
Submission to Encyclopedia of Applied and Computational Mathematics

1

Verification

Christopher J. Roy

Aerospace and Ocean Engineering Department

Virginia Tech

215 Randolph Hall

Blacksburg, Virginia 24061 USA

cjroy@vt.edu

Synonyms: Code Verification, Solution Verification, Calculation Verification, Numerical Uncertainty

Short Definition: Verification is the process of ensuring that numerical simulation results are a

sufficiently accurate representation of the exact solution to a mathematical model.

1. Introduction

Mathematical models are used in science and engineering to describe the behavior of a system. In

many cases, these models take the form of partial differential equations (PDEs) which require numerical

solutions (i.e., simulations) due to their complexity. Verification and validation provide a means for

assessing the credibility and accuracy of mathematical models and their subsequent simulations [1-3].

Verification deals with assessing the numerical accuracy of a simulation relative to the true result of the

model. Validation, on the other hand, is the assessment of the accuracy of the model relative to

experimental observations. For models based on PDEs (which we will consider exclusively in this

article), the verification process involves a number of steps as shown in Figure 1. Starting with a PDE-

based mathematical model, one must first choose the discretization algorithm (e.g., finite difference, finite

volume, finite element). Next, this algorithm must be implemented in the computational mathematics

software. Finally, the software is used, along with appropriate grids, time steps, iterative tolerances, etc.,

to produce a simulation prediction. The first two steps in this process require that evidence be gathered

that there are no algorithm inconsistencies or coding mistakes and is called code verification. The last step

involves the quantitative estimation of the numerical errors that arise during the simulation process and is

termed solution verification. The end result from the verification process is an estimated numerical

uncertainty in the simulation predictions that can be used in assessing the overall prediction uncertainty.

2. Code Verification

Code verification ensures that the computational software is an accurate representation of the

underlying PDEs. It is accomplished by employing appropriate software engineering practices and by

using code order of accuracy verification to ensure that there are no mistakes in the computer code or

inconsistencies in the discrete algorithm. While software engineering is a vast subject unto itself, some

mailto:cjroy@vt.edu

Submission to Encyclopedia of Applied and Computational Mathematics

2

aspects that are particularly useful for computational mathematics software include version control, static

analysis, dynamic testing, and regression testing (see Ref. [2] for more details). Before proceeding with a

discussion of code verification, it is important to identify what simulation output quantities should be

evaluated. In general, one should examine error norms in the solution dependent variables (typically L1,

L2, and L norms) as well as any global System Response Quantities (SRQs) that one is interested in

predicting. For example, the discrete L2 norm appropriate for a finite volume solution can be computed as

2/1

1

2

2

~1~

N

n

nnn uuuu (1)

where un is the discrete solution in cell n, u~ is the exact solution to the PDEs, and is the total volume

of the domain.

2.1 Order of accuracy testing

There are various criteria that can be used during code verification. However, the most rigorous code

verification criterion is the order of accuracy test, where one assesses whether the numerical solutions

converge to the exact solution to the PDEs at the expected rate (i.e., the formal order of accuracy) for the

discrete algorithm. The formal order of accuracy of an algorithm is commonly found from a truncation

error analysis which addresses the convergence of the discrete equations to the PDEs; however, there are

pitfalls with using this approach, especially on unstructured grids [2]. For consistent algorithms, the

truncation error will be proportional to the discretization parameters (e.g., spatial element size x, time

step size t) to some exponents which usually correspond to the formal order of accuracy of the

discretization scheme. For example, consider a simple Euler explicit finite difference discretization of the

1D heat equation with diffusivity on a uniform mesh with node spacing x. The leading truncation error

terms at any node i and time step n are

),(
122

1 422

4

4
1

2

2

xtOx
x

T
t

t

T
TE

n

i

n

i

n

i

 (2)

which indicates that the discretization scheme is formally first order accurate in time and second order

accurate in space.

 The observed order of accuracy is the actual rate at which the numerical solutions converge to the

exact solution to the PDEs with systematic refinement of the mesh and/or time step. Consider a power

series expansion of some SRQ in terms of a generic discretization parameter h about the exact solution to

the PDEs f
~

:

)(
~ 1 pp

ph hOhgff . (3)

Submission to Encyclopedia of Applied and Computational Mathematics

3

A similar expansion with a discretization parameter that is r times larger (e.g., r = hcoarse / hfine is the grid

refinement factor) gives:

)(
~ 1 pp

prh hOrhgff . (4)

Combining these two expressions, neglecting the higher-order terms, and solving for p yields an

expression for the observed order of accuracy p̂ :

)ln(

~

~

ln

ˆ
r

ff

ff

p
h

rh

(5)

where frh and fh are the coarse and fine grid SRQs, respectively. This expression for the observed order of

accuracy requires solutions on two mesh levels as well as knowledge of the exact solution to the PDEs f
~

.

 The order of accuracy test examines the limiting behavior of p̂ to ensure that it approaches the formal

order of accuracy with systematic mesh refinement (see below). In addition to mistakes in the software

programming, the following conditions are required to pass the order of accuracy test. First, the iterative

and round-off errors in the numerical solution must be significantly less than the fine grid discretization

error (typically two orders of magnitude). Second, the mesh and time step must be sufficiently small so

that the lowest order terms in the truncation and discretization error expansions dominate the higher-order

terms (i.e., the numerical solutions must be in the asymptotic convergence range). Third, the mesh and

time step must be systematically refined as discussed in the next section.

2.2 Systematic mesh refinement

Systematic mesh refinement [2] requires that the mesh be refined uniformly by a factor h in each

coordinate direction, e.g.,

refrefref z

z

y

y

x

x
h

 (6)

and that the mesh quality be constant or improve with mesh refinement. Ensuring systematic mesh

refinement can be challenging, especially for unstructured meshes which contain more than one type of

mesh topology (e.g., hexahedral, tetrahedral, and prismatic elements). For structured grids, where grid

transformations can be used to transform the grid to a Cartesian computational space, systematic

refinement can be ensured by starting with the fine grid and removing every other grid line, resulting in a

grid refinement factor of r = 2. The drawback to this approach is that each level of refinement requires a

factor of 8 increase in cells/elements for three dimensional problems.

2.3 Exact solutions

Submission to Encyclopedia of Applied and Computational Mathematics

4

Rigorous code order of accuracy testing requires an exact solution to the PDEs. Traditional methods of

obtaining exact solutions to PDEs (e.g., separation of variables, series solutions, transformations) often

fail for PDEs involving complicated geometry, nonlinearity, non-constant coefficients, complicated sub-

models, and/or multi-physics coupling. When exact solutions are found for complex equations, they often

depend on significant simplifications in dimensionality, geometry, physics, etc.

An alternative to the traditional approach for obtaining exact solutions to PDEs is the Method of

Manufactured Solutions (MMS). The concept behind MMS is to take an original PDE and modify it by

appending an analytic source term so that it satisfies a chosen (usually non-physical) solution. Consider

an original PDE with dependent variable u written in operator notation as L(u) = 0. Next, choose an

analytic manufactured solution û which has non-trivial analytic derivatives. The PDE is then operated

onto the manufactured solution in order to obtain the analytic source term:)ˆ(uLs . The modified PDE is

found by appending this source term to the original PDE suL)(, which will be exactly solved by the

chosen manufactured solution û .

Manufactured solutions should be chosen to be analytic functions with smooth derivatives, and it is

important to ensure that all of the derivatives appearing in the PDE are non-zero. Trigonometric and

exponential functions are recommended since they are smooth and infinitely differentiable. Although the

manufactured solutions do not need to be physically realistic when used for code verification, they should

be chosen to obey the physical constraints that are embodied in the code (e.g., positive temperatures,

species concentrations). Finally, care should be taken that one term in the PDEs does not dominate the

other terms. For example, even if the applications of interest for a Navier-Stokes code are high-Reynolds

number flows, when performing code verification studies, the manufactured solution should be chosen to

give Reynolds numbers of order unity so that convective and diffusive terms will be the same order of

magnitude.

As an example of order verification using MMS [2], consider steady-state heat conduction with a

constant thermal diffusivity, which reduces to Poisson’s equation for the temperature T:

),(
2

2

2

2

yxs
y

T

x

T

(7)

where s(x,y) is the manufactured solution source term. The following manufactured solution is chosen

20 sinsincos),(ˆ
L

xya
T

L

ya
T

L

xa
TTyxT

xy

xy

y

y
x

x

 (8)

where

mLaaa

KTKTKTKT

xyyx

xyyx

5,2/1,4/1,3/1

5.27,35,45,4000

Submission to Encyclopedia of Applied and Computational Mathematics

5

and Dirichlet (fixed-value) boundary conditions are applied on all four boundaries as determined by

Equation (8). A family of stretched Cartesian meshes is created by first generating the finest mesh

(129×129 nodes), and then successively eliminating every other gridline to create the coarser meshes,

thus ensuring systematic refinement. The manufactured solution from Equation (8) is shown graphically

in Figure 2. Discrete L2 norms of the discretization error (i.e., the difference between the numerical

solution and the manufactured solution) are computed for grid levels from 129×129 nodes (h = 1) to 9×9

nodes (h = 16). The observed order of accuracy of these L2 norms is computed for successive mesh levels,

and the results are shown in Figure 3. The observed order of accuracy is shown to converge to the formal

order of two as the meshes are refined, thus the code is considered to be verified for the options exercised.

3. Solution Verification

The main focus of solution verification is the estimation of the numerical errors that occur when PDEs

are discretized and solved numerically. Numerical errors can arise in computational mathematics due to

computer round-off, iteration, and discretization. Round-off errors occur due to the fact that only a finite

number of significant figures can be used to store floating point numbers in a digital computer. Round-off

errors are usually small, but can be reduced if necessary by increasing the number of significant figures

used in floating point computations (e.g., by changing from single to double precision arithmetic).

Iterative convergence errors are present when discretization of the PDEs results in a simultaneous set of

algebraic equations that are solved approximately or when relaxation techniques are used to obtain a

solution. Discretization error arises due to the fact that the spatial domain is decomposed into a finite

number of nodes/elements and, for unsteady problems, time is advanced with a finite time step. Iterative

and discretization errors are discussed in detail below.

3.1 Iterative error

In computational mathematics, the iterative error is the difference between the current approximate

solution to the discretized equations and the exact solution to the discretized equations. For a global SRQ

f, we can thus define the iterative error at iteration k as

h

k

h

k

h ff

(9)

where h refers to the discrete solution on a mesh with discretization parameters (x, y, t, etc.)

represented collectively by h, k

hf is the current iterative solution, and
hf is the exact solution to the

discrete equations (not to be confused with the exact solution to the PDEs f
~

). We might instead be

concerned with the iterative error in the entire solution over the domain (i.e., the dependent variables in

Submission to Encyclopedia of Applied and Computational Mathematics

6

the PDEs), in which case the iterative error for each dependent variable u should be measured as a norm

over the domain.

For stationary iterative methods (e.g., Jacobi, Gauss-Seidel, multigrid) applied to linear systems,

iterative convergence is governed by the eigenvalues of the iteration matrix. For linear problems, when

the maximum eigenvalue of the iteration matrix is real, the limiting iterative convergence behavior will be

monotone. When it is complex, however, the limiting iterative convergence behavior will generally be

oscillatory. In these cases, convergence of the iterative method requires that the spectral radius of the

iteration matrix be less than one [4]. For nonlinear problems, the linearized system is often not solved to

convergence, but only solved for a few iterations (sometimes as few as one) before the nonlinear terms

are updated, and the form of the convergence is often much more difficult to characterize.

The discrete equations can be written in the form

0)(hh uL

(10)

where Lh is the linear or nonlinear discrete operator and uh is the exact solution to the discrete equations.

The iterative residual is found by plugging the current iterative solution
1k

hu into Equation (10), i.e.,

)(11 k

hh

k

h uL

(11)

where 01 k

h as h

k

h uu 1
. Although monitoring the iterative residuals often serves as an adequate

indication as to whether iterative convergence of the solution has been achieved, it does not by itself

provide any guidance as to the size of the iterative error in the solution quantities of interest. Since the

iterative residual norms have been shown to follow closely with actual iterative errors for many problems

[2], a small number of computations should be sufficient to determine how the iterative errors in the SRQ

scale with the iterative residuals for the cases of interest.

An example of this procedure is given in Figure 4 for laminar viscous flow through a packed bed of

spherical particles [5]. The quantity of interest is the average pressure gradient across the bed, and the

desired iterative error level in the pressure gradient is 0.01%. The iterative residuals in the conservation of

mass and conservation of momentum equations are first converged to 10
-7

 (relative to their initial levels)

then the value of the pressure gradient at this point is taken as an approximation to the exact solution to

the discrete equations hf̂ . The iterative error for all previous iterations is then approximated as

h

k

h

k

h ff ˆ . Figure 4 shows that for the desired iterative error level in the pressure gradient of 0.01%,

the iterative residual norms should be converged down to approximately 10
-6

. Simulations for similar

problems can be expected to require approximately the same level of iterative residual convergence in

order to achieve the same iterative error tolerance in the pressure gradient.

Submission to Encyclopedia of Applied and Computational Mathematics

7

3.2 Discretization error

The discretization error is the difference between the exact solution to the discretized equations and

the exact solution to the PDEs. It is difficult to estimate for practical problems and is often the largest of

the numerical error sources. As shown in Figure 5, methods for estimating discretization error can be

broadly categorized as either recovery methods or residual-based estimators [2,6]. Recovery methods

involve post-processing of the solution(s) and include Richardson extrapolation [1-3,6], order

extrapolation [2,6], and recovery methods from finite elements [7]. The residual-based methods employ

additional information about the problem being solved and include discretization error transport equations

[2,6], defect correction methods [8], implicit/explicit residual methods in finite elements [2,7], and adjoint

methods for estimating the error in solution functionals (i.e., SRQs) [7]. Due to space limitations, we will

limit our discussion to Richardson extrapolation.

Richardson extrapolation uses solutions on two or more systematically refined meshes to estimate the

exact solution to the PDEs, which can in turn be used to provide an error estimate for the numerical

solutions. Consider the two series expansions for the numerical solution about the exact solution to the

PDEs given earlier by Equations (3) and (4) for systematically-refined meshes with spacing h and rh,

respectively. Assuming for now that the solutions are in the asymptotic range (i.e., that the observed order

of accuracy matches the formal order), these two equations can be solved for an estimate of the exact

solution to the PDEs by neglecting the higher-order terms to obtain the Richardson extrapolation estimate

1

p

rhh
h

r

ff
ff (12)

which is generally a (p+1)-order accurate estimate of the exact solution to the PDEs f
~

. It can be used to

estimate the discretization error in the fine grid solution, i.e., ffhh

~
 , resulting in the error estimate:

1

p

hrh
h

r

ff
 . (13)

Note that in addition to the assumption that both solutions are in the asymptotic range, this error estimate

will be accurate only when iterative and round-off errors are much smaller than the fine grid discretization

error.

Regardless of the approach used for estimating the discretization error, the reliability of the

discretization error estimate depends on the solutions being in the asymptotic mesh convergence range,

which is extremely difficult to achieve for complex computational mathematics applications. Verifying

that the solutions are in the asymptotic range can be done by computing the observed order of accuracy

using numerical solutions on three systematically-refined meshes. For systematic refinement by the factor

r, one has hfine = h, hmedium = rh, and hcoarse = r
2
h and the observed order of accuracy can be found as [1]:

Submission to Encyclopedia of Applied and Computational Mathematics

8

)ln(

ln

ˆ

2

r

ff

ff

p hrh

rhhr

 .
(14)

The case when the grid refinement factor between the fine and medium meshes differs from that between

the medium and coarse meshes is addressed in [1]. Note that the observed order of accuracy will only

match the formal order when all three grid levels are in the asymptotic range. A similar expression for the

observed order of accuracy can be derived in terms of the error estimates found on two systematically-

refined meshes (e.g., for use with residual-based error estimators):

)ln(

ln

ˆ
r

p h

rh

.
(15)

4. Numerical Uncertainty

In some cases, when numerical errors can be estimated with a high degree of confidence, they can be

removed from the numerical solution – a process similar to that used for well-characterized bias errors in

an experiment. More often, however, the numerical errors are estimated with significantly less certainty,

and thus they should be converted into numerical uncertainties, with the uncertainty coming from the

error estimation process itself [2,9]. One of the simplest methods for converting an error estimate to an

uncertainty is to use the magnitude of the error estimate to apply uncertainty bands about the simulation

prediction, possibly with an additional factor of safety included. For example, the Richardson

extrapolation estimate of discretization error
h discussed above can be converted to a numerical

uncertainty UDiscretization as

hsFU tionDiscretiza
 (16)

where Fs 1 is the factor of safety. The resulting interval for the numerical solution, accounting for

numerical uncertainties, can be approximated by applying this uncertainty to the fine grid solution

hshh FfUf tionDiscretiza
. (17)

These concepts are shown graphically in Figure 6 with a factor of safety of approximately Fs = 1.5. When

the error estimate is poor (i.e., when the true model solution f
~

 differs significantly from the estimated

model solution f , as suggested by the figure), this approach is designed to still potentially provide

conservative numerical uncertainty estimates, depending of course on the chosen factor of safety. It is

recommended that this uncertainty be centered about the numerical solution fh rather than the estimated

Submission to Encyclopedia of Applied and Computational Mathematics

9

exact solution f since the latter can lead to erroneous (and possibly physically non-realizable) values.

When multiple sources of numerical error are present, then a conservative approach is to simply add the

numerical uncertainties together [2,9], i.e.,

tionDiscretizaIterationOff RoundNUM UUUU . (18)

While numerical uncertainties are epistemic (i.e., due to a lack of knowledge rather than inherent

randomness), it is currently an open question as to whether these uncertainties should be characterized

probabilistically or in some other fashion (e.g., as intervals) [9,10].

References

1. Roache, P. J. (2009), Fundamentals of Verification and Validation, Hermosa Publishers, Socorro, New

Mexico.

2. Oberkampf, W. L. and C. J. Roy (2010), Verification and Validation in Scientific Computing,

Cambridge University Press, Cambridge.

3. Roy, C. J. (2005), “Review of code and solution verification procedures for computational

simulation,” Journal of Computational Physics, Vol. 205, pp. 131-156.

4. Golub, G. H. and C. F. Van Loan (1996). Matrix Computations, 3rd edn., Baltimore, The Johns

Hopkins University Press

5. Duggirala, R., C. J. Roy, S. M. Saeidi, J. Khodadadi, D. Cahela, and B. Tatarchuck (2008). Pressure

drop predictions for microfibrous flows using CFD, Journal of Fluids Engineering. 130(DOI:

10.1115/1.2948363).

6. Roy, C. J. (2010), “Review of discretization error estimators in scientific computing,” AIAA Paper

2010-0126.

7. Ainsworth, M. and Oden, J. T. (2000). A Posteriori Error Estimation in Finite Element Analysis,

Wiley Interscience, New York.

8. Skeel, R.D. (1986). “Thirteen Ways to Estimate Global Error,” Numerische Mathematik, Vol. 48, pp.

1-20.

9. Roy, C. J. and W. L. Oberkampf (2011). “A Comprehensive Framework for Verification, Validation,

and Uncertainty Quantification in Scientific Computing,” Computer Methods in Applied Mechanics

and Engineering, Vol. 200, Nos. 25-28, pp. 2131-2144 (DOI: 10.1016/j.cma.2011.03.016).

10. Roy, C. J. and Balch, M. S. (2012), “A Holistic Approach to Uncertainty Quantification with

Application to Supersonic Nozzle Thrust,” accepted for publication in the International Journal for

Uncertainty Quantification, January 2012.

Submission to Encyclopedia of Applied and Computational Mathematics

10

Figures

Figure 1. Schematic of the simulation process showing code and solution verification activities.

Figure 2. Manufactured solution for temperature for the 2D steady heat conduction problem

(reproduced from Ref. [2]).

Submission to Encyclopedia of Applied and Computational Mathematics

11

Figure 3. Observed order of accuracy for the 2D steady heat conduction problem (reproduced

from Ref. [2]).

Figure 4. Norms of the iterative residuals (left axis) and percentage error in pressure gradient

(right axis) for laminar flow through a packed bed (reproduced from Ref. [5]).

Submission to Encyclopedia of Applied and Computational Mathematics

12

Figure 5. Overview of discretization error estimation approaches.

Figure 6. Example of converting a discretization error estimate to a numerical uncertainty

(reproduced from Ref. [10]).

