of an existing landmark-based localization (LBL) algorithm.  The new method combines light 
detection and ranging (LiDAR) point clouds (PC) with inertial measurement unit (IMU) data. It evaluates ADS pose 
corrections by comparing a measured PC to a map-based computed PC, which differs from other implementations in 
[1].  SGBL departs from our prior research on LBL in that it does not require feature extraction (FE) and fault-prone 
data association (DA) [2, 3]. We quantify the pose estimation uncertainty of both SGBL and LBL for three-
dimensional LiDAR data collected on a moving platform roving in a cluttered laboratory environment. 
 

This research focuses on LiDAR-based localization uncertainty quantification for future use in high-integrity 
navigation applications. One of the most widely implemented LiDAR-based pose estimator in robotic applications is 
Simultaneous Localization and Mapping (SLAM). SLAM, however, is insufficient for safety-critical navigation 
applications because SLAM errors drift over distance, and the loop-closures that are often used to limit this drift are 
trajectory-constraining [4, 5]. Instead, we assume that an a-priori map is available in the form of a detailed PC or of a 
parametric representation of geometric features (planes for walls, cylinders for lamp poles, etc.).  
 

We can distinguish three categories of map-based LiDAR localization algorithms.  First, LBL methods require 
two intermediary pre-estimator steps of FE and DA. The FE finds recognizable, viewpoint-invariant landmarks in the 
LiDAR PC, then DA assigns these measured landmarks to the mapped ones [6-10]. Measurable features (i.e. location, 
return light intensity, etc.) of associated landmarks can effectively be used for pose estimation, e.g., using an extended 
Kalman filter (EKF), but the risk of incorrect association can be high in cluttered environments [11].  A second 
category of LiDAR localization includes grid-based methods. These methods don’t use FE and DA [12-14]. 
Occupancy grid maps (OGM) are a widely implemented approach.  An OGM is a probabilistic, tessellated 
representation of the PC’s spatial information [15].  In two dimensions, each OGM cell is assigned a value of the 
probability that it may be occupied [16, 17].  OGMs are used in path planning and collision avoidance, but there are 
no analytical approaches for determining the OGM-based pose estimation error distribution.  OGMs typically use 
Cartesian coordinate representations. The third LiDAR localization category includes the iterative closest point (ICP) 
algorithm, which can be used to match three-dimensional (3D) PCs over successive time epochs [1,18]. Current 
LiDAR technology can provide hundreds of thousands of data point per 360-degree PC, which makes ICP’s 
computational cost prohibitive.  
 

In response, in this work, (1) we design an automated testbed to evaluate pose estimation uncertainty by collecting 
hours of data on a moving platform, (2) we use the testbed to experimentally quantify the performance of LBL, and 
(3) we design a new IMU/LiDAR grid-based pose estimation process by combining OGM and ICP. SGBL reduces 
computation load and facilitates processing of LiDAR spherical measurements.  The proposed algorithm matches the 
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measured PC with a computed PC using the IMU-predicted LiDAR pose and a map of the surroundings.  We quantify 
pose estimation uncertainty using the experimental testbed.   
 

The organization of this paper is as follows.  Section 2 presents the experimental testbed. In Section 3, we describe 
the LBL algorithm and evaluate FE errors using overbounding theory [19-21]. In Section 4, we design the SGBL 
method and outline an analytical estimation error modeling process. Section 5 is an experimental probabilistic 
performance analysis of the SGM estimation uncertainty. Section six presents our conclusions. 
  
2 Automated experimental testbed 

 
In this section, we describe the experimental testbed designed and built to quantify pose estimation errors.  The 

testbed is shown in Figure 1.  It includes a rover equipped with sensors.  The rover moves on a figure-eight track. It 
can operate for hours unattended to collect LiDAR and IMU data over repeated trajectories.  The rover’s Velodyne 
VLP-16 Puck LTE LiDAR and NovAtel IMU-IGM-A1 are stacked vertically in order to minimize the lever arm and 
misalignments between sensor frames.  In addition, an infrared (IR) camera motion capture system provides reference-
truth trajectory.  Sixteen Optitrack Prime 13W cameras, provide sub-centimeter-level rover positioning by tracking 
retro-reflective markers fixed on the rover and LiDAR.  IR cameras, LiDAR, and IMU data are time-tagged using a 
common computer clock.  Figure 2 shows pictures of the sensors.  Cardboard cylinders serve as landmarks and 
facilitate FE for LBL.  The SGBL algorithm not only uses LiDAR returns from the landmarks but also from the 
unstructured background lab-environment. 

 

 
Figure 1. Testbed overview. 

 

 
Figure 2. (a) IR camera; (b) IR markers on sensor platform; (c) LiDAR -VLP-16 Puck; (d) IMU-IGM-A1  
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3 Landmark-based localization method 
 
The LBL method is based on a tightly integrated LiDAR/IMU estimator using an extended Kalman filter (EKF). 

This section provides an overview of the algorithm.  More details can be found in [2, 3]. 
 

3.1 Linearized IMU measurements error model 
 
The IMU state consists of ADS position, velocity, orientation, and IMU biases. The nonlinear continuous-time 

model of vehicle acceleration and sensor error can be found in [3]. The notation ‘ δ ’ indicates deviations of state 
parameters relative to reference values. We can write a continuous-time linearized state propagation model as [3]:  

 
δ δ δ= +x F x w   (1) 
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where 
δ𝐱𝐱𝐴𝐴𝐴𝐴𝐴𝐴 is the vehicle position expressed in navigation frame N, 
δ𝐯𝐯𝐴𝐴𝐴𝐴𝐴𝐴 is the vehicle velocity with respect to earth expressed in frame N, 
δ𝐞𝐞𝐴𝐴𝐴𝐴𝐴𝐴   is the attitude of the vehicle with respect to earth expressed in body frame B, 
δ𝐛𝐛g, δ𝐛𝐛𝑎𝑎 are the gyroscope’s and accelerometer’s time-varying bias vectors in frame B respectively, 

V2TF  and H2VF  are defined in Appendix A, 
N INω   is the angular velocity vector of the inertial frame I with respect to the frame N expressed in frame N [3], 
N If   is the estimated specific force expressed in frame N, 

N
BC  is the rotation matrix from frame B to frame-N [22], 

B If       is the measured specific force vector at the IMU axis center w.r.t. frame I expressed in frame B [22], 
B IBω  is the measured angular velocity vector of frame B w.r.t frame I expressed in frame B, 

gτ ,𝜏𝜏𝑎𝑎  are the gyro and accelerometer GMP time constants, 
𝐒𝐒g ,𝐒𝐒𝑎𝑎   are the estimated gyroscope and accelerometer scale factors in frame B, 
𝐌𝐌g ,𝐌𝐌𝑎𝑎 are the estimated gyroscope and accelerometer misalignment matrices in frame B, 

gυ , 𝛖𝛖𝑎𝑎 are the gyroscope and accelerometer measurement white noise error components expressed in frame B, 

gn ,𝐧𝐧𝐚𝐚  are the gyroscope and accelerometer GMP time-uncorrelated driving noise vectors. 
 
Considering the discrete-time expressions of the terms in equation (3) given in Appendix B, the discrete-time 

realization of equation (1) can be written as: 
  

 1δ δ δk k k k+ = +x Φ x w   (4) 
 
where kΦ  is the state transition matrix between time step ‘k’ and ‘k+1’ [23]. 
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3.2 Feature extraction process 
 
A LiDAR provides a PC in the sensor’s frame.   FE finds consistently identifiable landmark features in the PC. 

Figure 3 shows an example LiDAR PC collected in the experimental testbed.  The testbed includes easy-to-distinguish 
static vertical cylinders. The color code represents return light intensity measurements, with intensity decreasing from 
red to blue.  

Figure 4 illustrates the three-step FE algorithm implemented to extract landmark information from LiDAR point 
clouds. FE aims at finding the center of the quasi-circular ellipses formed by the projection of vertical cylinders in the 
LiDAR’s zero-elevation plane. The FE algorithm consists of the following steps. (1) Segmentation: we use the 
predicted vehicle pose to place the LiDAR on the landmark map and identify the data corresponding to cylinders.  (2) 
Model-Fitting: we then project each point set onto the LiDAR zero-elevation plane and fit a circle through each point 
set.  (3) Feature Parameter Estimation: the center of the best-fit circle is the extracted point-feature, whose relative 
location with respect to the LiDAR is captured with a range and bearing angle measurements. 

 
 

 
Figure 3. LiDAR Point Cloud Showing Return-Light Intensity  

(color-coded from blue to red, from low intensity to high intensity). 

 
Figure 4. (a) 3D Segmentation of LiDAR Point cloud - (b) Circle Fitting and Point-Feature Measurement Extraction 

 
In the following derivation, we express the extracted point-feature range and bearing angle measurement 

equations.  First, let 𝑛𝑛𝑙𝑙 be the number of extracted landmarks.  We define 𝑟𝑟𝑚𝑚 and 𝜃𝜃𝑚𝑚 as the range and bearing angle 
measurements in LiDAR frame for landmark ‘𝑚𝑚’, for  𝑚𝑚  ranging from 1 to 𝑛𝑛𝑙𝑙.  In the landmark map’s navigation 
frame, the horizontal position of the cylinder’s center is time-invariant.  Its Cartesian East and North coordinates are 
noted 𝑝𝑝𝐸𝐸 

𝑚𝑚  and 𝑝𝑝𝑁𝑁 
𝑚𝑚  for landmark 𝑚𝑚.  , parameters in our IMU/LiDAR state space realization include the ADS position 
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𝐱𝐱𝐴𝐴𝐴𝐴𝐴𝐴 and orientation 𝐞𝐞𝐴𝐴𝐴𝐴𝐴𝐴 in navigation frame (deviations in 𝐱𝐱𝐴𝐴𝐴𝐴𝐴𝐴 and 𝐞𝐞𝐴𝐴𝐴𝐴𝐴𝐴 appear in the state error equation (2)) are 
expressed as: 

 
 𝐱𝐱�𝐴𝐴𝐴𝐴𝐴𝐴 = [𝑥𝑥𝐸𝐸 𝑥𝑥𝑁𝑁 𝑥𝑥𝑈𝑈]𝑇𝑇 (5)  

  
 𝐞𝐞�𝐴𝐴𝐴𝐴𝐴𝐴 = [𝜙𝜙 𝛾𝛾 𝜓𝜓] (6)  
 

The nonlinear LiDAR range and angular measurements can be written respectively as: 
 
  𝑟𝑟𝑚𝑚 =  �( 𝑝𝑝𝐸𝐸 

𝑚𝑚 − 𝑥𝑥𝐸𝐸)2 + ( 𝑝𝑝𝑁𝑁 
𝑚𝑚 − 𝑥𝑥𝑁𝑁)2 + 𝜐𝜐𝑟𝑟 (7)  

 
  𝜃𝜃𝑚𝑚 = tan−1 � 𝑝𝑝𝑁𝑁 

𝑚𝑚 −𝑥𝑥𝑁𝑁
𝑝𝑝𝐸𝐸 𝑚𝑚 −𝑥𝑥𝐸𝐸

� − 𝜓𝜓 + 𝜐𝜐𝜃𝜃  (8)  
 
where 𝜐𝜐𝑟𝑟 and 𝜐𝜐𝜃𝜃  are random feature measurement errors.  
  

The distributions of 𝜐𝜐𝑟𝑟 and 𝜐𝜐𝜃𝜃  are not Gaussian, but can be overbounded in the CDF-sense [19, 20] by zero-mean 
normal distributions. Section 3.3 summarizes the overbounding theory and its impact on pose estimation error 
distribution. We use overbounding distributions to model the point-feature measurement error distributions.  

  
Now, we can stack range and bearing measurements for all visible landmarks to obtain the following  2𝑛𝑛𝑙𝑙 × 1 

nonlinear LiDAR measurement equations:  
 
  𝐳𝐳�𝑘𝑘 = 𝐡𝐡𝑘𝑘(𝐱𝐱𝑘𝑘) + 𝛖𝛖𝑘𝑘 (9)  
 
  𝐳𝐳�𝑘𝑘 = �𝑟𝑟1 ⋯ 𝑟𝑟𝑛𝑛𝑙𝑙 𝜃𝜃1 ⋯ 𝜃𝜃𝑛𝑛𝑙𝑙�

𝑇𝑇
 (10)  

 
  𝛖𝛖𝑘𝑘 = [𝜐𝜐𝑟𝑟1 ⋯ 𝜐𝜐𝑟𝑟𝑛𝑛𝑙𝑙     𝜐𝜐𝜃𝜃1 ⋯ 𝜐𝜐𝜃𝜃𝑛𝑛𝑙𝑙 ]𝑇𝑇  (11)  

 
where  
𝐱𝐱𝐾𝐾 is the state vector whose error vector is defined in equation (2), 
𝛖𝛖𝑘𝑘 is the 2𝑛𝑛𝑙𝑙 × 1 feature measurement error vector modeled as a vector of normally distributed random variables 

as ~ N( , )k kυ 0 V . 
We linearize equation (9) about our best prediction of the vehicle and landmark positions, resulting in the 

linearized range and angular measurement and measurement error vectors, respectively denoted as δ𝐑𝐑, δ𝛉𝛉 and 𝛖𝛖𝑟𝑟 and 
𝛖𝛖𝜃𝜃. The linearized LiDAR measurement equation can be written as:  
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 (12)  

 
where the coefficient matrices 𝐅𝐅𝑟𝑟,𝑥𝑥, 𝐅𝐅𝜃𝜃,𝑥𝑥 and 𝐅𝐅𝜃𝜃,𝑒𝑒 are determined using the state prediction vector and assuming correct 
association as described in Appendix A. More information about DA can be found in [11].  

 
3.3 Measurement error modeling using overbounding theory 

 
This section describes a robust method to derive probabilistic models of the extracted feature measurements.  This 

method is based on overbounding theory in [19-21].  We collected LiDAR point cloud data for 4250 of sensor-to-
landmark geometries, processed them using our feature extractor, and stored the estimated point-feature range and 
bearing angle measurements. 

Figure 5 shows the range and bearing angle measurement error CDF on quantile-to-quantile plots.  The plot’s x-
axis scales with theoretical standard normal distribution quantiles.  The y-axis scales with the sample measurement 
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error distribution quantiles.  If the empirical measurement error distribution were a normal distribution, the sample 
points would lie on a straight line with a slope equal to the sample standard deviation, with y-intercept equal to the 
sample mean.  Figure 5 shows that the core of the distribution behaves like a normal distribution within ±2𝜎𝜎 on the 
x-axis, i.e., 95% of the time.  But the sample distributions have wide tails. 

Overbounding theory is used in aviation navigation to model non-Gaussian sample distributions [19-21].  The 
black lines in Figure 5 are overbounding Gaussian functions which account for errors occurring 99.5% of the time 
(the 4250 samples limit the reach of the overbound).  The bounding standard deviations are 0.12 m for the range 
measurement error (versus 0.03 m for the sample standard deviation), and 2 degrees for the bearing angle measurement 
error (versus 1 deg for the sample standard deviation). Thus, Gaussian overbounds are conservative as compared to 
sample measurement error distributions, which will impact the pose estimation error distribution in the next section. 

 

 
Figure 5. Range and Bearing Angle Measurement Error Distribution and Gaussian Overbounding Model  

 
 
3.4 LBL pose estimation performance of 100 laps of trajectory 

 
In this section, we describe the probabilistic pose estimation performance of the LBL method. The automated 

experimental testbed in Section 2 enables determination of estimation error distributions in the position domain, for 
comparison with analytical EKF error distributions, which we have not found in the literature. Figure 6 shows the 
estimated trajectory with a black solid line, the true trajectory with a black dashed line, the analytical 1𝜎𝜎 covariance 
ellipses in blue, and the 1𝜎𝜎 sample covariance ellipses in red. These covariance ellipses are inflated by a factor 5 for 
better visualization.  The zoomed-in window shows that the sample and analytical covariance ellipses differ both in 
size and orientation. Potential sources of discrepancy include nonlinearities in process and measurement equations, 
inaccuracies in experimental data collection, and the conservativeness of the Gaussian FE error model in Section 3.3.    

 
Figure 7 display gray lines representing sample error curves, defined as estimated-minus-true pose, over 100 laps. 

These curves show both the IMU-based pose prediction errors and the impact of LiDAR LBL updates.  The upper 
chart in Figure 7(a) presents cross track errors which often are of primary concern in path-following safety evaluation. 
Below that, the second, third, and fourth charts show errors along the 𝑥𝑥-direction, along the 𝑦𝑦-direction and in heading. 
The 1𝜎𝜎 analytical and sample covariance envelopes are respectively shown in blue and red. Figure 7(b) focuses on 
the time-interval highlighted in Figure 7(a). Analytical and sample covariance envelopes capture the IMU drift during 
state propagation, which is limited by LiDAR measurement updates.  
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Figure 6. Landmark-Based Analytical and Sample Covariance Ellipses over 100 Laps 

 
 

4 Spherical grid-based localization 
 
In this section we introduce a new localization algorithm called spherical grid-based localization (SGBL). The 

goals with this SBGL method are: a) to utilize all LiDAR cloud points rather than the few corresponding to extracted 
and associated landmarks, b) to eliminate the errors caused by extraction and association, and c) to provide a 
computationally efficient approach to quantify navigation uncertainty.  

 
4.1 Spherical grid-based estimator   

 
The estimator part of SGBL algorithm includes two main procedures: a) a spherical gridding algorithm and b) a 

pose candidate search algorithm.  
 

4.1.1 Spherical gridding algorithm 
 
We use a sensor-centric spherical gridding approach, using range measurements in azimuth-elevation bins, which 

facilitates processing of spherical LiDAR data as compared to using Cartesian grids.  Using a sensor-centric 
representation automatically accounts for sensor-location-dependent occlusions in the mapped data.  In SGML, IMU-
based sensor pose prediction on the map is used to compute a model LiDAR PC in sensor frame. In this work, the 
map comes in the form of a point cloud, but other geometric or occupancy grid maps could be used with a ray-tracing 
function to achieve the same result.   

 
The spherical grid is made of azimuth-elevation bins at regular angular intervals called grid cells.  Figures 8(a) 

and (b) show examples of 2D and 3D spherical gridding algorithms. For a better visualization purposes, the 3D grid 
representation only includes the data measured in the black dashed box in Figure 8(a).  
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Figure 7. (a) Error Curves and Covariance Envelopes for Vehicle State Estimates - (b) IMU Drift Between Two 

LiDAR Measurements 
 
 
In this first SGBL implementation, the shortest-range points, closest to the sensor in each azimuth-elevation bin 

are selected. (Additional processing could be performed, but is beyond the scope of this paper.)  The selection of a 
single point per grid cell makes SGBL computationally more efficient than ICP.  Point features in corresponding grid 
cells are matched, unless they are obvious outliers.  Figure 9 is a zoomed-in version of the area inside of the green box 
in Figure 8(a). A selection process causes some grid cells to be empty, which does not appear to be an issue because 
the LiDAR provides plenty of redundant data. 

 

 
Figure 8. Spherical Gridding (a) 2D Spherical Grid - (b) 3D Spherical Grid of the Data Contained Inside the 

Dashed Black Box 
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Figure 9. The Process of Selecting the Closest Points to the Sensor as Point Features 

 

4.1.2 Pose candidate search algorithm 
 
We use a straightforward search algorithm to estimate ADS state variables.  First, for a predefined state parameter 

resolution, we define candidate ADS state variables 𝐱𝐱𝐴𝐴𝐴𝐴𝐴𝐴,𝑗𝑗 included in a search domain surrounding the ADS predicted 
pose 𝐱𝐱�𝐴𝐴𝐴𝐴𝐴𝐴. Then, we define the measurement equations. Equation (13) shows the transformation of the map PC from 
the navigation frame to the sensor frame. The range and bearing angle of point ‘m’ from map will be considered as 
the computed measurements and can be written as a nonlinear function 𝜉𝜉 of the map PC in sensor frame shown in 
equation (14). It is worth noting that the proposed approach can be extended to the 3D measurements model easily.  

 
 
  𝓟𝓟 = 𝐂𝐂NS   

S ( 𝓟𝓟 N − 𝐭𝐭 N ) (13)  
 
 �

𝑟𝑟𝑚𝑚
𝜃𝜃𝑚𝑚� = ξ( 𝓟𝓟 S ) (14) 

 
where 
𝓟𝓟 S    is map PC in sensor frame S, 
𝓟𝓟 N    is map PC in frame N, 
𝐂𝐂NS    is rotation matrix from navigation frame to sensor frame, 
𝐭𝐭 N    is translation vector between frames S and N, using candidate j’s position in frame N, 
𝑟𝑟𝑚𝑚     is computed range from point ‘m’ to the origin of the frame S,  
𝜃𝜃𝑚𝑚     is the computed bearing angle of point ‘m’ in S, 
 

In the third step, we assume one of the candidates is the best representor of the ADS true position at each time 
step ‘𝑘𝑘’ that will minimize the nonlinear least square (NLS) equation. We formulate NLS in equation (15) as the sum 
of the squared weighted norms of the measured minus computed range and measured minus computed bearing angle.  

 

  𝑗𝑗∗ = 𝑎𝑎𝑎𝑎𝑎𝑎min
𝑗𝑗
��𝐫𝐫𝐿𝐿𝑘𝑘  

− 𝐫̅𝐫𝑀𝑀𝑗𝑗,𝑘𝑘�𝐕𝐕𝑟𝑟−𝟏𝟏
2  

+ �𝛉𝛉𝐿𝐿𝑘𝑘  
− 𝛉𝛉�𝑀𝑀𝑗𝑗 ,𝑘𝑘�𝐕𝐕𝜃𝜃−𝟏𝟏

2
� (15)  

 
𝐫𝐫𝐿𝐿 = �𝑟𝑟𝑙𝑙1 ⋯ 𝑟𝑟𝑙𝑙𝑛𝑛𝑓𝑓�

𝑇𝑇 ,   𝛉𝛉𝐿𝐿 = �𝜃𝜃𝑙𝑙1 ⋯ 𝜃𝜃𝑙𝑙𝑛𝑛𝑓𝑓�
𝑇𝑇

 

 

𝐫̅𝐫𝑀𝑀 = �𝑟𝑟𝑚𝑚1 ⋯ 𝑟𝑟𝑚𝑚𝑛𝑛𝑓𝑓�
𝑇𝑇 ,   𝛉𝛉�𝑀𝑀 = �𝜃𝜃𝑚𝑚1 ⋯ 𝜃𝜃𝑚𝑚𝑛𝑛𝑓𝑓�

𝑇𝑇
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where 
𝑗𝑗∗ is the best candidate, 
𝐕𝐕𝑟𝑟−1 is range measurement error covariance, 
𝐕𝐕𝜃𝜃−1 is bearing angle measurement error covariance, 
𝑛𝑛𝑓𝑓 is number of point-features, 
𝑟𝑟𝑙𝑙 is measured range in sensor frame, 
𝜃𝜃𝑙𝑙 is measured bearing angle in sensor frame. 
 

Finally, we consider the best candidate as ADS state estimation at time ‘𝑘𝑘’. 
 
  𝐱𝐱�𝐴𝐴𝐴𝐴𝐴𝐴𝑘𝑘 = 𝐱𝐱𝐴𝐴𝐴𝐴𝐴𝐴𝑗𝑗∗ (16)  
 
Figure 10 is a block diagram of SGBL showing the spherical gridding algorithm and the pose estimation 

algorithm. 
 

 
Figure 10. SGBL Block Diagram 

 
 
4.2 Uncertainty quantification of spherical grid-based localization 

 
The SGBL method combines OGM and ICP methods. The PC and map are partitioned into spherical grid cells, a 

single point-feature is considered per cell.  SGBL uncertainty quantification is achieved using models of these point-
features ranging and angular measurements errors, and a model of the error caused by the spherical grid resolution.  
For now, the pose candidate search resolution is assumed high enough that the resulting errors can be neglected.  We 
can write the error equations as: 

 
  𝜀𝜀𝑟𝑟𝑇𝑇 = 𝜀𝜀𝑟𝑟𝑀𝑀 (17)  
 
  𝜀𝜀𝜃𝜃𝑇𝑇 = 𝜀𝜀𝜃𝜃𝐺𝐺 + 𝜀𝜀𝜃𝜃𝑀𝑀 (18)  
 

where 
𝜀𝜀𝑟𝑟𝑇𝑇 is the total range error, 
𝜀𝜀𝑟𝑟𝑀𝑀 is the point-feature range error, 
𝜀𝜀𝜃𝜃𝑇𝑇 is the total bearing angle error, 
𝜀𝜀𝜃𝜃𝐺𝐺 is the spherical gridding error, 
𝜀𝜀𝜃𝜃𝑀𝑀 is the point-feature bearing angle error. 
 

The distribution of 𝜀𝜀𝑟𝑟𝑀𝑀 , 𝜀𝜀𝜃𝜃𝑀𝑀 and 𝜀𝜀𝜃𝜃𝐺𝐺 can be evaluated using data and modeled using Gaussian overbounding.  We 
assume zero mean normally distributed errors 𝜀𝜀𝑟𝑟𝑇𝑇 and 𝜀𝜀𝜃𝜃𝑇𝑇  with variances 𝜎𝜎𝑟𝑟𝑀𝑀

2  and 𝜎𝜎𝜃𝜃𝐺𝐺
2 + 𝜎𝜎𝜃𝜃𝑀𝑀

2 , respectively.  
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The SGBL estimator is designed to find the solution of weighted NLS in equation (15). Since we formulated the 
SGBL estimator as a weighted NLS (it is really a search procedure), it seems reasonable to consider linearized ranging 
and angular measurement equations that would be implemented in an NLS estimator [18, 24]. The corresponding 
analytical covariance equation, assuming that the IMU-based prediction is only used to define the search space, is 
expressed as: 

 
  𝐏𝐏𝑘𝑘 = �𝐇𝐇𝑘𝑘

𝑇𝑇𝐖𝐖𝑟𝑟,𝜃𝜃
  𝐇𝐇𝑘𝑘�

−𝟏𝟏
 (19)  

 

𝐇𝐇𝑘𝑘[2ℎ×𝑛𝑛] =

⎣
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⎢
⎢
⎡

⋮
𝜕𝜕𝑟𝑟𝑚𝑚
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𝜕𝜕𝜃𝜃𝑚𝑚 

𝜕𝜕𝐱𝐱𝐴𝐴𝐴𝐴𝐴𝐴
⋮ ⎦

⎥
⎥
⎥
⎥
⎤

𝐱𝐱�𝑘𝑘

,    𝐖𝐖𝑟𝑟,𝜃𝜃 = �

⋱
 
 
𝟎𝟎
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2 + 𝜎𝜎𝜃𝜃𝑀𝑀
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𝟎𝟎
 
 
⋱

�
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where 
𝐏𝐏𝑘𝑘 is the SGBL analytical covariance at time 𝑘𝑘, 
𝐇𝐇𝑘𝑘 is the geometry matrix at time 𝑘𝑘, 
𝐖𝐖𝑟𝑟,𝜃𝜃   is the inverse of the measurement error covariance matrix, 
ℎ  is the number of point-features, 
𝑛𝑛  is the number of ADS states. 
 
5 Experimental results of spherical grid-based localization  

 
5.1 SGBL performance over a single lap 

 
Figure 11(a) and (b) shows the 2D and 3D SGML’s estimated trajectories versus true trajectory. Both methods 

achieve similar performance:  they follow the true trajectory closely.  Figure 11(b) focuses on heading estimation. 
Figure 11(c) shows error curves for both 2D and 3D SGBL along the cross-track, 𝑥𝑥 and 𝑦𝑦 directions and for the 
heading angle. These results show that all data points of a LiDAR PC in a cluttered environment can be used to match 
the pose estimation performance of LBL without requiring error-prone FE and DA. 

 
5.2 SGB 100 trajectory laps estimation performance 

 
In this section, the empirical SBGL pose estimation error distribution is evaluated for comparison with the 

analytical error model in equation (19).  We use the same data set as for LBL in Section 3.  Rover pose is estimated 
over 100 laps.  Figure (12) shows the estimated trajectory with a black solid line, the true trajectory with a black 
dashed line (they overlap), the 1𝜎𝜎 sample covariance ellipses in red, and the 1-𝜎𝜎 analytical covariance ellipses in blue. 
The analytical covariance ellipses are bounding the sample covariance ellipses.  However, similar to LBL, the sample 
and analytical covariance ellipses differ in size and orientation (we speculate that sources of discrepancy are the same 
as for LBL).  Figure (13) shows 100 pose estimation error curves in gray, the 1𝜎𝜎 analytical covariance envelope in 
blue, and the 1𝜎𝜎 sample covariance envelope in red. The sample covariance envelope is bounded by the analytical one 
during most of the figure-eight trajectory for all estimated states.  
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Figure 11. SGBL Performance for a Single Lap (a) Estimation of ADS Position - (b) Estimation of ADS 

Heading - (c) Sample State Estimate Error Curves. 
 

 
Figure 12. Estimated Trajectory, Analytical and Sample Covariances Using SGBL over 100 Laps. 
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Figure 13. State Estimate Error Curves and 1-𝝈𝝈 Analytical and Sample Covariance Envelopes Using SGML 

over 100 Laps.   
 
 
6 Conclusions 

 
In this paper, we designed an automated testbed for experimental evaluation of LiDAR/IMU position and 

orientation (or pose) estimation error distributions. We implemented this testbed to assess a landmark-based 
localization (LBL) method, which revealed significant discrepancies between modeled versus sample error 
distributions. Also, we developed and implemented a new spherical grid-based localization (SGBL) method together 
with its error model.  Experimental evaluation showed that SGBL can provide the same level of pose estimation 
performance as LBL. In the next step of this work, we will refine the SGBL and LBL error models to obtain tighter 
bounds on pose estimation error distributions. 

 
 

Appendix A – Linearized IMU and LiDAR Measurement Equations Coefficients  

The coefficient matrices corresponding to IMU measurements in equation (3) can be defined as [22]:  
 
 

  

10 0

1 0 0

tan( )0 0

V2T

R+ h

R+ h

R+ h
λ

 
 
 
 =  
 − 
  

F
 (A.1) 
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 
  

F  (A.2) 

where 
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R   is the earth’s radius, 
h    is the vehicle’s altitude, 
λ    is the vehicle’s latitude   

0g   is the acceleration of gravity at zero altitude. 
 

The coefficients matrices corresponding to the LiDAR measurements in equations (12) are [25]: 
 

  𝐅𝐅𝑟𝑟,𝑥𝑥 =

⎣
⎢
⎢
⎢
⎡−
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‖ 𝐩𝐩  
𝑛𝑛𝐿𝐿 −𝐱𝐱�𝐸𝐸𝐸𝐸‖

− 𝑝𝑝𝑁𝑁 
1 −𝑥𝑥𝑁𝑁
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Where [ ]TEN E Nx x=x (also appearing in ADS position states equation (5)) and 𝐩𝐩 = [𝑝𝑝𝐸𝐸 𝑝𝑝𝑁𝑁] 
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Appendix B –Discrete-Time Equations of IMU 

We use the Van Loan algorithm to determine the discrete-time state propagation matrix kΦ  based on the 
continuous-time matrices F  and w  [23].  The following equations are the discrete-time form of terms in equation 
(3). 

 
  B IB B IB[ ]k g g k g,k g,k= + + + +ω I S M ω b υ  (B.1)  
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−= + + −ω I S M ω b  (B.2)  
 
  B I B I=[ + + ] + +k a a k a,k a,kf I S M f b υ  (B.3)  
 

  B I -1 B Iˆ ˆ ˆ=[ + + ] ( - )k a a k a,kf I S M f b  (B.4)  
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