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Abstract— This paper describes the design of a new integrity
risk prediction/monitoring methodology for robot localization
that uses feature extraction and data association algorithms.
The work specifically addresses incorrect association faults
when employing a local nearest neighbor data association algo-
rithm. This approach is more efficient and easier to implement
than previous work. The methodology is tested in simulation,
showing that the computed upper bound on integrity risk is a
performance metric capable of providing warnings when the
safety of the system cannot be guaranteed.

I. INTRODUCTION

Pose estimation performance is typically quantified using
a covariance matrix or particle spread [1], [2], but this is
insufficient for life- and mission-critical applications, such as
self-driving cars and other co-robots [3]. In these situations,
ignoring faults can lead to catastrophic localization errors. In
response, this work quantifies the safety risk involved with
data association faults by calculating the system’s navigation
integrity risk, or the probability that a robot’s pose estimate
lies within pre-defined limits [4].

Several methods can predict integrity risk in GPS-based
aviation applications, but cannot be directly applied to robots
that operate in GPS-denied environments [5], [6]. Thus,
methods must be developed that account for the faults present
in additional sensors, such as lidar. In this regard, there has
been relatively little work and none present practical safety
levels or rigorous proof of integrity [7], [8], [9].

The authors’ prior work established an integrity monitor
for lidar-based localization using an EKF coupled with the
Global Nearest Neighbor (GNN) data association algorithm
[10], [11]. However, the computational complexity of the
GNN limits applicability to on-line implementation. In re-
sponse, this paper extends prior derivations to the more
efficient and easily implemented Local Nearest Neighbor
(LNN) method as well as deriving a closer bound when
allocating integrity risk.

In this paper, Section II provides a mathematical back-
ground. Section III bounds the probability of correct associa-
tion, used in calculating integrity risk. The complete integrity
bounding process is presented in Section III-E for ease of
implementation. Simulation results are given in Section IV.
Finally, Section V presents conclusions and future work.
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II. BACKGROUND

This section introduces the necessary mathematical nota-
tion and presents the data association criteria employed in
this paper.

A. Measurement Model

Measurements corresponding to extracted feature i are
stacked in the mF×1 vector zi. To lighten notations, no time
index is specified unless noted otherwise. A landmark map
is comprised of nL landmarks from which nF features are
extracted (nF <<< nL, typically). We assume all mapped
landmarks are the same type and all features provide the
same number of measurements, mF . The landmark from
which feature i has been extracted is denoted ti; the feature
extracted from landmark t is denoted it.

The measurement model for a single extracted feature is:

zi = hti(x) + vi (1)

where ht(·) is the measurement model function of landmark
t, x is the unknown state vector containing the robot pose,
and vi is the sensor noise corresponding to feature i’s mea-
surements. We assume white Gaussian sensor noise where
Vi is the measurement noise covariance matrix for feature i:

vi ∼ N (0,Vi) (2)

B. Innovation Vector

The difference between a feature’s measurements and the
expected measurements from a landmark is the innovation.
Small innovations are indicative of correct associations. The
innovation vector of feature i and landmark t is:

γγγi,t = zi − ht(x̄) (3)

where the state vector after the EKF prediction step x̄ is
normally distributed with mean x and covariance matrix P̄:

x̄ ∼ N
(
x, P̄
)

(4)

Substituting (1) into (3) and linearizing using a first order
Taylor expansion [10] yields:

γγγi,t ≈ yti,t + Htε̄εε+ vi (5)

where yti,t , hti(x) − ht(x) is the innovation’s faulted

vector, Ht , ∂ht(x)
∂x

∣∣∣
x̄

is the Jacobian of the measurement

model function for landmark t and, ε̄εε , x− x̄ is the predic-
tion estimate error. From (5), the innovations are normally
distributed as:

γγγi,t ∼ N
(
yti,t,Yi,t

)
(6)
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Fig. 1. Range and bearing measurement space for the example in Section
II-C. The landmarks are denoted LM1, LM2, and LM3. The features derived
from actual measurements are Z1, Z2 and Z3.

where Yi,t , HtP̄HT
t + Vi. We also define the square of the

Innovation weighted Norm (IN) as:

‖γγγi,t‖2Y−1
i,t

, γγγTi,tY
−1
i,t γγγi,t (7)

In general, the square of the IN is noncentral chi-squared
distributed with mF degrees of freedom:

‖γγγi,t‖2Y−1
i,t
∼ χ2

mF ,‖yyyti,t‖
2

Y−1
i,t

(8)

where χ2
a,b denotes the noncentral chi-squared distribution

with a degrees of freedom and noncentrality parameter b.
The INs’ particular distribution depends on the correctness
of the association. In a correct association, where t = ti,
feature i has been extracted from landmark t and thus, the
innovation is zero mean, i.e. yti,t = hti(x) − ht(x) = 0,
and the IN squared is central chi-squared. In an incorrect
association, t 6= ti, feature i has not been extracted from
landmark t and thus, the innovation is not zero mean, i.e.
yti,t 6= 0, and the square of the IN is noncentral chi-squared.

The next section shows how the local nearest neighbor
algorithm employs the innovation norms as a data association
criteria.

C. Local Nearest Neighbor (LNN)

This section explains the LNN data association criteria
using a three-landmark example. The LNN associates each
feature with at most one landmark only if the feature is
inside the landmark’s validation region, comprised of those
measurements for which the IN between a feature and a
landmark is lower than a predefined threshold T , whose
designation is beyond the scope of this work. If the mea-
surement noise covariance matrices are equal for all features,
i.e. Vi = Vj ∀ij, the validation regions are also the same
for all features. Fig. 1 shows the ellipsoidal validation region
boundaries for each landmark assuming equal measurement
noise covariance matrices. The LNN data association is thus
implemented in the following three steps:

Step 1) Create the nF × nL association matrix with the
IN values for every possible association ‖γγγi,t‖Y−1

i,t
.

Step 2) Remove the associations where the IN is higher

than a threshold T . From Fig. 1:

LM1 LM2 LM3 Z1 ‖γγγ1,1‖Y−1
1,1

‖γγγ1,2‖Y−1
1,2

—
Z2 — — ‖γγγ2,3‖Y−1

2,3

Z3 — — ‖γγγ3,3‖Y−1
3,3

(9)

where “—” indicates that such association is not validated.
Step 3) Associate each feature with the landmark that re-

sults in the smallest validated IN. If a feature has no validated
associations, do not associate the feature. Then, the selected
association is: {Z1 → LM1, Z2 → LM3, Z3 → LM3}. This
data association criteria may result in multiple associations
to the same landmark, as in this example. This is obviously
incorrect, but is dealt with in Section III.

This section presented the local nearest neighbor data
association that will be used to derive the probability of
incorrect association. The next section defines the integrity
risk and derives a bound that can be efficiently computed.

D. Hazardous Misleading Information (HMI)

Integrity risk is defined as the probability of Hazardous
Misleading Information (HMI). HMI occurs when undetected
faults produce unacceptable estimate errors. Exact calcula-
tion of the probability of HMI is intractable, instead we
derive a computationally efficient analytical upper-bound.
The HMI at time k is given as:

HMIk , αααT ε̂εεk > l (10)

where ααα is an mF ×1 vector that selects the state of interest
(or the linear combination of states), ε̂εεk = xk−x̂k is the EKF
update estimate error and, l is the acceptable error limit.

The critical difference between this work and a more tradi-
tional approach is that we account for incorrect associations
(IA) between features and landmarks. Thus, probability of
HMI or integrity risk must be evaluated under fault-free,
¬IAK , and faulted, IAK , conditions, i.e.:

P (HMIk) = P (HMIk ∩ ¬IAK) + P (HMIk ∩ IAK)
(11)

where a capital letter time subscript denotes all time up
to and including such time. An upper bound on the HMI
probability, P̆ (HMIk) ≥ P (HMIk), is obtained from (11):

P̆ (HMIk) = 1 + (P (HMIk | ¬IAK)− 1) P̆ (¬IAK)
(12)

where P̆ (¬IAK) ≤ P (¬IAK) [10].
Equation (12) is used to evaluate the safety risk through-

out the rest of the paper. To solve it we must compute
P (HMIk | ¬IAK) and P̆ (¬IAK). The former term denotes
the fault-free integrity risk and can be computed using the
variance of the state of interest:

P (HMIk | ¬IAK) = P (αααT ε̂εεk > l | ¬IAK) = 2Φ

[
− l

σ̂k

]
(13)

where Φ[·] is the standard normal CDF and σ̂k =
√
αααT P̂kααα.

An expression of the later, P̆ (¬IAK) (the bound on the
probability of correct association), is derived next.



III. CORRECT ASSOCIATION PROBABILITY

This section lower bounds the probability of correctly
associating features and landmarks up to, and including time
k. The probability of correct association can be recursively
evaluated as follows:

P̆ (¬IAK) = P̆ (¬IAk | ¬IAK−1)P̆ (¬IAK−1) (14)

where P̆ (¬IAk | ¬IAK−1) ≤ P (¬IAk | ¬IAK−1) and
P̆ (¬IA0) = 1. Thus, only P̆ (¬IAk | ¬IAK−1) must be
evaluated at each epoch k.

First, we analyze the events that result in an IA. Using the
LNN, an IA occurs when A) a feature i is in the validation
region of a non-corresponding landmark t ( 6= ti) and B) the
IN for such landmark t (6= ti) is the smallest among all INs
resulting from feature i. Then:

P (IAk | ¬IAK−1) ≤ P

(⋃
i

⋃
t 6=ti

{
‖γγγi,t‖Y−1

i,t
< T︸ ︷︷ ︸

A

⋂
[⋂
l 6=t

‖γγγi,t‖Y−1
i,t
< ‖γγγi,l‖Y−1

i,l

]
︸ ︷︷ ︸

B

})
(15)

where each term is marked with the letter corresponding to
its event (A,B). The next two sections analyze these two
events and upper bound their probabilities.

A. Evaluation of Term A

Event A occurs when the IN of an incorrect association
is smaller than the validation threshold, T . Then, for any i
and any t 6= ti, event A occurs if:

‖γγγi,t‖Y−1
i,t
< T (16)

Substituting equation (5) into (16):∥∥yti,t + Htε̄εε+ vi
∥∥

Y−1
i,t

< T (17)

We define Mt ,
[
Ht I

]
and ri ,

[
ε̄εε
vi

]
. From (2) and (4):

ri ∼ N (0,Ri) where Ri =

[
P̄ 0
0 Vi

]
(18)

We bound the probability of the event A in (17) as:

P

(∥∥yti,t + Mtri
∥∥

Y−1
i,t

≤ T
)

≤ P
(∥∥yti,t

∥∥
Y−1

i,t

− ‖Mtri‖Y−1
i,t
≤ T

)
≤ P

(∥∥yti,t
∥∥

Y−1
i,t

− T ≤ ‖qi‖
)

(19)

where:
qi , R−1/2

i ri ∼ N (0, I) (20)

and ‖qi‖ ≥ ‖Mtri‖Y−1
i,t

. More details can be found in [10],
[11]. Note that the current derivation differs from the one in
[10], [11] in that ‖qi‖ depends on the feature index.

B. Evaluation of Term B

Event B occurs when the IN of an IA is the smallest among
all INs of a certain feature. Then, for any feature i and any
landmark t 6= ti, event B occurs if:⋂

l 6=t

‖γγγi,t‖Y−1
i,t
< ‖γγγi,l‖Y−1

i,l
(21)

and thus, it must be true that:

‖γγγi,t‖Y−1
i,t
< ‖γγγi,ti‖Y−1

i,ti

(22)

Following a similar derivation to the evaluation of term A,
we can bound the probability of event B using (22) as:

P
(
‖γγγi,t‖Y−1

i,t
< ‖γγγi,ti‖Y−1

i,ti

)
≤ P

(∥∥yti,t
∥∥

Y−1
i,t

− ‖Mtri‖Y−1
i,t
< ‖Mtiri‖Y−1

i,ti

)
≤ P

(∥∥yti,t
∥∥

Y−1
i,t

< ‖Mtri‖Y−1
i,t

+ ‖Mtiri‖Y−1
i,ti

)
≤ P

(
1

2

∥∥yti,t
∥∥

Y−1
i,t

< ‖qi‖
)

(23)

Events A and B were bounded with expressions that can be
computed if the mean IN,

∥∥yti,t
∥∥

Y−1
i,t

is known. The next
section upper bounds the probability in (15), which can be
efficiently evaluated without knowledge of the mean IN.

C. Bound on the Correct Association Probability

This section incorporates the probabilistic bounds from the
previous two sections and eliminates the need to explicitly
identify the mean IN to further lower bound the probability
of correct association.

1) Events A & B: First, we substitute the probability
bounds of events A in (19) and event B in (23) into (15)
and bound the probability of the union for a summation:

P (IAk | ¬IAK−1) ≤
nF∑
i=1

P

( ⋃
t 6=ti

∥∥yti,t
∥∥

Y−1
i,t

−T ≤ ‖qi‖

⋂ 1

2

∥∥yti,t
∥∥

Y−1
i,t

< ‖qi‖
)

(24)

In this expression, the only random variable is ‖qi‖, which
is independent of the landmark index t. Therefore, we can
substitute the remaining union with a minimum over all non-
corresponding landmarks (t 6= ti), i.e.:

P (IAk | ¬IAK−1) ≤
nF∑
i=1

P

(
min
t 6=ti

∥∥yti,t
∥∥

Y−1
i,t

− T ≤ ‖qi‖⋂
min
t 6=ti

1

2

∥∥yti,t
∥∥

Y−1
i,t

< ‖qi‖
)

≤
nF∑
i=1

P

(
min

{
min
t6=ti

∥∥yti,t
∥∥

Y−1
i,t

− T,

min
t6=ti

1

2

∥∥yti,t
∥∥

Y−1
i,t

}
< ‖qi‖

)
(25)



We simplify the expression by only considering the second
term in the brackets, which is usually the most restrictive.
After which, squaring both sides yields:

P (IAk | ¬IAK−1) ≤
nF∑
i=1

P

(
min
t6=ti

1

4

∥∥yti,t
∥∥2

Y−1
i,t

< ‖qi‖
2

)
(26)

From (26), the correct association probability is:

P (¬IAk | ¬IAK−1) = 1− P (IAk | ¬IAK−1) ≥

1− nF +

nF∑
i=1

P

(
‖qi‖

2
< min

t6=ti

1

4

∥∥yti,t
∥∥2

Y−1
i,t

)
(27)

From (20), we know that ‖qi‖
2 ∼ χ2

m+mF
. Thus, the only

missing terms in (27) are the mean INs,
∥∥yti,t

∥∥
Y−1

i,t

.
2) Mean Innovation’s Norm: Exact knowledge of∥∥yti,t
∥∥

Y−1
i,t

is not necessary to bound the probability in (27).
A lower bound on the minimum mean IN will be employed
instead. In order to lighten notation, we define:∥∥yti

∥∥
Y−1

i

, min
t 6=ti

∥∥yti,t
∥∥

Y−1
i,t

(28)

The lower bound on the minimum mean IN,
∥∥y∗ti

∥∥
Y−1

i

, is
obtained such that it bounds the actual minimum mean IN,∥∥yti

∥∥
Y−1

i

, with preallocated probability Iyi , i.e.:

P
(∥∥yti

∥∥
Y−1

i

<
∥∥y∗ti

∥∥
Y−1

i

)
≤ Iyi (29)

where Iyi is a fraction of the total integrity risk allocation
for the bounding of the minimum mean INs of all extracted
features, Iy, which is set to a very low value, e.g. 10−10.

The terms inside the summation in (27) can be lower
bounded using

∥∥y∗ti
∥∥

Y−1
i

and accounting for the integrity risk
allocation. First, we rewrite each term as:

P

(
‖qi‖

2
<

1

4

∥∥yti
∥∥2

Y−1
i

)
= P

(
‖qi‖

2
<

1

4

∥∥yti
∥∥2

Y−1
i

∩
∥∥y∗ti

∥∥
Y−1

i

≤
∥∥yti

∥∥
Y−1

i

)
+

P

(
‖qi‖

2
<

1

4

∥∥yti
∥∥2

Y−1
i

∩
∥∥y∗ti

∥∥
Y−1

i

>
∥∥yti

∥∥
Y−1

i

)
(30)

Then, we bound the second term by 0, rewrite the first term
using conditional probabilities and substitute (29) into (30):

P

(
‖qi‖

2
<

1

4

∥∥yti
∥∥2

Y−1
i

)
≥ P

(
‖qi‖

2
<

1

4

∥∥yti
∥∥2

Y−1
i

|
∥∥y∗ti

∥∥
Y−1

i

≤
∥∥yti

∥∥
Y−1

i

)
P
(∥∥y∗ti

∥∥
Y−1

i

≤
∥∥yti

∥∥
Y−1

i

)
≥ P

(
‖qi‖

2
<

1

4

∥∥y∗ti
∥∥2

Y−1
i

)
P
(∥∥y∗ti

∥∥
Y−1

i

≤
∥∥yti

∥∥
Y−1

i

)
≥ X2

m+mF

[
1

4

∥∥y∗ti
∥∥2

Y−1
i

] (
1− Iyi

)
(31)

where X2
a [·] is a chi-squared CDF with a degrees of freedom.

3) Bound definition: The probability of correct associa-
tion at time k can be bounded by substituting (31) into (27):

P̆ (¬IAk | ¬IAK−1) ,

1− nF +

(
1− Iy

nF

) nF∑
i=1

X2
m+mF

[
1

4

∥∥y∗ti
∥∥2

Y−1
i

]
(32)

where Iy = nF Iyi is equally allocated among all features.
We substitute (32) into (14) to recursively obtain P̆ (¬IAK).

This section lower bounded the probability of correct
association using a lower bound of the minimum mean IN.
Next, we derive an analytical expression for

∥∥y∗ti
∥∥

Y−1
i

.

D. Mean Innovation’s Norm Bound
In this section, the minimum mean IN is bounded for

a given pose estimate and map of landmarks, but prior to
obtaining sensor measurements.

We bound the mean IN of every landmark pair in the
extended Field of View (FoV), defined as the region around
the robot’s positioning estimate within:

rFoV = rmax − λFoV Φ−1

[
IFoV

2mxyz

]
(33)

where rmax is the sensor range, λ2
FoV is the maximum

eigenvalue of the covariance matrix elements corresponding
to the robot’s position, Φ−1[·] denotes the standard normal
CDF, mxyz is the number of states for positioning only (e.g.
two in a plane), and IFoV is an integrity risk allocation.
IFoV accounts for cases where the extended FoV does not
enclose all landmarks in the actual FoV of the robot and
will be subtracted from (32). Thus, given the EKF estimate
prediction x̄ at time k (not indicated here), we define:

ȳl,t , hl(x̄)− ht(x̄) (34)

which can be linearized as:
ȳl,t ≈ hl(x) + Hlε̄εε− (ht(x) + Htε̄εε)

≈ hl(x)− ht(x) + (Hl −Ht) ε̄εε

≈ yl,t + (Hl −Ht) ε̄εε

(35)

and, from (35):

ȳl,t ∼ N
(

yl,t, (Hl −Ht) P̄ (Hl −Ht)
T︸ ︷︷ ︸

,Ml,t

)
(36)

Thus, the weighted norm is distributed as:∥∥ȳl,t
∥∥2

M−1
l,t

, ȳTl,tM
−1
l,t ȳl,t ∼ χ2

mF ,‖yl,t‖2M−1
l,t

(37)

In order to lower bound the mean IN,
∥∥yl,t

∥∥
Y−1

il,t

, we use

the sample,
∥∥ȳl,t

∥∥
M−1

l,t

, from (37) and relate both terms as:∥∥yl,t
∥∥2

Y−1
il,t

= yTl,tY
−1
il,t

yl,t

= yTl,tM
−1/2
l,t M1/2

l,t Y−1
il,t

M1/2
l,t︸ ︷︷ ︸

≥λ2
l,t

M−1/2
l,t yl,t

≥ λ2
l,ty

T
l,tM

−1
l,t yl,t

≥ λ2
l,t

∥∥yl,t
∥∥2

M−1
l,t

(38)



where λ2
l,t is the smallest eigenvalue of M1/2

l,t Y−1
l,t M1/2

l,t .
Then, the lower bound of each landmark pair is defined as:∥∥y∗l,t

∥∥
Y−1

il,t

, λl,t
∥∥y∗l,t

∥∥
M−1

l,t

(39)

The lower bound on
∥∥yl,t

∥∥
M−1

l,t

is obtained by creating a
confidence set:

C(
∥∥ȳl,t

∥∥
M−1

l,t

) =

{∥∥yl,t
∥∥

M−1
l,t

:
∥∥y∗l,t

∥∥
M−1

l,t

<
∥∥yl,t

∥∥
M−1

l,t

}
(40)

such that the same integrity risk allocation, Iyi , in (29) is
met. Note that the bound,

∥∥∥y∗l,t
∥∥∥

M−1
l,t

, will be a function of

the sample,
∥∥ȳl,t

∥∥
M−1

l,t

. We rewrite this set as:

C(
∥∥ȳl,t

∥∥
M−1

l,t

) =

{∥∥yl,t
∥∥

M−1
l,t

: Ql,t < β

}
(41)

where Ql,t ,
∥∥ȳl,t

∥∥
M−1

l,t

−
∥∥yl,t

∥∥
M−1

l,t

To meet equation (29),
it must be true that:

P (Ql,t < β) > 1− Iyi (42)

or, using a more restrictive condition:

P (Ql,t < β) > P
(
Q′l,t < β

)
> 1− Iyi (43)

where Q′l,t ,
∥∥ȳl,t − yl,t

∥∥
M−1

l,t

≥ Ql,t and thus, (Q′l,t)
2 ∼

χ2
mF

. Then, we can obtain β by equalizing (43):

β =
√
X−2
mF

[
1− Iyi

]
(44)

where X−2
a [·] denotes the chi-squared inverse CDF with a

degrees of freedom. Substituting Ql,t and β in (41) and
reorganizing terms:

C(
∥∥ȳl,t

∥∥
M−1

l,t

) ={∥∥yl,t
∥∥

M−1
l,t

:
∥∥ȳl,t

∥∥
M−1

l,t

−
√
X−2
mF

[
1− Iyi

]
<
∥∥yl,t

∥∥
M−1

l,t

}
(45)

Comparing (45) with (40), we define:∥∥y∗l,t
∥∥

M−1
l,t

,
∥∥ȳl,t

∥∥
M−1

l,t

−
√
X−2
mF

[
1− Iyi

]
(46)

Finally, substituting (46) into (39) and taking the minimum
over the landmarks in the extended FoV, the lower bound is:

‖y∗l ‖Y−1
il

, min
t∈ΩFoV
t 6=l

λl,t

(∥∥ȳl,t
∥∥

M−1
l,t

−
√
X−2
mF

[
1− Iyi

])
(47)

where the set ΩFoV includes all landmarks in the extended
FoV. Including only the landmarks in the extended FoV
defined by (33) results in a lower ‖y∗l ‖Y−1

il

, but directly
decreases the bound on the probability of correct association
in (32) by IFoV as will be noted in the next section.

This section derived a lower bound on the minimum
mean IN that is used to compute the probability of correct
association bound. The next section summarizes the complete
integrity risk bounding process.

350 400 450 500
X(m)

-20

0

20

Y(
m

)

30m

5m

Landmarks

Path

30m

30m

Fig. 2. Robot detecting four landmarks when transitioning between the well
spaced and the poorly spaced landmarks. The depicted scenario corresponds
to epoch ≈ 300.

E. Summary of Equations

This section presents the equations needed for the com-
putation of the integrity risk bound at time k. The HMI
probability or integrity risk is upper bounded as:

P̆ (HMIk) = 1 + (P (HMIk) | ¬IAK)− 1) P̆ (¬IAK)
(48)

where:

P (HMIk | ¬IAK) = 2Φ

[
− l

σ̂k

]
(49)

P̆ (¬IAK) =

k∏
j=1

P̆ (¬IAj | ¬IAJ−1) (50)

In order to do integrity prediction, we assume that all
landmarks in the FoV, nFoV , are detected. Thus:

P̆ (¬IAk | ¬IAK−1) =

1−IFoV−nFoV +

(
1− Iy

nFoV

) nFoV∑
l=1

X2
m+mF

[
1

4
‖y∗l ‖

2
Y−1

il

]
(51)

where, allocating Iy equally among landmarks:

‖y∗l ‖Y−1
il

= min
t∈ΩFoV
t 6=l

λl,t

(∥∥ȳl,t
∥∥

M−1
l,t

−

√
X−2
mF

[
1− Iy

nFoV

])
(52)

Ml,t = (Hl −Ht) P̄ (Hl −Ht)
T (53)

λl,t = min eigenvalue of M1/2
l,t Y−1

il,t
M1/2
l,t (54)

This section lower bounded the probability of correct
association for the LNN data association method specified
in Section II-C. The bound is used to calculate the integrity
risk bound (Section III-E), which is implemented next.

IV. SIMULATION RESULTS

In this section, a simulated car-like robot follows a straight
path with landmarks on both sides (see Fig. 2) to demon-
strate the integrity risk bound summarized in Section III-
E. Velocity and steering angle are read at every epoch,
and a simulated lidar provides range and bearing to point
landmarks (mF = 2). All are disturbed with white Gaussian
noise (see Table I). An EKF tracks the robot state (x, y, θ)
and equations (48)-(54) predict the integrity risk one epoch
ahead of the current time. During the first 430m, landmarks



TABLE I
SIMULATION PARAMETERS

Std. dev. on lidar range, bearing 0.3m, 2◦
Std. dev. on robot velocity, steering angle 0.3m/s, 2◦
lidar range 25m
lidar sampling interval 0.1s
Alert limit 1m
Iy 10−10

IFoV 10−12

0 200 400 600 800 1000 1200
Time epoch

10 -14

10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

10 0

P
ro

ba
bi

lit
y

6P(HMIk)
P(HMIk j :IAK )

Fig. 3. The HMI probability derived in this work vs. the variance based
HMI probability that does not account for faults.

are well-spaced with respect to the system uncertainty (30m
in both X and Y directions between landmarks). At 430m,
the vertical spacing between landmarks is reduced to only
5m.

The integrity risk bound (green) in Fig. 3 shows two
sections. The first, epochs 1–300, corresponds to the well-
spaced landmark region where the integrity level required for
life-critical operations is ensured, i.e. P (HMIk) ≤ IREQ =
10−7. When the robot enters the poorly-spaced landmark
section, integrity cannot be guaranteed because of the risk
of possible incorrect associations.

Fig. 4 shows the robot’s lateral positioning estimate error
(red) as well as its 3σ covariance envelope (blue). As in
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Fig. 4. 3σ covariance envelope vs. estimate error for the state of interest.

Fig. 3, sections corresponding to the well spaced (epochs
1–300) and the poorly spaced landmarks (epochs 301–end)
both exist. Without faults, the 3σ envelope over bounds the
estimate error with 0.997 probability, as it is the case when
traversing the well spaced landmark region. When IAs occur,
the 3σ envelope no longer has to bound the estimate error.
For example, multiple IAs arise while traversing the poorly
spaced landmark region until HMI occurs at epoch 1080. For
the next 100 epochs, the estimated lateral position error is
≈ 5m while the 3σ envelope barely reaches 1m. For life-
critical co-robotic applications, this is extremely dangerous.
For example, if this robot were a self-driving car, the pose
estimate would be in the wrong lane. Thus, the variance-
based probability of HMI (blue) in Fig. 3 is not enough to
ensure safety when faults occur.

V. CONCLUSIONS & FUTURE WORK

This paper presents a new integrity prediction methodol-
ogy to ensure localization safety in the presence of faults
caused by the local nearest neighbor data association. The
methodology is tested in simulation. The results show that
the estimate variance is not a sufficient performance metric
and we must assess the risk of faults to ensure safety in
life-critical applications.

In future work, we will derive a method to minimize
the integrity risk bound by optimizing the Iy and IFoV
integrity risk allocations and a priori selecting which mapped
landmarks to associate. Additionally, the feature extractor
system will be analyzed to account for possible extractions of
unmapped objects and mis-extractions of mapped landmarks.
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