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ABSTRACT

This study investigates the accuracy of various Richardson extrapolation-based discretization error and un-
certainty estimators for problems in computational fluid dynamics. Richardson extrapolation uses two solutions
on systematically refined grids to estimate the exact solution to the partial differential equations and is accurate
only in the asymptotic range (i.e., when the grids are sufficiently fine). The uncertainty estimators investigated are
variations of the Grid Convergence Index and include a globally averaged observed order of accuracy, the Factor
of Safety method, the Correction Factor method, and Least-Squares methods. Several 2D and 3D applications to
the Euler, Navier-Stokes, and Reynolds-Averaged Navier-Stokes with exact solutions and a 2D turbulent flat plate
with a numerical benchmark are used to evaluate the uncertainty estimators. Local solution quantities (e.g. density,
velocity, and pressure) have much slower grid convergence on coarser meshes than global quantities resulting in
non-asymptotic solutions and inaccurate Richardson extrapolation error estimates; however, an uncertainty esti-
mate may still be required. The uncertainty estimators are applied to local solution quantities to evaluate accuracy
for all possible types of convergence rates. Extensions were added where necessary for treatment of cases where
the local convergence rate is oscillatory or divergent. The conservativeness and effectivity of the discretization
uncertainty estimators are used to assess the relative merits of the different approaches.

1 Introduction
Computational Fluid Dynamics, or CFD, has enormous potential to impact the analysis, design, and optimization of

engineering systems. The predictive capability of CFD depends not only on the validity of the sub-models employed (e.g.,
turbulence, chemistry, multi-phase flow) and the uncertainties present in the system and surroundings, but also on the ability
to reliably estimate and reduce numerical errors. While there are several sources of numerical error in a CFD computation,
the largest and most difficult to estimate is usually the error related to the resolution of the spatial grid, i.e., the spatial
discretization error.

For a solution solved on a grid with spacing h, the discretization error, εh, is defined as the difference between the exact
solution to the discrete equations, uh, and the exact solution to the PDEs, ũ,

εh = uh− ũ. (1)
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The exact exact solution to the discrete equations, uh, assumes that round-off error, iterative error, and other sources of
numerical error are zero (or negligible relative to discretization error). Richardson extrapolation uses a sequence of solutions
to estimate discretization error and can be applied to almost any type of computational simulation as well as to both local
and global quantities. The method is not code intrusive and is applied as a post processing step. For smooth solutions with
no discontinuities, the exact solution can be written in terms of a power series expansion, ũ = uh−∑

∞
p=p f

αphp, which can
be used to rewrite Eq. 1 as

εh =
∞

∑
p=p f

αphp = αp f hp f +HOT. (2)

For a fully verified code, the formal order of accuracy, p f , is determined by the chosen discretization scheme and is the
exponent of the first term in the series. If discontinuities are present, the formal order of the discretization scheme is reduced.
A formal order of one is expected for a non-linear discontinuity and ps/(ps + 1) for a linear discontinuity where ps is the
formal order for a smooth problem, see Banks et al. [1] for more discussion. To reasonably approximate the discretization
error, the Higher Order Terms (HOT) are dropped reducing Eq. 2 to

εh ≈ ε̄h = αp f hp f . (3)

The exclusion of the HOT introduces the assumption that numeric solutions are asymptotic (i.e., HOT � αp f hp f ) for
the estimated discretization error, ε̄h, to accurately approximate the true discretization error, εh. Richardson extrapolation
is formulated to solve for the unknowns in Eq. 3, αp f and ε̄h, using solutions on two systematically refined grids (see dis-
cussion in Section 2). This further extends the requirement of an asymptotic solution to not only the solution on which the
discretization error is to be estimated but also to any additional solutions used in the extrapolation. In practice, for Eq. 3 to
be accurate, all sources of numerical error must be negligible relative to discretization error, the solver should be verified
to match the expected order of accuracy of the discretization scheme, and the two numerical solutions used to estimate the
discretization error must be asymptotic. (While not accurate for a power series expansion, Richardson extrapolation can be
applied to a solution with discontinuities but the expected order of accuracy is reduced from what would be found for smooth
problems.) If any of the assumptions are not met, then the solution can exhibit a different order of convergence and a different
type of convergence toward the exact solution. The observed order of accuracy requires three solutions on systematically
refined grids to compute and is related to four different types of convergence: monotonic convergence, monotonic diver-
gence, oscillatory convergence, and oscillatory divergence. Monotonic convergence and monotonic divergence occur when
the difference between solutions computed on successively finer grids decreases and increases, respectively. Oscillatory
convergence and oscillatory divergence occur when the difference between solutions on successively finer grids decreases
and increases, respectively, and changes sign (i.e., the convergence is not monotone). The observed order of accuracy is
typically used to determine the reliability of a Richardson extrapolation error estimate where an observed order of accuracy
near the formal order of accuracy is indicative of a near asymptotic solution.

Multiple solutions in the asymptotic range are often difficult to achieve for practical engineering applications; in such
cases, the discretization error estimates are often unreliable (i.e., there is uncertainty in the discretization error estimate). To
account for this additional uncertainty, the estimated discretization error is modified using an absolute value to create a +/-
band centered about the fine grid numerical solution. To improve the probability that the exact solution to the PDEs lies within
this uncertainty band, the uncertainty is often multiplied by a factor of safety. The Grid Convergence Index (GCI) was initially
developed by Roache [2] for uniform reporting of grid convergence studies and has evolved into a discretization uncertainty
estimator recommended by ASME [3] and AIAA [4]. The GCI uncertainty estimate is computed by multiplying the absolute
value of the Richardson extrapolation error estimate by a factor of safety where the factor of safety is determined based on
knowledge of the nearness to the asymptotic range. For the GCI, Roache [5] does not give an explicit way to determine
nearness to the asymptotic range but discusses expected asymptotic behavior and leaves the interpretation of nearness up to
the implementer of the GCI. The other methods investigated in this study are based on Richardson extrapolation and follow
similar formulations to the GCI with variations including factor of safety choice, proximity to the asymptotic range, et cetera.

The GCI and several variants have been evaluated over a wide range of applications. See for example, Roache [5], Logan
and Nitta [6], Cadafalch et al. [7], and Xing and Stern [8]. Most studies focus on uncertainty estimation for global quantities
and prescribe the reliability of the uncertainty estimate as the solutions achieve asymptotic convergence. The convergence
of local solution quantities is much more “noisy” and it is much more difficult to reach asymptotic solutions because the
discretization error at a given node or cell depends on every other node or cell in the domain to varying degrees depending
on the application. This noisy convergence results in more frequent oscillatory convergence/divergence and monotone di-
vergence. Most studies discard oscillatory convergence and divergence as these types of convergence do not fit within the
theory of Richardson extrapolation. For engineering applications, it is difficult to achieve asymptotic convergence for local
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solution quantities; however, an estimate of the discretization uncertainty may be desired. A few non-asymptotic points can
cause order of accuracy problems in the entire domain due to the transport of error and can prevent the implementation of
Richardson extrapolation as it is normally implemented for local quantities. This paper focuses on evaluating several exist-
ing uncertainty estimators for local solution quantities regardless of the type of convergence and relates the reliability of the
uncertainty estimators to a distance metric (a metric which indicates how close to the asymptotic range the solution is). The
error and uncertainty estimators are evaluated using a set of applications with exact solutions to the Euler, Navier-Stokes,
and Reynolds-Averaged Navier-Stokes (RANS) equations and a numerical benchmark solution for the RANS equations.

2 Discretization Error and Uncertainty Estimation
Richardson extrapolation is derived from Eq. 3 by eliminating the coefficient αp f and estimating the discretization error

in the fine grid solution using two systematically refined grids with spacing h1 = h, and h2 = rh

ε̄h =
urh−uh

rp f −1
. (4)

For a grid to be systematically refined the grid spacing must be decreased by a constant factor in all coordinate directions
and the grid quality must stay the same or improve. The constant factor is the grid refinement factor r which is the relative
change is grid spacing from the coarse grid to the fine grid where r > 1. Roache [5] recommends that r > 1.1 to reduce
the effects of other sources of numerical error. See Oberkampf and Roy [9] for more discussion regarding systematic grid
refinement.

The reliability of the discretization error estimate depends on both solutions being asymptotic which can be determined
by calculating the observed order of accuracy of the solution p̂. If the solutions are asymptotic then p̂ ≈ p f . An additional
coarser solution with grid spacing is required to calculate observed order of accuracy

p̂ =
ln
(

ur2h−urh
urh−uh

)
ln(r)

. (5)

The coarser solution must also be asymptotic which further increases the grid requirements for an accurate estimate of
discretization error. Equation 5 assumes that the refinement factor between the fine and medium grids are the same, r =
h2/h1 = h3/h2.

A set of solutions can exhibit four different types of convergence. The convergence ratio [10] is defined as

R =
ur2h−urh

urh−uh
. (6)

The different types of convergence are
(i) Monotonic convergence: 0 < R < 1
(ii) Monotonic divergence: 1 < R
(iii) Oscillatory convergence: −1 < R < 0
(iv) Oscillatory divergence: R <−1

Some discretization error estimators use the formal order of accuracy and some use the observed order of accuracy. To
easily clarify which error estimator is prescribed to use which order of accuracy, Eq. 4 is rewritten as a general function of
the order of accuracy

ε̄h(p) =
urh−uh

rp−1
. (7)

The error estimate approaches infinity as p→ 0 and results in an unrealistically large error estimate. The observed order of
accuracy should be limited to some small positive number, pl . In our earlier work, we recommended limiting the minimum
observed order of accuracy to 0.5 based on extensive testing with various exact solutions [11]. To also allow for error and
uncertainty estimation for oscillatory converging solutions (where p̂ is undefined), we recommend setting p̂ = 0.5 unless
prescribed otherwise for a given error or uncertainty estimator.
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2.1 Grid Convergence Index
The Grid Convergence Index (GCI) was developed by Roache [2] as a method for uniform reporting of CFD results but

has since evolved into an uncertainty estimator. Most current implementations of the GCI take the general form of a factor
of safety multiplied by the absolute value of the discretization error estimate

U = FS |ε̄h(p)| (8)

where FS is the factor of safety. Roache [5] gives two different implementations of the GCI depending on the number of
available solutions and the observed order of accuracy

if solutions on only two grids are available

UGCI−2g = 3.0
∣∣ε̄h(p f )

∣∣ (9)

if solutions on more than two grids are available and the observed order of accuracy is near the formal order of accuracy

U = 1.25 |ε̄h(p̂)| . (10)

The two grid error estimator is EGCI−2g = ε̄h(p f ). Roache limited p̂ ≤ p f (Ref. [5]) and provided a discussion on a variety
of considerations and studies evaluating and applying the GCI [12]. The use of a factor of safety of 1.25 for the GCI requires
that the observed order of accuracy is near the formal order and requires the judgment of the user based on the results of the
grid convergence study. Oberkampf and Roy [9] suggest an implementation of the GCI that defines which factor of safety to
use depending on the observed order of accuracy for p f = 2

UGCI−OR =
{

1.25
∣∣ε̄h(p f )

∣∣ , 1.8≤ p̂≤ 2.2
3.0 |ε̄h(pOR)| , f or all other values (11)

where pOR = min(max(0.5, p̂), p f ) and pOR = 0.5 for oscillatory convergence. The error estimator is

EGCI−OR =
{

ε̄h(p f ), 1.8≤ p̂≤ 2.2
ε̄h(pOR), f or all other values. (12)

2.2 Global Averaging Method (GCI-glb)
Cadafalch et al. [7] used a global average of observed order of accuracy from the domain. First, the nodes are classified

as Richardson nodes, oscillatory nodes, or converged nodes

Richardson Nodes: (ur2h−urh)(urh−uh) > 0
Oscillatory Nodes: (ur2h−urh)(urh−uh) < 0.

Converged nodes are nodes where the above product is below a specific tolerance and are treated the same as Richardson
nodes. In their study, no converged nodes were found so the classification was omitted.

Cadafalch et al. [7] computed a global observed order of accuracy by averaging the observed orders of accuracy at the
Richardson nodes. They also placed no restriction on the local observed orders of accuracy to prevent either an average
above the formal order of accuracy or below zero. The averaging method is modified for our study to prevent global orders
of accuracy outside an acceptable range, the local orders of accuracy were limited between 0.05 and p f , thus allowing an
uncertainty estimate to be obtained at all points regardless of local convergence rates.

pglb =
1
N

N

∑
i=1

min(max(0.05, p̂i) , p f ) (13)

where N is the number of grid cells or nodes. The global average uncertainty estimator is

UGCI−glb = 1.25
∣∣ε̄h
(

pglb
)∣∣ (14)

and the error estimator is Eglb = ε̄h
(

pglb
)
.

4



2.3 Correction Factor Method (CF)
The Correction Factor method (CF) developed by Stern et al. [10] and later modified by Wilson et al. [13] is defined as

UCF =


[
9.6(1−CF)2 +1.1

]
|ε̄h(pCF)| , 0.875 < CF ≤ 1.125

[2 |1−CF |+1] |ε̄h(pCF)| , 0 < CF ≤ 0.875
[2 |1−CF |+1] |ε̄h(pCF)| , CF > 1.125

(15)

where

CF =
r p̂−1
rp f −1

. (16)

The correction factor method removes the choice of factor of safety based on the implementers judgement required by the
GCI method by writing the factor of safety as a function of the correction factor term CF . This term is used to indicate how
far from asymptotic convergence the solution is in a way that is independent of the formal order of accuracy. The asymptotic
factor of safety is 1.1 which occurs when CF = 1.

The method is modified for this study to allow uncertainty estimates at all points by adding a lower limit to the observed
order of accuracy pCF = max(0.5, p̂) and setting pCF = 0.5 for oscillatory solutions. The correction factor is also modified
so that CF = (rpCF −1)/(rp f −1). Stern at al. [10] prescribed different treatment for oscillatory converging solutions where
the uncertainty is half the difference between the maximum and minimum solution values

UCF =
1
2
|max(uh,urh,ur2h)−min(uh,urh,ur2h)| . (17)

2.4 Factor of Safety Method (FS)
The Factor of Safety method (FS) developed by Xing and Stern [8] varies the factor of safety as a function of the

normalized order of accuracy P = p̂/p f which, similar to the CF method, is used to indicate how far from asymptotic
convergence the solution is in a formal order of accuracy independent manner. The FS method is defined as

UFS =
{

[FS1P+FS0(1−P)] |ε̄h(pFS)| , 0 < P≤ 1
[FS1P+FS2(P−1)] |ε̄h(pFS)| , P > 1 (18)

where FS0 = 2.45, FS1 = 1.6, and FS2 = 14.8. The asymptotic factor of safety is 1.6 which occurs when P = 1. Observed
orders of accuracy greater than the formal order are not limited to the formal order because the FS method includes treatment
for such cases but the method is modified for this study by adding a lower limit pFS = max(0.5, p̂) and setting pFS = 0.5 for
oscillatory solutions. Also P = pFS/p f . Xing and Stern [8] also proposed the discretization error estimator EFS = P |ε̄h(pFS)|.

2.5 Least Squares Method (LSQ-09, LSQ-10)
Eça and Hoekstra [14, 15] developed a least squares approach to smooth the variations in local observed order of accu-

racy. Using Eq. 3, an error function is created

S(ū,α, p̃) =

(
ng

∑
k=1

[
uk−

(
ū+αh p̃

k

)]2
)1/2

(19)

where p̃ is the least squares observed order of accuracy, uk is the kth solution on a grid with spacing hk, and ng is the total
number of grids. The derivatives of S with respect to ū, α, p̃ are set to zero resulting in a set of three equations solved using
the false-position root finding method

α =
ng ∑

ng
k=1 ukhp̃

k −
(
∑

ng
k=1 uk

)(
∑

ng
k=1 hp̃

k

)
ng ∑

ng
k=1 h2p̃

k −
(

∑
ng
k=1 h p̃

k

)(
∑

ng
k=1 h p̃

k

) (20)
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ū =
∑

ng
k=1 uk−α∑

ng
k=1 hp̃

k
ng

(21)

ng

∑
k=1

ukh p̃
k ln(hk)− ū

ng

∑
k=1

hp̃
k ln(hk)−α

ng

∑
k=1

h2p̃
k ln(hk) = 0. (22)

The least squares approach requires at least four solutions. The discretization error and uncertainty estimator, labeled LSQ-
09, are subject to different conditions depending on the value of p̃ for p f = 2

ULSQ−09 =


1.25|εLSQ|+Us, 0.95≤ p̃≤ 2.05
min(1.25|εLSQ|+Us,1.25∆M), 0 < p̃≤ 0.95
max(1.25|εLSQ|+Us,1.25∆M), p̃≥ 2.05
∆M, f or all other values

(23)

where εLSQ = αhp̃
1 , Us is the RMS of the fit, and

∆M = max(
∣∣ui−u j

∣∣), 1≤ i≤ ng, 1≤ j ≤ ng. (24)

The least squares method was modified in Eça [16] to correct some of the deficiencies in the LSQ-09 method. This
method labeled LSQ-10 estimates the discretization uncertainty using two additional error functions based on fixed-exponent
power series expansions. The additional error functions were added to account for cases where the least squares observed
order of accuracy is greater than the formal order ε2

LSQ = αh2
k , and where the least squares observed order of accuracy is not

near the formal order of accuracy ε12
LSQ = α1hk +α2h2

k . If observed order of accuracy does not fit the above conditions then
ε∆M = ∆M/(rpm −1) is used where pm = 1 for p f = 2. Uncertainty estimation for p f = 2 is outlined in Ref. [16] as

ULSQ−10 =


1.25|εLSQ|+Us, 0.95≤ p̃≤ 2.05
min(1.25|εLSQ|+Us,3|ε12

LSQ|+U12
s ), 0 < p̃≤ 0.95

max(1.25|εLSQ|+Us,3|ε2
LSQ|+U2

s ), p̃≥ 2.05
3|ε∆M |, f or all other values,

(25)

where U12
s and U2

s are the RMS of the least squares fit for ε12
LSQ and ε2

LSQ, respectively.

3 Analysis
3.1 Reliability Metrics

To provide an assessment of the accuracy of the discretization error and uncertainty estimates, the effectivity index [17]
for each solution variable is computed as

θL2 =
||ε̄h||L2

||εh||L2

. (26)

The discrete L2-norm is computed using

|| f ||L2 =

√
1
N

N

∑
i=1

f 2
i (27)

where f is any vector of length N. The L2-norms in this paper are computed for a data set which is composed of a local
solution variable on the computational domain with N grid nodes. The effectivity index should converge to one as the grid is
refined for an accurate error estimate.
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The primary metric for reliability of the uncertainty estimators is conservativeness where an uncertainty estimate is
considered conservative if the estimate is greater than the absolute value of the exact error

U > |εh|. (28)

The generally accepted goal of conservativeness for a discretization uncertainty estimator is that 95 percent of all estimates
should be conservative. To compare how accurately the uncertainty estimate compares to the exact error, an equivalent
effectivity index is computed in a manner similar to the effectivity index for discretization error

ψL2 =
||U ||L2

||εh||L2

. (29)

The uncertainty effectivity index is meant to compare how closely the uncertainty estimates bound the exact error. Conserva-
tiveness is the most important metric; however, choosing a factor of safety of 1000 may result in a 100 percent conservative
uncertainty estimator but would not provide meaningful information about the uncertainty. The over-estimation of the uncer-
tainty would be reflected in the uncertainty effectivity index. As a point of reference, the ideal uncertainty estimator should
have a conservativeness greater than 95 percent and an uncertainty effectivity index approaching one as the mesh is refined.

3.2 Distance from the Asymptotic Range
To assess the reliability of the discretization error and uncertainty estimators suitable for many simulations of varying

complexity, the reliability metrics should be plotted versus a metric which can be correlated to the confidence in the error or
uncertainty estimate. The primary metric for confidence is the observed order of accuracy, where an exact estimate results
when p̂ = p f with a high degree of confidence and with degrading confidence as the difference between observed order and
formal order increases. This metric is referred to as a distance metric, and ideally, the metric should correlate the reliability
metrics for a wide range of problems so that for a given distance from asymptotic convergence the estimates can be said to be
reliable. Some possible metrics not based on order of accuracy include cell size or cell count used by Phillips and Roy [11]
since these values are commonly used as the absicca for discretization error or order of accuracy plots for a grid convergence
study. Cell size and cell count are specific only to the set of systematically refined grids for a given application so make a
poor choice for correlating reliability metrics for several applications. The correction factor was used as a distance metric
by Stern et al. [13] but different refinement factors result in different correction factors making CF a poor choice. Other
possible distance metrics considered include the global order of accuracy defined in Eq. 13, the FS method parameter P, the
global deviation from the formal order developed by Phillips and Roy [18], and the percent of monotonically converging
nodes. The FS method parameter P is modified for this study by averaging over the local estimates

P̄ =
1
N

N

∑
i=1

Pi. (30)

The global deviation from the formal order of accuracy computes the average distance from the formal order of accuracy
averaged over the entire domain

∆ p̄ = min

(
1
N

N

∑
i=1

min
(∣∣p f − p̂i

∣∣ ,4p f
)
,0.95p f

)
. (31)

The observed order of accuracy p̂i for this distance metric is an empirically modified calculation of the observed order of
accuracy using absolute values to include the effects of oscillatory converging nodes

p̂ =
ln
(∣∣∣ ur2h−urh

urh−uh

∣∣∣)
ln(r)

. (32)

The percent of Richardson nodes as defined in Section 2.2 was used by Cadafalch et al. [7] as a measure of reliability. This
definition includes monotonically diverging nodes which are not asymptotic, so instead monotonically diverging nodes are
excluded and only the percent of monotonically converging nodes is considered as a distance metric instead. That is the
percentage of all nodes for a given solution variable with a convergence ratio in the range 0 < R < 1.
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Fig. 1. Comparison of data for two different uncertainty estimators with quadratic fit and bounds for less scatter (top row) and more scatter
(bottom row)

3.3 Data representation

The reliability metrics are computed for over 700 data points for six different discretization error estimators and six
different uncertainty estimators. To more clearly present the data, a quadratic regression fit of the reliability metrics versus
the distance metric is computed for each error and uncertainty estimator. The purpose of the regression fit is to capture
how the reliability metrics behave as solutions approach the asymptotic range. Equally important, is how much scatter is
present in the reliability metrics where more scatter indicates less predicatiblity from application to application and a less
reliable error or uncertainty estimator. To represent the scatter in the data, the 95 percent confidence bound for the quadratic
regression fit is computed. The confidence bounds on the regression fit are meant only for comparison purposes to compare
the asymptotic behavior and scatter in the reliability metrics for each error and uncertainty estimator. For the error and
uncertainty effectivity index, the regression fit is computed for the inverse effectivity index versus the distance metric. This
is done because of the range of the data. Several different plotting styles were compared and the inverse of the effectivity
index presented the data best with the most accurate regression fit and confidence bounds. For illustrative purposes only,
Fig. 1 shows the raw data for the inverse uncertainty effectivity index and the conservativeness of the uncertainty estimator
along with the resulting quadratic fit and confidence bounds for two different uncertainty estimators. The distance metric
used is the global deviation from the formal order. The inverse uncertainty effectivity index for two different uncertainty
estimators have similar asymptotic behavior but have different amounts of scatter in the data. For conservativeness, only the
lower bound is needed because the upper bound is not meaningful. Both the asymptotic behavior and scatter in the data are
accurately represented by the confidence bounds.

4 Applications

Solutions to various applications are computed using three different finite volume solvers with a formal order of accuracy
of two. The solvers include an in-house 2D, structured, Euler solver; Loci-Chem, a 3D, unstructured, Reynolds Averaged
Navier-Stokes (RANS) solver [19]; and PARNASSOS, a 3D, structured, incompressible RANS solver [20]. All simulations
were performed in double precision and the iterative residuals were converged to machine zero, thus round-off and iterative
error may be neglected. The finite volume solution is piecewise constant over a cell so the solution is assumed to be located
at the geometric cell center which is a second-order approximation and a local fourth-order least squares curve-fit is used
to interpolate the cell-centered values to the nodes. The discretization error and uncertainty is estimated at every coincident
node for a given grid triplet (or grid quadruplet for the LSQ methods) for local solution variables (e.g. density, pressure, and
velocity). A summary of all solutions and grid triplets are given in Table 1.
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Table 1. Summary of Numerical Solutions

Application Equation Set Variables Grid Triplets Total Estimates

Subsonic MMS Euler ρ, p, u, v 11 44

Supersonic MMS Euler ρ, p, u, v 11 44

Ringleb’s Flow Euler ρ, p, u, v 7 28

Supersonic Vortex Flow Euler ρ, p, u, v 11 44

Loci-Chem MMS RANS BSL-kε ρ, p, u, v, w 4 20

(hexahedral cube RANS BSL-kω ρ, p, u, v, w 4 20

and curvilinear) Euler ρ, p, u, v, w 4 20

NS ρ, p, u, v, w 4 20

NS: Extrapolation BC ρ, p, u, v, w 4 20

NS: Farfield BC ρ, p, u, v, w 4 20

NS: Inflow BC ρ, p, u, v, w 4 20

Loci-Chem MMS RANS BSL-kε ρ, p, u, v, w 4 20

(prismatic cube RANS BSL-kω ρ, p, u, v, w 4 20

and curvilinear) Euler ρ, p, u, v, w 4 20

NS ρ, p, u, v, w 4 20

NS: Extrapolation BC ρ, p, u, v, w 4 20

NS: Farfield BC ρ, p, u, v, w 4 20

NS: Inflow BC ρ, p, u, v, w 4 20

Loci-Chem MMS RANS BSL-kε ρ, p, u, v, w 4 20

(tetrahedral cube RANS BSL-kω ρ, p, u, v, w 4 20

and curvilinear) Euler ρ, p, u, v, w 4 20

NS ρ, p, u, v, w 4 20

NS: Extrapolation BC ρ, p, u, v, w 4 20

NS: Farfield BC ρ, p, u, v, w 4 20

NS: Inflow BC ρ, p, u, v, w 4 20

Loci-Chem MMS RANS BSL-kε ρ, p, u, v, w 4 20

(hybrid cube, RANS BSL-kω ρ, p, u, v, w 3 15

curvilinear, and) Euler ρ, p, u, v, w 4 20

highly curvilinear) NS ρ, p, u, v, w 4 20

NS: Extrapolation BC ρ, p, u, v, w 4 20

NS: Farfield BC ρ, p, u, v, w 4 20

NS: Inflow BC ρ, p, u, v, w 4 20

PARNASSOS MMS (Cartesian) INS BSL-kω p, u, v 6 18

PARNASSOS MMS (stretched) INS BSL-kω p, u, v 6 18

PARNASSOS MMS (non-orthogonal) INS BSL-kω p, u, v 6 18

Turbulent Flat Plate RANS Spalart-Allmaras ρ, p, u, v 2 8
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4.1 Euler Solver
4.1.1 Manufactured Solutions

Two applications include the supersonic and a subsonic manufactured solution used in Ref. [21]. The basic manufactured
solution function is

f (x,y) = a0 +a1sin
(

b1xπ

L
+ c1π

)
+a2sin

(
b2yπ

L
+ c2π

)
(33)

where the coefficients a, b, c are coefficients to control the magnitude, period, and phase shift of the solution and L is
the reference length of one. The magnitude a0 for density, x-velocity, y-velocity, and pressure are 1.0kg/m3, 800.0m/s,
800.0m/s, and 100,000.0Pa for the supersonic manufactured solution and 1.0kg/m3, 70.0m/s, 90.0m/s, and 100,000.0Pa
for the subsonic manufactured solution. The periods range from 0.5 and 2.0 for all solution variables.

Two sets of grids for each manufactured solution are also used to investigate the effect of refinement factor on error and
uncertainty estimation. The finest grid for the first grid set is 513x513. This grid is successively coarsened by a factor of
two to create seven grid levels where the coarsest is 17x17. The second set includes the first nine grids in the first set plus
an additional set which when combined with the first set results in refinement factors of 4/3 and 3/2 instead of refinement
factors of two and two between the fine and medium and medium and coarse grids, e.g. 513x513, 385x385, and 257x257
instead of 513x513, 257x257, and 129x129.

4.1.2 Supersonic Vortex Flow
Supersonic vortex flow [22] consists of a flow around a 90 degrees annulus

ρ(r) = ρi

(
1+ γ−1

2 M2
i

(
1− R2

i
r2

)) 1
γ−1

u(y,r) = yU
r , v(x,r) =− xU

r , P = ργ

γ
,

Ui = Miρ
γ−1

2
i , U = UiRi

r .

(34)

The flow field is defined as a function of variables at the inner radius of the annulus denoted by the subscript i. The inner
radius Ri is 2.0m, the outer radius is 3.0m, the inner density ρi is 1.0kg/m3, and the inner Mach number Mi is 2.0. The finest
grid is 513x257 and is successively coarsened by a factor of two to generate a family of grids where the coarsest is 9x5. A
second intermediate grid set was also created in the same manner as for the manufactured solutions.

4.1.3 Ringleb’s Flow
Ringleb’s flow is an inviscid flow around a 180 degree turn [23]. The flow can be supersonic, subsonic, or both depending

on the domain chosen. For this study, a supersonic-only region was chosen. Ringleb’s flow is governed by the stream function

ψ =
1
q

sin(θ) (35)

where θ is the flow angle and q is the normalized velocity. A total of six grids were generated for Ringleb’s flow from the
finest grid of 257x257 using a refinement factor of two to create five grid levels. An intermediate grid set was also created.

4.2 PARNASSOS
4.2.1 Manufactured Solutions

A manufactured solution is used from the 2006 and 2008 Lisbon uncertainty analysis workshops [24]. The manufactured
solution is for the BSL-kω RANS turbulence model

u = er f (η)
v = 1

σ
√

π

(
1− eη2

)
Cp = 0.5ln

(
2x− x2 +0.25

)
ln
(
4y3−3y2 +1.25

)
νt = 0.25(νt)max η4

νe2−η2
ν

k = kmaxη2
νe1−η2

ν

(36)
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Fig. 2. PARNASSOS Cartesian, stretched, and non-orthogonal grids

where Cp is the coefficient of pressure, η = σy/x, ην = σνy/x, σ = 4, σν = 2.5σ, kmax = 0.001, (νt)max = 103ν, and ω = k/νt .
The manufactured solution is designed to resemble a boundary layer and is computed on three different grid topologies shown
in Fig. 2. Each grid topology has 16 grid levels with grids created in increments of 20 (i.e. 101x101, 121x121, . . . , 401x401).
The grids are combined to created a total of 6 grid triplets per grid topology with three variables per solution. In total, there
are 54 grid triplets included in the data set with discretization error estimated for x-velocity, y-velocity, and pressure.

4.3 Loci-CHEM
4.3.1 Manufactured Solutions

Several manufactured solutions are used to compute 3D, steady-state solutions to the Euler, Navier-Stokes, and RANS
equations with two-equation turbulence models. The manufactured solutions used for code verification of Loci-CHEM are
discussed in [25, 26]. The manufactured solutions include one Euler solution, BSL-kω and BSL-kε RANS solutions, and
four Navier-Stokes solutions which include extrapolation, farfield, and inflow boundary conditions. Three different grid
topologies are used with two different levels of complexity. These grid topologies include hexahedral, tetrahedral, and
prismatic grid cells plus a hybrid combination of each on a Cartesian domain, a curvilinear domain, and a highly skewed
curvilinear domain [26]. A few examples are shown in Fig. 3. The grid sizes are 65x65x65, 33x33x33, 17x17x17, and
9x9x9. There are a total of two grid triplets per grid topology for seven manufactured solutions with 5 solution variables
each for a total of 555 grid triplets.

Fig. 3. Samples of the Loci-CHEM computational grids showing the (a) Cartesian tetrahedral grid, (b) curvilinear prismatic grid, (c) highly
skewed curvilinear hexahedral grid, and (d) the curvilinear hybrid grid

4.3.2 Turbulent Flat Plate
A numerical benchmark solution computed for a zero pressure gradient, turbulent flat plate for the RANS equations

computed using the Spalart-Allmaras turbulence model [27] is used to evaluate the error and uncertainty estimators in place
of an exact solution. The flat plate has a non-dimensional length L of 2 and the Reynolds number at L = 1 is 5,000,000. The
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Fig. 4. Turbulent flat plate setup and the 69x49 grid

domain and boundary conditions are shown in Fig. 4. The finest grid used for error and uncertainty estimation is 545x385
and is successively coarsened by a factor of two to create a total of five grids. A numerical benchmark was created by Phillips
et al. [21] using the same computational domain and grid topology as the grids used for error and uncertainty estimation.
The numerical benchmark grid dimensions are 2177x1537 nodes and computed using Loci-CHEM. The benchmark solution
was created using the guidelines included in Phillips et al. [21] which require for a benchmark solution that (1) the numerical
benchmark has been shown to be in the asymptotic convergence range and (2) that the code used to generate the benchmark
solution has passed all order of accuracy code verification tests for all options exercised in the benchmark problem. Both
of these conditions were satisfied for the numerical benchmark and documented by Phillips et al. [21]. The numerical
benchmark was developed with the purpose of evaluating discretization error and uncertainty estimates. The error due to
the presence of discretization error in the benchmark solution is estimated by propagating the estimated discretization error
in the numerical benchmark through the discretization error estimate calculations discussed in this paper. The error in error
effectivity index computed using Richardson extrapolation with the formal order of accuracy is about 0.1. The numerical
benchmark discretization error has negligible effect on all other computational grids coarser than the 545x385 grid.

5 Results
5.1 Distance Metric

The global observed order of accuracy, the FS method distance metric, global deviation from the formal order, and
percent of monotonically converging nodes are compared in Fig. 5. The error effectivity index for Richardson extrapolation
using the formal order of accuracy (Eq. 4) for all local solution variables in the test data set is plotted for each distance
metric.

The effectivity index should approach one as the solutions become more asymptotic. For the four distance metrics
considered, an asymptotic solution occurs at zero for the global deviation from the formal order, 100 percent for the percent
of monotonically converging nodes, the formal order of accuracy (two for all cases) for the global order of accuracy, and
P = 1 for the Factor of Safety method parameter. The ideal distance metric should show decreasing scatter in the data
centered about an inverse effectivity index of one as the data approaches the asymptotic range. Shown in Fig. 5, the global
deviation from the formal order, percent of monotonically converging nodes, and the global order of accuracy resemble to
varying degrees the expected trend. The distance metric P̄ does not show a clear trend. This is because pFS is not limited to
a maximum of p f , and results in the average of P roughly clustering around P̄ = 1. Of the three other distance metrics that
have the particular trend sought, the global deviation from the formal order shows the clearest trend in inverse effectivity
index with significantly reduced scatter as the distance metric approaches zero and no scatter at ∆ p̄ = 0 which is preferred.
The percent of monotonically converging nodes and global order of accuracy still have some scatter at asymptotic solution
convergence (i.e. 100 percent monotonically converging nodes and pglb = p f ). The reason that the global deviation from
the formal order performs the best is because orders of accuracy greater than one and less than one are treated as equally far
from the asymptotic range. This treatment is prefered since observed orders of accuracy greater than the formal order and
less than the formal order are equally non-asymptotic. The difference is that the signs of the higher order terms allow for
error cancelation or error addition. For an observed order of accuracy greater than the formal order, the first two terms of the
higher order terms will tend to have the same sign, and for orders of accuracy lower than the formal order, the first two terms
will tend to have the opposite signs. The percent of monotonically converging nodes is good but not the best choice because
observed orders of accuracy greater than the formal order are considerably non-asymptotic but are counted as asymptotic
allowing for a misleading more asymptotic distance metric. In a similar manner, the calculation of the global observed order
limits orders of accuracy greater than the formal order to equal the formal order. This again allows for a misleading more
asymptotic distance metric. Comparison of the distance metric with the uncertainty effectivity index and conservativeness
showed similar trends.
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Fig. 5. Comparison of the effectivity index for Richardson extrapolation versus various distance measures

5.2 Discretization Error Estimates
Discretization error estimators are compared in Fig. 6 comparing Richardson extrapolation using a) the formal order of

accuracy, b) the observed order of accuracy, c) observed order of accuracy modifications pOR, d) globally averaged observed
order of accuracy, e) observed order of accuracy modifications pCF , f) and the discretization error estimator proposed by
Xing and Stern [8]. The least-square fit confidence bounds, computed as described in Section 3.3, for all seven applications
are compared for a total of about 1.6 million error estimates combined into a total of 777 error effectivity index data points.
The use of Richardson extrapolation using the formal order of accuracy is the most accurate error estimator where the data
is symmetric about an inverse effectivity index of one for the full range of ∆p̄. The scatter in the data decreases resulting
in more reliable discretization error estimates as solutions approach the asymptotic range (i.e. as ∆p̄ approaches zero). The
other five error estimators use an observed order of accuracy which results in an overestimate of the discretization error due
to the observed order of accuracy factor of safety. The observed order factor of safety refers to the implicit factor of safety
due to the use of the observed order of accuracy ε̄h(p) = FSpε̄h(p f ) where FSp = rp f −1

rp−1 . (Note that FSp is the inverse of
CF .) The use of the different orders of accuracy results in varying differences in the inverse effectivity index. There are
negligible differences between error estimates which use p̂, pOR, and pCF . The use of pglb results in slightly more accurate
error estimates compared to εh(p̂) as well as reduced scatter. The reduced scatter is due to use of a single value of order
of accuracy and observed order factor of safety instead of point-wise variations in the observed order. No error estimator
was given for the CF method; however, Richardson extrapolation using the observed order of accuracy pCF is included to
compare the effects of not limiting the observed order of accuracy to the formal order. There is no noticable difference
between limiting the observed order to the formal order or not limiting the observed order. The same order of accuracy is
used for the FS method as the CF method; however, the use of P compensates for the underestimate of discretization error
when pFS > p f and the overestimate of discretization error when pFS < p f . The use of P results in more accurate error
estimates compared to εh(p̂) and is the second most accurate error estimator compared.

5.3 Discretization Uncertainty Estimation
The inverse uncertainty effectivity index and the conservativeness are shown in Fig. 7 for the discretization uncertainty

estimators. The inverse uncertainty effectivity index for the GCI-2g method is the same as the error effectivity index for
ε̄h(p f ) (Fig. 6a), except that it is shifted by a factor of a third due to the presence of the factor of safety (FS = 3). Similarly,
the other uncertainty estimators also approach their inverse factor of safety as p̂→ p f . The use of the observed order of
accuracy results in a similar trend as the discretization error estimators which overestimate the uncertainty for non-asymptotic
solutions. The GCI-OR, CF, and FS method all have nearly identical observed orders of accuracy. The differences in these
methods is due almost exclusively to the choice of factor of safety. The most conservative uncertainty estimators are the
LSQ methods which are very similar; however, the uncertainty effectivity index for the LSQ-10 method is significantly
improved over the LSQ-09 method and results in a much more accurate uncertainty estimate. The LSQ-10 uncertainty
estimator still overestimates the uncertainty considerably more than any of the other uncertainty estimators except the LSQ-
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Fig. 6. Error effectivity indices for discretization error estimators

Fig. 7. Uncertainty effectivity index and conservativeness for discretization uncertainty estimators

09. The FS, GCI-OR, and GCI-2g uncertainty estimators are the next most conservative estimators. The FS and GCI-OR
methods have very similar trends regarding the uncertainty effectivity index but the FS method is slightly more conservative.
The GCI-2g uncertainty estimator is less conservative than both the FS and GCI-OR methods and the uncertainty is also
overestimated for more asymptotic solutions. The variable factor of safety used both by the FS and GCI-OR method offer an
advantage over a constant factor of safety of three at the cost of one additional solution. The next best uncertainty estimator
is the GCI-glb method which does not compare well to the conservativeness goal of 95 percent for solutions far from the
asymptotic range. The poor performance of the method is due primarily to the use of a constant factor of safety of 1.25 where
increasing the factor of safety would significantly improve performance. It is important to note that the use of the global
observed order of accuracy compared to the local observed order of accuracy for the same constant factor of safety improves
the conservativeness for non-asymptotic solutions and results in an uncertainty effectivity index closer to one (results not
shown). The use of a global observed order of accuracy could be used with any of the other uncertainty estimators to likewise
improve both the accuracy and conservativeness. The uncertainty estimator which performs the worst for conservativeness
is the CF method; however, the CF method has an uncertainty effectivity index closest to one as ∆p̄ approaches zero.

To add an additional level of comparison between the conservativeness of each uncertainty estimator, the overall con-
servativeness is computed for every uncertainty estimate included in the study for approximately 1.6 million estimates and
is independent of the distance measure. The results are shown in Table 2 and are sorted from the highest conservativeness to
the lowest. The conservativeness of the absolute value of Richardson extrapolation using the formal order of accuracy is also
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Table 2. Overall conservativeness of each uncertainty estimator

Estimator All Data p̂ > 0.5 only

# Data 1.6 Million 1.3 Million

LSQ-09 97.7% −

FS 97.5% 97.4%

LSQ-10 97.0% −

GCI-OR 95.8% 95.3%

GCI-2g 95.2% 97.0%

GCI-glb 92.6% 92.4%

CF 89.7% 90.3%

|εh(p f )| 49.8% 52.4%

included for comparison and is expected to be 50 percent as discussed by Roache [5] and Oberkampf and Roy [9]. The LSQ,
FS, GCI-OR, and GCI-2g methods all meet the 95 percent conservativeness goal. To show the effects of the modifications
to the observed order of accuracy (setting oscillatory nodes to 0.5 and limiting orders of accuracy to a minimum of 0.5) that
were implemented to estimate the uncertainty at diverging and oscillatory nodes, the uncertainty estimators were applied to
only the data with p̂ > 0.5. This represents about 83 percent of all the data. The FS, GCI-OR, and GCI-glb methods show
a very slight decrease in conservativeness and the CF method shows a very slight increase in conservativeness. The most
significant change is in the GCI-2g method which had an increased conservativeness of almost two percent points making
it one of the better performers with 97 percent conservativeness. The lack of change between including and excluding the
specific data supports our modifications to the uncertainty estimators for oscillatory nodes. Furthermore, it also supports
our hypothesis that local solutions are, in practice, non-asymptotic and uncertainty estimates for monotonically converging
nodes are as reliable as diverging, oscillatory converging or oscillatory diverging nodes.

The CF method was the only uncertainty estimator other than the LSQ methods which specified treatment for oscillatory
nodes given in Eq. 17. All other GCI methods were modified for this study to assign a value of 0.5 to the order of accuracy of
oscillatory nodes to compute an uncertainty estimate. The lower limit of 0.5 was applied to the CF method to compare the two
different treatments of oscillatory nodes. The resulting overall conservativeness for the CF method was 91.5 percent which
is only a slight increase in percent over Eq. 17. There was little change in the overall trends of the uncertainty effectivity
index.

6 Conclusion
Richardson extrapolation-based discretization error and uncertainty estimators were applied to several different appli-

cations with a focus on uncertainty estimation for local solution quantities. The estimators were applied to all coincident
grid nodes including diverging and oscillating nodes. All nodes were included to thoroughly investigate the behavior of
each estimator because it is not always possible to have local solutions in the asymptotic range; however, a conservative
estimate of discretization uncertainty is still desirable, and as demonstrated herein, is possible. The reliability of the error
and uncertainty estimates was quantified using the error effectivity index, the uncertainty effectivity index, and the overall
conservativeness of the uncertainty estimates. The global deviation from the formal order of accuracy was the distance mea-
sure used to correlate the effectivity indices and conservativeness. A total of 777 grid triplets and a total of 1.6 million local
estimates were examined.

Overall there was a general trade-off between the accuracy of the error and uncertainty estimates and the conservative-
ness. The most accurate uncertainty estimator (e.g. effectivity index closest to one) was the CF method but it was also the
least conservative. The LSQ methods were the most conservative but significantly overestimated the uncertainty compared
to the other methods. The LSQ-10 was much more accurate than the LSQ-09 method with nearly identical conservativeness
and should be used instead of the LSQ-09 method. The LSQ-10 and the FS method were very similar in terms of conser-
vativeness. The LSQ-10 method was more conservative for less asymptotic solutions but the overall conservativeness of the
FS method was 0.5 percent better. The FS method was more accurate than the LSQ-10 with an uncertainty effectivity index
closer to one and had significantly less scatter in the metrics. The LSQ and the FS methods perform similarly and either
could be applied successfully for accurate uncertainty estimation; however, the FS method requires only three solutions and
is easier to implement than the LSQ methods which require at least four solutions. If only two solutions are available, the
GCI-2g method should be used as the overall conservativeness met the 95 percent conservativeness goal for this data set and
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has been reliably applied to a wide range of applications.
It was also observed that the use of a global order of accuracy improved the conservativeness and accuracy of the

uncertainty estimator and decreased the scatter in the data in the effectivity index. While the GCI-glb did not perform well
compared to the other uncertainty estimators due to the constant factor of safety of 1.25, the use of a global order of accuracy
for local estimates would improve the overall performance of the other uncertainty estimators considered.

The uncertainty estimators were evaluated using simple Euler and Navier-Stokes solutions which are relatively easy to
reach the asymptotic range. The uncertainty estimators should be evaluated further using more realistic problems; however,
the lack of exact solutions makes the evaluation of the uncertainty estimators more ambiguous and is a current topic of
research.

References
[1] Banks, J. W., Aslam, T., and Rider, W. J., 2008. “On sub-linear convergence for linearly degenerate waves in capturing

schemes”. Journal of Computational Physics.
[2] Roache, P. J., 1994. “Perspective: A method of uniform reporting of grid refinement studies”. J of Fluid Eng, 116(3),

pp. 405–413.
[3] Celik, I. B., Ghia, U., Roache, P. J., Freitas, C. J., Coleman, H. W., and Raad, P. E., 2008. “Procedure for estimation

and reporting of uncertainty due to discretization in cfd applications”. J of Fluid Eng, 130(7), pp. 78001–78005.
[4] Cosner, R. R., Oberkampf, W. L., Rumsey, C. L., Rahaim, C. P., and Shih, T. I.-P., 2006. AIAA committee on standards

for computational fluid dynamics: Status and plans. AIAA-2006-889.
[5] Roache, P. J., 2009. Fundamentals of Verification and Validation. Hermosa Publishers, Albuquerque, NM.
[6] Logan, R. W., and Nitta, C. K., 2006. “Comparing 10 methods for solution verification, and linking to model valida-

tion”. JACIC, 3, pp. 354–373.
[7] Cadafalch, J., Perez-Segarra, C. D., Consul, R., and Oliva, A., 2002. “Verification of finite volume computations on

steady-state fluid flow and heat transfer”. J Fluid Eng, 124(1), pp. 11–21.
[8] Xing, T., and Stern, F., 2010. “Factors of safety for richardson extrapolation”. J Fluid Eng, 132(6), p. 61403.
[9] Oberkampf, W. L., and Roy, C. J., 2010. Verification and Validation in Scientific Computing. Cambridge University

Press Cambridge.
[10] Stern, F., Wilson, R. V., Coleman, H. W., and Paterson, E. G., 2001. “Comprehensive approach to verification and

validation of cfd simulations - part 1: Methodology and procedures”. J Fluid Eng, 126(4), pp. 793–802.
[11] Phillps, T. S., Derlaga, J. M., and Roy, C. J., 2012. “Numerical benchmark solutions for laminar and turbulent flows”.

AIAA-2012-3074.
[12] Roache, P. J., 2003. Error bars for cfd. AIAA-2003-408.
[13] Wilson, R., Shao, J., and Stern, F., 2004. “Discussion: Criticisms of the correction factor verification method”. J Fluid

Eng, 126(4), pp. 704–706.
[14] Eça, L., and Hoekstra, M., 2002. An evaluation of verification procedures for cfd applications. 24th Symposium on

Naval Hydrodynamics, Fukuoka, Japan, July 8-13.
[15] Eça, L., and Hoekstra, M., 2009. “Evaluation of numerical error estimation based on grid refinement studies with the

method of the manufactured solutions”. Computers and Fluids, 38(8), pp. 1580–1591.
[16] Eça, L., 2010. Uncertainty quantification for cfd. Personal communication.
[17] Ainsworth, M., and Oden, J. T., 2000. A Posteriori Error Estimation in Finite Element Analysis. Wiley, New York.
[18] Phillips, T. S., and Roy, C. J., 2013. “A new extrapolation-based uncertainty estimator for computational fluid dynam-

ics”. AIAA-2013-0260.
[19] Luke, E. A., Tong, X., Wu, J., and Cinnella, P., 2010. Chem 3.2: A finite-rate viscous chemistry solver – the user guide.

Tetra Research Corporation.
[20] Hoekstra, M., and Eça, L., 1998. Parnassos: An efficient method for ship stern flow calculation. Proc. 3rd Osaka

Colloquium, Osaka, Japan, pp. 331-357.
[21] Phillps, T. S., and Roy, C. J., 2011. “Residual methods for discretization error estimation”. AIAA-2011-3870.
[22] Ollivier-Gooch, C., Nejat, A., and Michalak, K., 2009. “Obtaining and verifying high-order unstructured finite volume

solutions to the euler equations”. AIAA Journal, 47(4), pp. 2105–2120.
[23] Satav, V., Hixon, R., Nallasamy, M., and Sawyer, S., 2005. “Validation of a computational aeroacoustics code for

nonlinear flow about complex geometries using ringleb’s flow”. AIAA-2005-2871.
[24] Eça, L., and Hoekstra, M., 2005. Workshops on cfd uncertainty analysis. Maretec, http://maretec.inst.utl.pt.
[25] Veluri, S. P., 2010. “Code verification and numerical accuracy assessment for finite volume cfd codes”. PhD thesis,

Virginia Tech.
[26] Veluri, S. P., Roy, C. J., and Luke, E. A., 2012. “Comprehensive code verification techniques for finite volume cfd

codes”. Comput Fluids, 70(30), pp. 59–72.

16



[27] Rumsey, C. L., Smith, B. R., and Huang, G. P., 2010. “Description of a website resource for turbulence modeling,
verification and validation”. AIAA-2010-4742.

17


