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Directive-based programming of graphics processing units (GPUs) has recently appeared 

as a viable alternative to using specialized low-level languages such as CUDA C and OpenCL 

for general-purpose GPU programming. This technique, which uses “directive” or 

“pragma” statements to annotate source codes written in traditional high-level languages, is 

designed to permit a unified code base to serve multiple computational platforms. In this 

work we analyze the popular OpenACC programming standard, as implemented by the PGI 

compiler suite, in order to evaluate its utility and performance potential in computational 

fluid dynamics (CFD) applications. We examine the process of applying the OpenACC 

Fortran API to a test CFD code that serves as a proxy for a full-scale research code 

developed at Virginia Tech; this test code is used to asses the performance improvements 

attainable for our CFD algorithm on common GPU platforms, as well as to determine the 

modifications that must be made to the original source code in order to run efficiently on the 

GPU. Performance is measured on several recent GPU architectures from NVIDIA and 

AMD (using both double and single precision arithmetic) and the accelerator code is 

benchmarked against a multithreaded CPU version constructed from the same Fortran 

source code using OpenMP directives. A single NVIDIA Kepler GPU card is found to 

perform approximately 𝟐𝟎 × faster than a single CPU core and more than 𝟐 × faster than a 

16-core Xeon server. An analysis of optimization techniques for OpenACC reveals cases in 

which manual intervention by the programmer can improve accelerator performance by up 

to 30% over the default compiler heuristics, although these optimizations are relevant only 

for specific platforms. Additionally, the use of multiple accelerators with OpenACC is 

investigated, including an experimental high-level interface for multi-GPU programming 

that automates scheduling tasks across multiple devices. While the overall performance of 

the OpenACC code is found to be satifactory, we also observe some significant limitations 

and restrictions imposed by the OpenACC API regarding certain useful features of modern 

Fortran (2003/8); these are sufficient for us to conclude that it would not be practical to 

apply OpenACC to our full research code at this time due to the amount of refactoring 

required. 
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1. Introduction 

Many novel computational architectures have become available to scientists and engineers in the field of high 

performance computing (HPC) offering improved performance and efficiency through enhanced parallelism. One of 

the better known is the graphics processing unit (GPU), which was once a highly specialized device designed 

exclusively for manipulating image data but has since evolved into a powerful general purpose stream processor—

capable of high computational performance on tasks exhibiting sufficient data parallelism. The high memory 

bandwidth and floating point throughput available in modern GPUs makes them potentially very attractive for 

computational fluid dynamics (CFD), however the adoption of this technology is hampered by the requirement that 

existing CFD codes be re-written in specialized low-level languages such as CUDA or OpenCL that more closely 

map to the GPU hardware. Using platform specific languages such as these often entails maintaining multiple 

versions of a CFD application, and given the rapid pace of hardware evolution a more portable solution is desired. 

 Directive-based GPU programming is an emergent technique that has the potential to significantly reduce the 

time and effort required to port CFD applications to the GPU by allowing the re-use of existing Fortran or C code 

bases [1]. This approach involves inserting “directive” or “pragma” statements into source code that instruct the 

compiler to generate specialized code in the areas designated by the programmer; because such statements are 

ignored by compilers when unrecognized, directives should permit an application to be ported to a new platform 

without refactoring the original code base. The particular scheme of directive-based programming examined in this 

work is OpenACC, which is a standard designed for parallel computing that emphasizes heterogeneous platforms 

such as combined CPU/GPU systems. OpenACC defines an API that will appear familiar to any programmer who 

has used OpenMP, making it straightforward for domain scientists to adopt. Additionally, OpenACC is relatively 

well supported, with major compiler vendors such as Cray and PGI providing implementations. 

 One of the principle objectives of this project was to evaluate OpenACC for use in an in-house CFD application 

called SENSEI, which is a multi-block, structured-grid, finite-volume code written in Fortran 03/08 that currently 

uses a combination of OpenMP and MPI for parallelism [2, 3]. SENSEI is designed to solve the compressible 

Navier-Stokes equations in three dimensions using a variety of time integration schemes and subgrid-scale 
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(turbulence) models. It has a substantial code base that incorporates several projects into a single CFD framework—

due to this complexity, applying OpenACC to SENSEI was anticipated to be a labor-intensive undertaking that 

could have unforeseen complications. Furthermore, because SENSEI is fully verified and being actively extended 

for ongoing research projects, major alterations to the code structure were seen as undesirable unless the 

performance benefits were very significant. It was therefore decided to first test OpenACC on a simpler surrogate 

code with the aim of uncovering any major difficulties or incompatibilities before work began on the full-scale code 

and permitting an easier analysis of various refactoring schemes. This proxy code, which is discussed in more detail 

in Section 2, was derived from a preexisting Fortran finite-difference code written to solve the incompressible 

Navier-Stokes equations. Its simplicity, small size and limited scope made major revisions and even creating 

multiple experimental versions feasible within a limited timeframe, yet the data layout, code structure and numerical 

algorithm are still representative of SENSEI and many other structured-grid CFD codes. 

1.1. GPU Programming Considerations 

 Modern graphics processors derive most of their computational performance from an architecture that is highly 

specialized for data parallelism, sacrificing low-latency serial performance in favor of higher throughput. They are 

sometimes referred to as massively parallel because the hardware is capable of executing (and maintaining context 

for) thousands of simultaneous threads, which is two orders of magnitude greater than contemporary CPUs [4, 5]. 

To efficiently express this level of concurrency, common general-purpose GPU (GPGPU) languages (such as 

NVIDIA CUDA) use programming models that are intrinsically parallel, where user-specified threads are applied 

across an abstract computational space of parallel elements corresponding to the hierarchy of hardware resources 

(e.g., CUDA defines “thread blocks” that map to the “streaming multiprocessors”, and the thread blocks contain 

parallel “threads” that map to the CUDA cores) [5]. This fundamental difference between GPGPU programming 

languages and the languages traditionally used in CFD, such as C and Fortran, makes porting existing codes to GPU 

platforms a non-trivial task.  

 Current generation GPUs are strictly coprocessors and require a host CPU to control their operation. On most 

HPC systems, the CPU and GPU memory spaces are physically separate and must communicate via data transfers 

across a PCIe (Peripheral Component Interconnect Express) interface, so GPGPU programming models include 

functions for explicitly managing data movement between the host (CPU) and device (GPU) [5, 6]. Contemporary 

AMD and NVIDIA devices usually implement either the PCIe 2.0 or 3.0 standards, which permit maximum 
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bandwidths of approximately 8GB/s or 16GB/s respectively. This is an order of magnitude lower than the RAM 

bandwidths typically seen in HPC, so for data-intensive applications the PCIe connection can easily become a 

bottleneck—in general, it is best practice to minimize data transactions between the GPU and host [5].  

1.2. The OpenACC Programming Model 

 OpenACC is a standard designed to enable portable, parallel programming of heterogeneous architectures such 

as CPU/GPU systems. The high-level API is based around directive or pragma statements (in Fortran or C/C++ 

respectively) that are used to annotate sections of code to be converted to run on an accelerator or coprocessor (e.g., 

a GPU). In Fortran, these directives take the form of comment-statements similar to those used in OpenMP [6]: 

 

!$acc directive-name [clause [[,] clause]…] new-line 

 

As with OpenMP, the directives are used to designate blocks of code as being suitable for parallelization. Ideally, no 

modification of the original source code is necessary—within an appropriate region the compiler can recognize data 

parallelism in sequential structures, such as loops, and automatically convert this into equivalent functionality in an 

accelerator specific language.  

 The programming model defines two main constructs that are used to indicate parallel regions in a code: parallel 

and kernels. Each type of region can be entered via the respective “!$acc parallel” or “!$acc kernels” 

statement, and all operations contained within will be mapped to the accelerator device. The difference between the 

two lies in how program statements such as loop-nests are translated into accelerator functions. A parallel region 

represents a single target parallel operation that compiles to a single function on the device, and uses the same 

parallel configuration (e.g., number of threads) throughout. As an example, a parallel statement will correspond to a 

single CUDA kernel on an NVIDIA device, mapping all concurrent operations to the same kernel launch 

configuration. A parallel region requires that the programmer manually identify data-parallel loops using relevant 

clauses, otherwise they will default to sequential operations repeated across the parallel elements of the accelerator. 

This is analogous to the OpenMP parallel directive, which implicitly begins a set of worker threads that redundantly 

execute sequential program statements until a clause indicating a work-sharing loop is reached. By contrast, a 

kernels region can represent multiple target parallel operations and will map each loop-nest to a separate accelerator 

function, meaning that a single kernels construct might compile into multiple CUDA kernels. Manual annotation of 
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loops is optional within a kernels region, as the compiler will attempt to automatically detect data-parallelism and 

generate the most appropriate decomposition for each loop—serial sections will default to serial accelerator 

functions [6].  

 OpenACC uses an abstract model of a target architecture that consists of three levels of parallelism: gang, 

worker and vector. Each level comprises one or more instances of the subsequent levels, meaning each gang will 

contain at least one worker which is itself divided into vector elements. The actual mapping from this representation 

into a lower-level accelerator programming model is specific to each target platform, so by default the 

decomposition of loop-nests is made transparent to the programmer. OpenACC does provide clauses permitting the 

user to override the compiler analysis and manually specify the gang, worker and vector arrangement—with 

appropriate knowledge of the target hardware, this can be used as a means of platform-specific optimization. On 

NVIDIA GPUs it is usual that the gang dimension will correspond to the number of CUDA thread-blocks while the 

worker and/or vector elements correspond to the threads within each block, so it is possible to use these clauses to 

specifically define a kernel launch configuration [7]. As will be discussed further in Section 4.2, this can have a 

significant effect on the performance of OpenACC code. 

On heterogeneous platforms in which the host and device memory spaces are separate (which includes most 

contemporary GPUs) any data structures accessed within an accelerator region will be implicitly copied onto the 

device on entry and then back to the host when the region terminates. This automatic data management is 

convenient, but in many cases it is much less efficient than allowing the data to persist on the device across multiple 

kernel calls. For this reason, the OpenACC API also defines a data construct along with an assortment of data 

clauses that permit manual control over device memory. The data region behaves similarly to an accelerator region 

with regards to data movement, but it can be used to wrap large blocks of non-accelerator code to manage data 

across multiple accelerator regions. Using the various data clauses that can be appended to the accelerator and data 

directives, users can designate data structures to be copied on or off of the accelerator, or allocated only on the 

device as temporary storage. There is also an update clause that can be used within a data region to synchronize the 

host and device copies at any time. 



Accepted for Publication in Computers and Fluids, March 2015 

 
 

 

6 

2. CFD Code 

 The CFD code investigated in this paper solves the steady-state incompressible Navier-Stokes (INS) equations 

using the artificial compressibility method developed by Chorin [8]. The INS equations are a nonlinear system with 

an elliptic continuity equation that imposes a divergence free condition on the velocity field. In 𝑁 dimensions, there 

are 𝑁 + 1 degrees of freedom ( N velocity components and pressure ). Letting 𝜌 be the density constant and 𝜈 =

𝜇/𝜌 be the kinematic viscosity, the complete system takes the familiar form below. 

 

 𝜕𝑢𝑗

𝜕𝑥𝑗

= 0 

 

 

(1) 

 𝜕𝑢𝑖

𝜕𝑡
+ 𝑢𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗

+
1

𝜌

𝜕𝑝

𝜕𝑥𝑖

− 𝜈
𝜕2𝑢𝑖

𝜕𝑥𝑗𝜕𝑥𝑗

= 0 
 

(2) 

 

The artificial compressibility method transforms this INS system into a coupled set of hyperbolic equations by 

introducing a “pseudo-time” pressure derivative into the continuity equation. Since the objective is a steady state 

solution, the “physical” time in the momentum equations can be equated with the pseudo-time value and the 

following system of equations will result: 

 1

𝛽2

𝜕𝑝

𝜕𝑡
+  

𝜕𝑢𝑗

𝜕𝑥𝑗

= 0 

 

 

(3) 

 𝜕𝑢𝑖

𝜕𝑡
+ 𝑢𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗

+
1

𝜌

𝜕𝑝

𝜕𝑥𝑖

− 𝜈
𝜕2𝑢𝑖

𝜕𝑥𝑗𝜕𝑥𝑗

= 0 
 

(4) 

 

In Equation (3), 𝛽 represents an artificial compressibility parameter which may either be defined as a constant over 

the entire domain or derived locally based on flow characteristics; the INS code does the latter, using the local 

velocity magnitude 𝑢𝑙𝑜𝑐𝑎𝑙  along with user defined parameters 𝑢𝑟𝑒𝑓 (reference velocity) and 𝑟𝜅  to define 𝛽2 =

max(𝑢𝑙𝑜𝑐𝑎𝑙
2  , 𝑟𝜅 ∗ 𝑢𝑟𝑒𝑓

2 ). The artificial viscosity based INS equations can be solved using any numerical methods 
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suitable for hyperbolic systems—by iteratively converging the time derivatives to zero, the divergence free 

condition of the continuity equation is enforced and the momentum equations will reach steady state.  

2.1. Discretization Scheme 

 The spatial discretization scheme employed in the INS code is a straightforward finite difference method with 

second order accuracy (using centered differences). To mitigate the odd-even decoupling phenomenon that can 

occur in the pressure solution, an artificial viscosity term (based on the fourth derivative of pressure) is introduced to 

the continuity equation, resulting in the following modification to Equation (3). 

 

 1

𝛽2

𝜕𝑝

𝜕𝑡
+  

𝜕𝑢𝑗

𝜕𝑥𝑗

− 𝜆𝑗Δ𝑥𝑗𝐶𝑗

𝜕4𝑝

𝜕𝑥𝑗
4 = 0 

 

 

(5) 

In this format, the 𝐶𝑗 terms represent user adjustable parameters for tuning the amount of viscosity applied in each 

spatial dimension (typical values ~0.01), while Δ𝑥𝑗  represents the corresponding local grid spacing. The 𝜆𝑗 terms 

are determined from the local flow velocity as follows. 

 
𝜆𝑗 =

1

2
(|𝑢𝑗| + √𝑢𝑗

2 + 4𝛽2) 

 

 

(6) 

 Note that in two dimensions, the fourth derivatives of pressure will require a 

9-point stencil to maintain second order accuracy, while all other derivatives used 

in the solution need at most a 5-point stencil. These two dimensional stencils 

necessitate 19 solution-data loads per grid node or approximately 152B (76B) 

when using double (single) precision.  For stencil algorithms such as this, which 

exhibit spatial locality in their data access patterns, much of the data can be 

reused between adjacent grid nodes via caching so that the actual amount of data 

loaded from main memory is significantly less.  Effective use of cache or GPU 

shared memory (either by the programmer or compiler) is an important 

performance consideration that is discussed further in Section 4. The complete 

numerical scheme uses approximately 130 floating point operations per grid node, including three floating point 

Figure 1. Illustration of a 9-

point finite-difference stencil. 

Required to approximate the 

fourth derivatives of pressure 

with second order accuracy. 

 



Accepted for Publication in Computers and Fluids, March 2015 

 
 

 

8 

division operations and two full-precision square roots. Boundary conditions are implemented as functions 

independent from the interior scheme, and in cases where approximation is required (such as pressure extrapolation 

for a viscous wall boundary) second-order accurate numerical methods are employed. 

 The time-integration method used for all of the benchmark cases was forward-Euler. While the original INS code 

was capable of more efficient time-discretization schemes, a simple explicit method was selected (over implicit 

methods) because it shifts the performance focus away from linear equation solvers and sparse-matrix libraries and 

onto the stencil operations that were being accelerated.  

 

 

2.2. Code Verification and Benchmark Case 

 The INS code was verified using the method of manufactured solutions (MMS) with an analytic solution based 

on trigonometric functions [9]. The code was re-verified after each major alteration, and it was confirmed that the 

final OpenACC implementation displayed the same level of discretization error and observed order of accuracy as 

the original Fortran version. As an additional check, the solutions to the benchmark case (described below) were 

compared between the versions and showed no discrepancy beyond round-off error. 

 Throughout this paper the INS code is used to run the familiar lid-driven cavity (LDC) problem in 2-dimensions, 

which is a common CFD verification case that also makes a good performance benchmark. All of the benchmark 

cases were run on a fixed-size square domain, with a lid velocity of 1 𝑚/𝑠,  Reynolds number of 100 and density 

constant 1 𝑘𝑔/𝑚3. The computational grids used for the simulations were uniform and Cartesian, ranging in size 

from 128 × 128 to 8192 × 8192 nodes. A fully converged solution is displayed in Figure 2. 

 To evaluate relative performance of different versions of the code, the wall-clock time required for the 

benchmark to complete a fixed number of time-steps (1000) was recorded. Then, to make the results easier to 

compare between dissimilar grid sizes, this wall-clock time was converted into a GFLOPS (billion floating point 

operations per second) value based on the known number of floating point operations used for the calculations at 

each grid point.  The GFLOPS metric is used in all figures and speedup calculations in subsequent sections, and is 

equivalent to a constant (130) multiplied by the rate of nodes per second computed.  Note that division and square-

root are counted as single floating-point operations in this metric, even though these are disproportionately slow on 

all the CPU and GPU architectures tested [5, 10].  Also note that, due to the smaller stable time-step, 1000 iterations 
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results in a less converged solution for larger grid sizes than the smaller ones; this was considered acceptable for our 

purposes because computational performance was observed to be independent of the state of the solution (i.e., a 

nearly converged solution runs at the same rate as an initialized solution). 

 

3. Preliminary Code Modifications 

Before attempting to migrate the INS code to the GPU, some general high-level optimizations were investigated. 

These were simple modifications to the Fortran code that required no language extensions or specialized hardware 

aware programming to implement, but yielded performance improvements across all platforms. Some of these 

alterations also reduced the memory footprint of the code, which permitted larger problems to fit into the limited 

GPU RAM. Additionally, the layouts of the main data structures were revised to permit contiguous access on the 

GPU (and other SIMD platforms). Note that although adjustments were made to the implementation, no alterations 

were made to the mathematical algorithm in any version of the INS code. 

3.1. Reducing Memory Traffic   

 The most successful technique for reducing data movement was the removal of temporary arrays and 

intermediate data sets wherever possible by combining loops that had only local dependencies. As an example, the 

original version of the INS code computed an artificial viscosity term at each node in one loop, stored it in an array, 

 
Figure 2. Horizontal velocity component and streamlines for a converged solution of 

the LDC benchmark. 
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and then accessed that array at each node in a separate residual calculation loop. By “fusing” the artificial viscosity 

loop into the residual loop, and calculating the artificial viscosity when needed at each node, it was possible to 

completely remove the artificial viscosity array and all associated data access.  

 In the INS finite-difference scheme a total of three performance-critical loops could be fused into one (artificial 

viscosity, local maximum time-step and residual) which resulted in an overall performance increase of 

approximately 2x compared to the un-optimized version (see Figure 3). It should be noted that fusing loops in this 

manner is not always straightforward for stencil codes since the stencil footprints may differ, meaning the domains 

or bounds of the loops are not the same. In this particular case, the artificial viscosity, local time-step and residual 

stencils were 9-point, 1-point and 5-point respectively, which necessitated “cleanup” loops along the boundaries and 

slightly increased the complexity of the code. It was also not possible to fuse all of the loops in the code because 

some operations, such as the pressure-rescaling step, were dependent on the output of preceding operations over the 

whole domain.  

 An additional modification made to decrease memory traffic was to replace an unnecessary memory-copy with a 

pointer-swap. The INS code includes multiple time integration methods, the simplest being an explicit Euler 

scheme. This algorithm reads solution data stored in one data structure (solution “A”) and writes the updated data to 

a second structure (solution “B”). In the original version, after solution B was updated, the data was copied from B 

back to A in preparation for the next time step. Obviously the same functionality can be obtained by swapping the 

data structures through a pointer exchange, thus avoiding the overhead of a memory-copy. The pointer swap was 

trivial to implement and resulted in an additional speedup of approximately 25% (Fig. 3). This could also be 

effective in more complex time integration algorithms that require storage of multiple solution levels, such as 

multistage Runge-Kutta methods, although the speedup may not be as significant. 
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3.2. Data Structure Modification: AOS to SOA 

 One of the more extensive alterations made to the INS code when preparing for OpenACC involved revising the 

layout of all data structures to ensure contiguous access patterns for SIMD hardware. The main solution data in the 

code comprises a grid of nodes in two spatial dimensions with three degrees of freedom (DOF) per node 

corresponding to the pressure and two velocity components at each grid location. In the original version this data 

was arranged in an “array-of-struct” (AOS) format in which all three DOF were consecutive in memory for each 

node—meaning accessing a given DOF (e.g., pressure) for a set of multiple consecutive nodes produced a non-unit-

stride (non-contiguous) access pattern. To permit efficient SIMD loads and stores across sequential grid nodes the 

data structure was altered to a “struct-of-array” (SOA) format, in which it was essentially broken into three separate 

two 2D arrays, each containing a single DOF over all the nodes (Figure 4). Contiguous memory transactions are 

usually more efficient on SIMD hardware because they avoid resorting to scatter-gather addressing or shuffling of 

vector operands; both Intel and NVIDIA recommend the SOA format for the majority of array data access [5, 10].  

 

 

 

 
Figure 3. High-level optimizations applied to INS Fortran code, cumulative from left 

to right. CPU performance on LDC benchmark, 512x512 grid. Dual-socket Xeon x5355 

workstation, 8 threads / 8 cores (note that this is an older model than the Nehalem 8-core 

CPU benchmarked in Section 4.5). 
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 Figure 4. Illustration of the “array-of-struct” and “struct-of-array” layouts for a sequence of 3 grid nodes in 

linear memory (3-DOF per node). Red cells represent access of the pressure field for three consecutive nodes. 

 

4. Porting to the GPU with OpenACC 

 Because the INS code was being used to test potential enhancements to a full-scale CFD research code, it was 

important to examine not just performance metrics but the entire procedure involved when using the OpenACC API. 

The objective here was to evaluate its practicality for use with complex CFD applications, including assurance that 

OpenACC would not require major alterations to the original source code that might complicate maintenance or 

degrade the performance on the CPU. It was also desirable that OpenACC work well with modern Fortran features 

and programming practices, including object-oriented extensions such as derived types [2, 11]. 

 The OpenACC code was constructed from the branch incorporating the high-level optimizations and data-

structure refactoring described in Section 3, so the memory layout was already configured for contiguous access. 

The next task involved experimenting with OpenACC data clauses to determine the optimal movement of solution 

data between host and device. As expected, best efficiency was observed when the entire data structure was copied 

onto the GPU at the beginning of a run and remained there until all iterations were complete, thus avoiding frequent 

large data transfers across the PCIe bus. Maintaining the solution data on the GPU was accomplished by wrapping 

the entire time-iteration loop in a “!$acc data” region, and then using the “present” clause within the 

enclosed subroutines to indicate that the data was already available on the device. If the data were needed on the 

host between iterations (to output intermediate solutions, for example) the “!$acc update” directive could be 

used in the data-region to synchronize the host and device data structures, however this practice was avoided 

whenever possible as it significantly reduced performance (updating the host data on every iteration increased 

runtime by an order of magnitude). The only device to host transfers strictly required between iterations were the 

norms of the iterative residuals, which consisted of three scalar values (one for each primitive variable) that were 

needed to monitor solution convergence. Small transactions were generated implicitly by the compiler whenever the 
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result of an accelerator reduction was used to update another variable; these were equivalent to synchronous 

cudaMemcpy calls of a single scalar value.  

 For the 2D INS code, which has a single-block grid structure and only required two copies of the solution for 

explicit time integration, problems with over 200 million double-precision DOF fit easily into the 5-6GB of RAM 

available on a single compute card. This was aided by the reduced memory footprint that the optimizations in 

Section 3.1 provided; if the temporary arrays had not been removed, the total memory used would be approximately 

30% greater. Codes with more complicated 3D data structures, more advanced time integration schemes and/or 

additional source terms would likely see fewer DOF fit into GPU memory, so either data would have to be 

transferred to and from host memory on each iteration or multiple GPUs would be needed to run larger problems. 

 Ideally, applying OpenACC directives to existing software should be possible without any modification to the 

original source code; however, we encountered two instances where restrictions imposed by the API forced some 

refactoring. One case stemmed from a requirement (of OpenACC 1.0) that any subroutine called within an 

accelerator region be inlined, which in Fortran means that the call must satisfy all the criteria for automatic inlining 

by the compiler [6]. For the INS code this was merely inconvenient, necessitating manual intervention where one 

subroutine was causing difficulty for the PGI 13.6 compiler, however this inlining requirement also has the 

significant consequence of prohibiting function pointers within accelerator regions. Function pointers form the basis 

of runtime polymorphism in object-oriented languages such as C++ and Fortran 2003 (e.g., virtual methods, abstract 

interfaces) which can be very useful in practical CFD applications—for example, SENSEI uses such capabilities 

present in Fortran 2003 to simplify calling boundary condition routines [2].  Applications that use these language 

features would need to be rewritten to work with OpenACC, possibly by replacing polymorphic function calls with 

complicated conditionals. Even in the newer OpenACC 2.0 standard (which relaxes the requirements on function 

inlining) there is no support for function pointers in accelerator code [12], and although CUDA devices do support 

the use of function pointers [5] this is not necessarily true for every supported accelerator platform, so it seems 

likely that OpenACC users will have to work with this restriction for now. 

 Another inconvenience for modern Fortran programs is the prohibition of allocatables as members of derived 

types. Within an accelerator region, the versions of the PGI compiler that we tested did not permit accessing 

allocatable arrays that were part of a user-defined type, although arrays consisting of user-defined types were 

allowed (Figure 5). This is unfortunate because using a derived type to hold a set of arrays is a convenient method of 
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expressing the SOA data layout, which is better for contiguous memory access on the GPU. In the relatively simple 

INS code this was easy to work around, but in the full scale research code derived types are used extensively to 

manage allocated data structures, so applying OpenACC would entail more refactoring [2]. 

 

 

   

 

4.1. OpenACC Performance 

 In this section the computational performance of the OpenACC code is evaluated on three models of NVIDIA 

GPU representing two distinct microarchitectures—the specifications of the test devices are presented in Table A1 

of the Appendix. The compiler used for these test cases was PGI 13.6, which implements the OpenACC 1.0 

standard. This version was only capable of generating accelerator code for CUDA enabled devices, limiting the 

selection of hardware to that made by NVIDIA; in Section 4.4 a newer version (PGI 14.1) is also evaluated which is 

capable of compiling for AMD devices, and the code is run on AMD 7990 and 7970 cards. Compilation was carried 

out using the flags “-O4 -acc -Mpreprocess -Minfo=accel -mp -Minline” set for all test runs. No 

additional architecture specific flags or code modifications were used—the PGI compiler was capable of 

automatically generating binaries for CUDA compute capability 1.x, 2.x and 3.x devices. 

 A check of the accelerator-specific compiler output (generated with the “-Minfo=accel” flag) indicated that 

shared memory was being used to explicitly cache the solution data around each thread-block. The statement 

“Cached references to size [(x+4)x(y+4)x3] block” corresponds correctly to the dimensions 

needed for the 9-point finite difference stencil in the interior kernel, however the exact shared memory layout and 

access pattern cannot be determined without direct examination of the generated CUDA code. As shown by the red 

lines in Figure 6, preliminary benchmark results displayed steady high performance on medium and large grid sizes 

with declining performance as problem size decreased—this could be the result of kernel call overhead or less 

efficient device utilization on the smallest grids. These results were obtained using the default OpenACC 

configuration; as discussed in the next section, this performance can in some cases be improved upon through 

tunable parameters that are part of the OpenACC API (Figure 6, green lines). 

!AOS: permitted in accelerator regions 
  Velocity(i,j)%V1 = 0.0_dp 
  Velocity(i,j)%V2 = 0.0_dp 

!SOA: not permitted in accelerator regions 
  Velocity%V1(i,j) = 0.0_dp 
  Velocity%V2(i,j) = 0.0_dp 
 

Figure 5. Example AOS and SOA derived types. Allocated arrays of derived types are 

permitted (left), but types containing allocated arrays are not (right).   
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Figure 6. Double-precision performance of LDC benchmark on NVIDIA C2075 (left) and K20x (right). The 

red line indicates the default OpenACC kernel performance, while the green line indicates the maximum 

performance attained through tuning with the vector clause. The K20c results are not pictured, but are 

approximately 12% lower than the K20x for all grid sizes.  

 

4.2. Tuning OpenACC 

 The OpenACC standard is designed to be transparent and portable, and provides only a few methods for 

explicitly controlling the generated device code. Notable examples are the gang and vector clauses, which as 

described in Section 1.2 can be used to manually specify the CUDA thread-block and grid dimensions: by default, 

the PGI compiler automatically defines grid and block dimensions based on its analysis of the user code, but this 

behavior can be overridden by inserting gang and vector parameters near the directives annotating loops. On CUDA 

devices, the launch configuration can have a significant influence on kernel performance because it affects the 

utilization of multiprocessor resources such as shared memory and registers, and can lead to variations in 

occupancy. More subtly, changes to the shape of the thread blocks in kernels using shared memory can also affect 

the layout of the shared data structures themselves, which in turn might lead to bank conflicts that reduce effective 

bandwidth [5].  
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Figure 7. Mapping of CUDA thread-blocks to computational domain. (Adapted from [5]) Each CUDA thread-

block maps to a rectangular subsection of the solution grid, with each thread performing independent operations on 

a single grid-node. Altering the x and y dimensions of the thread-blocks can significantly affect performance. 
 

 For the INS code, compiler output indicated that the interior kernel (which was derived from two tightly nested 

loops) defaulted to a grid of 2-dimensional 64x4 thread-blocks, while the boundary scheme used 1-dimensional 

blocks with 128 threads each; this same structure was used for both compute capability 2.x and 3.x binaries.  The 

larger dimension (64) in the interior kernel corresponds to the blockDim.x parameter in CUDA C and was 

mapped by OpenACC to the inner loop, which seems like a reasonable heuristic since this will result in each of the 

eight 32-thread warps accessing data in a contiguous (unit-stride) manner.  To test if this configuration was actually 

optimal for all architectures, the code was modified using the vector clause so that the 2D block dimensions of the 

interior scheme could be specified at compile time. The compiler was permitted to choose the number of blocks to 

launch (gang was not specified) and the entire parameter space was explored for a fixed size problem of 50 million 

DOF. A surprising observation made during this test was that the total number of threads per block was limited to a 

maximum of only 256; larger numbers would still compile, but would generate an error at runtime. This was 

unexpected because the number of threads per block permitted by compute capability 2.0 and greater should be up to 

1024 [5]. Exactly why this limitation exists was never determined—there was no evidence that more than 256 

threads would consume excessive multiprocessor resources (e.g., shared memory), while the runtime error messages 

 

 

Computational Domain 
(n×n finite-difference grid) 
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were inconsistent between platforms and seemed unrelated to thread-block dimensions. It could be speculated that 

there is some “behind the scenes” allocation at work that is not expressed in the compiler output (such as shared 

memory needed for the reduction operations) but this could not be verified.  

 On the Fermi device it was found that the compiler default of 64x4 was not the optimal thread-block size, 

although the difference between default and optimal performance was small. As seen in Figure 8, best double 

precision performance occurs at block sizes of 16x8 and 16x4, both of which yield nearly 48 GFLOPS compared to 

44.6 GFLOPS in the default configuration. This is a difference of less than 8%, so there appears to be little benefit in 

manually tuning the OpenACC code in this instance. For Kepler, a similar optimal block size of 16x8 was obtained, 

however the difference in performance was much more significant: on the K20c, the 64x4 default yielded 68.5 

GFLOPS while 16x8 blocks gave 90.6 GFLOPS, an increase of over 30% (Figure 8). This result illustrates a 

potential tradeoff between performance and coding effort in OpenACC—relying on compiler heuristics does not 

necessarily yield peak performance, however it avoids the complexity of profiling and tuning the code for different 

problem/platform combinations. 

 

  
Figure 8. Double-precision performance vs. thread-block dimensions for a fixed-size LDC benchmark. 

(4097x4097, 50 million DOF). NVIDIA C2075 (left) and K20c (right) 
 

4.3. Single Precision Results 

 The use of single-precision (32-bit) floating point arithmetic has the potential to be much more efficient than 

double-precision on NVIDIA GPUs. Not only is the maximum throughput 2-3x greater for single-precision 
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operations, but 32-bit data types also require only half the memory bandwidth, half the register file and half the 

shared memory space of 64-bit types. In the Fortran code it was trivial to switch between double and single-

precision simply by redefining the default precision parameter used for the real data type; because the INS code 

used the iso_c_binding module for interoperability with C code, the precision was always specified as either 

c_double or c_float [11]. 

 It is beyond the scope of this paper to analyze the differences between double and single precision arithmetic in 

CFD, however for the particular case of the INS code running the LDC benchmark it was observed that single 

precision was perfectly adequate to obtain a converged solution; in fact, there was no discernible difference between 

the double and single precision results beyond the expected round-off error (about 5 significant digits). The LDC 

benchmark uses a uniform grid, which is probably more amenable to lower precision calculations than a grid with 

very large ratios in node spacing (e.g., for a boundary layer), but the result does constitute an example in which 

single precision is effective for incompressible flow calculations. The combination of OpenACC and Fortran made 

alternating between double and single precision versions of the INS code very straightforward. 

 On both the Fermi and Kepler devices the PGI compiler defaulted to the same 64x4 thread-block size that it 

used for the double precision cases, and as before this was found to be suboptimal. As seen in Figure 9, the C2075 

was observed to perform best with a block size of 16x6, attaining almost 17% better performance than default, while 

the K20c saw only a 3% speedup over default at its best size of 32x4. Interestingly, the default configuration on the 

K20c was nearly optimal for single precision but performed poorly for double precision, while the reverse was true 

for Fermi—there was no single block size that provided peak (or near-peak) performance on both architectures for 

both the single and double precision cases. This reiterates the notion that heuristics alone are insufficient for 

generating optimum code on the GPU and illustrates the difficulty of tuning for multiple platforms. 
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Figure 9. Single-precision performance vs. thread-block dimensions for a fixed-size LDC benchmark. 

(4097x4097, 50 million DOF). NVIDIA C2075 (left) and K20c (right) 

The speedups observed with single precision arithmetic were less impressive than expected based on the theoretical 

throughputs given in Table A1. On the C2075, the difference was about 50%, while the K20c saw a speedup of more 

than 100% at the default block size and about 70% for the tuned configuration. These numbers are still significant, 

however, and given the ease with which the code can alternate between double and single precision it is probably 

worth testing to see if the full-scale CFD code achieves acceptable accuracy at lower precision. A comparison of the 

double and single precision results at default and optimal block sizes are displayed in Figure 10.    

 

Tesla C2075 

(Fermi) 
Default 

Block Size 

(GFLOPS) 

Optimal 

Block Size 

(GFLOPS) 

Speedup 

(%) 

Double Precision 

(GFLOPS) 

44.6  47.9  7.4% 

Single Precision 

(GFLOPS) 

64.5  75.4  16.9% 

Speedup 

(%) 

44.6% 57.4%  

 

 

 

 

 

 

 

 

 

Figure 10. Effects of thread-block optimizations and single vs double precision artithmetic on OpenACC 

performance. Fixed-size LDC benchmark: 4097x4097, 50 million DOF.   

Optimal Thread-

block Dimension 

Double 

Precision 

Single 

Precision 

C2075 (Fermi) 16x4 

(16x8) 

16x6 

K20c (Kepler) 16x8 32x4 

Tesla K20c 

(Kepler) 
Default 

Block Size 

(GFLOPS) 

Optimal 

Block Size 

(GFLOPS) 

Speedup 

(%) 

Double Precision 

(GFLOPS) 

68.5  90.6  32.3% 

Single Precision 

(GFLOPS) 

149.2  153.5  2.9% 

Speedup 

(%) 

117.8% 69.4%  
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4.4. Targeting Multiple GPUs and Architectures with OpenACC 

 While OpenACC is designed to provide a portable programming model for accelerators, there are certain 

configurations that still require manual intervention by a programmer. Perhaps the most important of these is the use 

of multiple accelerators. When a region is offloaded with OpenACC, it is offloaded to exactly one device. A number 

of modifications are necessary to allow support for multiple devices, and further to support multiple devices of 

multiple types.  In order to explore this issue, we evaluated our test code with two approaches to spreading work 

across multiple GPUs: we created a version that manually partitions the work and hand-tuned the data transfers and 

also evaluated an extension to OpenACC/OpenMP that automatically provides multi-device support. 

In order to exploit multiple devices when available, the application needs to be structured such that the work can 

be divided into a number of independent workloads, or blocks, much like the more traditional issue with distributed 

computing models such as MPI. Our 2D INS code lends itself to a straightforward decomposition into blocks along 

the y-axis, resulting in contiguous chunks of memory for each block and only boundary rows to be exchanged 

between devices across iterations. The multi-GPU version determines how many blocks are required by using the 

“acc_get_num_devices(<device_type>)” API function provided by OpenACC, but this in and of itself 

presents an issue. While the API is quite simple, the device_type is implementation defined, and the PGI accelerator 

compiler provides no generic device type for “accelerator” or “GPU.” Instead, the options are 

ACC_DEVICE_NVIDIA, ACC_DEVICE_RADEON and ACC_DEVICE_HOST. Since the number of accelerators 

must be known, and there is no generic way to compute it, we check the availability of both NVIDIA and AMD 

Radeon devices, falling back on the host CPU whenever the others are unavailable. 

 Given the number of devices, an OpenMP parallel region creates one thread per device, and sets the device of 

each thread based on its ID. As with the single GPU case, data transfer costs are a concern, so each thread uses a 

data-region to copy in the section of the problem it requires. Unlike the single GPU case, the data cannot all be left 

on each GPU across iterations, since the boundary values all must be copied back to main memory at the end of each 

iteration and exchanged to other GPUs before the beginning of the next. This change incurs both extra 

synchronization between threads, and extra data movement, meaning that the multi-GPU version is less efficient on 

a single device than the single-GPU version described above. To mitigate this, we implemented the transfer to only 

copy the boundary elements back and forth, and to do that asynchronously.  While this does not completely offset 
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the cost, it does lower it considerably.  Mechanisms do exist to transfer these values directly from one GPU to 

another, but they are not exposed through the OpenACC programming model at this time. 

 We evaluated this version of the code with a recently released version of the PGI OpenACC compiler, version 

14.1 with support for both NVIDIA and AMD Radeon GPUs.  The GPU hardware specs are described in Tables A1 

and A2 in the Appendix, and results are presented in Figure 11. Even with a relatively simple decomposition, the 

INS code clearly benefits from the use of multiple GPUs, scaling 3.8 times from one NVIDIA c2070 to four, or 

nearly linear scaling onto four devices. The NVIDIA k20x system performs better than the c2070s, and in fact on a 

single k20x outperform the k20c described earlier by a small margin. The Kepler architecture seems to be materially 

more sensitive to the extra synchronization overhead and the high register usage of the application than the Fermi 

architecture for this code. Finally, the AMD architecture proves to perform extremely well for this kind of 

application, with a single consumer-grade GPU board containing two GPU dies outperforming both of our NVIDIA 

configurations by a relatively wide margin. This is especially unexpected due to the lower theoretical peak floating 

point performance per die on the AMD 7990. Based on our tests, and discussions with PGI engineers, the result 

appears to be due to the simpler architecture of the AMD GPU making it easier to attain close to theoretical peak on 

the hardware, where the NVIDIA GPUs might still perform better with a greater degree of hand-optimization. 

 
Figure 11. Double-precision performance and scaling of multi-GPU LDC benchmark. NVIDIA c2070, NVIDIA 

k20x and AMD Radeon 7990, across number of GPUs for a fixed grid size of 70002. 
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 In addition to our manual version, we also evaluate a version using an experimental multi-GPU interface, called 

CoreTSAR [13].  In essence, CoreTSAR allows users to specify the associations between their computations and 

data, and uses that information to automatically divide the work across devices, managing the splitting, threading 

and data transfer complexities internally.  The resulting implementation is simpler than the manual version evaluated 

above, but not necessarily as tuned.  Figure 12 shows our results with both versions scaling across the four NVIDIA 

Fermi c2070 GPU system.  As you can see from these results, CoreTSAR does in fact scale with the additional 

GPUs, but not as well as the manual version, scaling to only 2.6x rather than nearly 4x for the manual version on 

four GPUs.  The reason appears to be an increase in the cost of the boundary exchange after each step, since 

CoreTSAR requires the complete data set to be synchronized with the host to merge data before sending the updated 

data back out.  As solutions like CoreTSAR mature, we suggest that they focus on offering simple and efficient 

boundary transfer mechanisms to better support CFD applications. 

 

 
Figure 12. Scaling of manual and CoreTSAR scheduled versions of LDC across GPUs. 

 

4.5. Comparisons with CPU performance 

To evaluate the performance benefits of OpenACC acceleration, the results from the GPU benchmarks were 

compared against the INS code re-compiled for multicore x86 CPUs. This represents a unified INS code base 

capable of running on either the CPU or GPU. It is identical to the Fortran+OpenACC code discussed throughout 

Section 4 except that the OpenACC directives are switched off in favor of OpenMP statements (using the 

preprocessor) and the compiler flags are modified appropriately to generate efficient CPU code: “-O4 -Minfo -

Mpreprocess -mp=all -Mvect -Minline”. The compiler used for the CPU case was PGI 13.6, and 

according to the output from the “-Minfo” flag this compiler was able to automatically generate vector instructions 
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(SSE, AVX) for the target CPU platforms.  The same version was also used to generate code for the NVIDIA 

platforms, while version 13.10 was used for the AMD GPU. 

The CPU test hardware consisted of two dual-socket Intel Xeon workstations that were selected to match the 

GPU hardware of comparable generations. Thus there is an 8-core Nehalem workstation to match the Fermi GPUs, 

and a 16-core Sandy Bridge for comparison against the Keplers. More detailed specifications for these test platforms 

are given in the appendix (Table A3). In Figure 13 we compare the maximum double-precision performance attained 

by each platform on large grids (with over 4000×4000 nodes). In Figure 14, the relative speedups of each GPU vs 

the two CPU platforms are shown. 

 

 

 
 Figure 13. Maximum double-precision performance attained on large LDC benchmark cases (over 

4000×4000). Color indicates the compiler and directives used: Blue = PGI 13.6 Fortran/OpenMP;  Red = PGI 13.6 

Fortran/OpenACC;  Black = PGI 13.10 Fortran /OpenACC. (Note that the PGI 13.10 compiler shows slightly 

reduced performance compared to the 14.1 version tested in Section 4.4.) 
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The results presented in Figure 13 represent the best performance attained for each platform on large LDC 

benchmark cases (over 4000 × 4000 nodes); this means that the most optimized versions of the OpenACC code 

from Section 4 were used, not the default. In the case of the CPU (OpenMP) version of the code, the grid size was 

selected carefully to return the best results, because the actual performance varied significantly with the size of the 

grid on the CPU platforms, as illustrated in Figure 15. The precise reasons for this erratic performance are not 

completely understood, but the small oscillations visible in the plot could be the result of variations in the address 

alignment of the solution array columns, which can have an effect on the bandwidth of SIMD load/store operations 

on Intel CPUs [10, 14].  The larger performance drops (such as the 4096 × 4096 grid size) are most likely caused 

by cache conflict misses, which have been shown to have significant performance ramifications for stencil codes on 

x86-64 hardware [15, 16].  A complete analysis of the CPU performance is well beyond the scope of this work, 

however these results are presented here to highlight an important advantage of the software-managed shared 

memory on the GPU, which is free from the effects of cache associativity and shows relatively uniform 

performance.  
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Figure 14. Relative speedup of each GPU platforms vs CPU platforms. (Left) Speedup over 

Sandy Bridge E5-2687W 16-cores. (Right) Speedup over Nehalem X5560 8-cores.  
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  Figure 15. Performance of CPU (OpenMP) code vs grid size. Xeon X5560 workstation, 16T/8C. (Left) All grid 

sizes from 128×128 to 8192×8192, in increments of 128. (Right) Detail of grid sizes above 4096×4096, in 

increments of 1.  

5. Conclusions 

The directive-based OpenACC programming model proved very capable in our test CFD application, permitting 

the creation of an efficient cross-platform source code. Using the implementation of OpenACC present in the PGI 

compiler suite, we were able to construct a portable version of the finite-difference INS code with a unified Fortran 

code base that could be compiled for either x86 CPU or NVIDIA GPU hardware. The performance of this 

application on a single high-end NVIDIA card showed an average speedup of more than 20× vs. a single CPU core, 

and approximately 2.5× when compared to the equivalent OpenMP implementation run on a dual-socket Xeon 

server with 16 cores. Results with multiple GPUs displayed excellent scalability as well, and tests with a version of 

the PGI compiler capable of generating code for AMD GPUs illustrated how an OpenACC application can be 

transparently extended to new accelerator architectures, which is one of the main benefits of directive-based 

programming models. 

It was noted that some non-trivial modifications to the original version of the Fortran INS code were required 

before it would run efficiently on the GPU, particularly alterations to the data structures needed for contiguous 

memory access. These modifications required additional programming effort, but did not harm the CPU 

performance of the INS code—in fact, they appear to have improved CPU performance in some cases (possibly due 

to better compiler vectorization). More significant setbacks were the restrictions imposed by OpenACC 1.0 and the 

PGI compiler on device function calls and derived types containing allocatables, both of which disable very useful 

features of modern Fortran (e.g. function pointers). These limitations were sufficient for us to decide that it would 
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not be productive to apply OpenACC to the Fortran 2003 code SENSEI at this time, as it would require too many 

alterations to the present code structure. We are instead investigating newer directive-based APIs that may 

ameliorate some of these issues, particularly the OpenMP 4.0 standard which promises to support similar 

functionality as OpenACC (on both CPU and GPU platforms) [17].  

 

Appendix 

The specifications of several CPU and GPU platforms are listed in the tables below for reference. 

 

Model Architecture Compute 

Capability 

ECC Memory 

(Size) 

Memory  

(Bandwidth) 

Peak SP 

GFLOPS 

Peak DP 

GFLOPS 

Tesla C2070 Fermi GF110 2.0 Yes 6 GB 144 GB/s 1030 515 

Tesla C2075 Fermi GF110 2.0 Yes 6 GB 144 GB/s 1030 515 

Tesla K20c Kepler GK110 3.5 Yes 5 GB 208 GB/s 3520 1170 

Tesla K20x Kepler GK110 3.5 Yes 6 GB 250 GB/s 3950 1310 

Tesla K40 Kepler GK110 3.5 Yes 12 GB 288 GB/s 4290 1430 

Table A1. NVIDIA GPUs. 

 

Model Architecture ECC Memory 

(Size) 

Memory  

(Bandwidth) 

Peak SP 

GFLOPS 

Peak DP 

GFLOPS 

HD 7970 Southern Islands GCN No 3 GB 264 GB/s 3788 947 

HD 7990 Southern Islands GCN No 3GB (x2) 288 GB/s (x2) 4100 (x2) 947 (x2) 

Table A2. AMD GPUs.  The HD 7970 is a single die version of the HD 7990. 

 

Model Architecture ISA 

Extension 

Threads 

/ Cores 

Clock  

(MHz) 

ECC Memory  

(Bandwidth) 

Peak SP 

GFLOPS 

Peak DP 

GFLOPS 

X5355 Core SSSE3 4/4 2667 Yes 21 GB/s 84 42 

X5560 Nehalem SSE4.2 8/4 3067 Yes 32 GB/s 98 49 

E5-2687W Sandy Bridge AVX 16/8 3400 Yes 51 GB/s 434 217 

Table A3. Intel Xeon CPUs.  Clock frequency represents maximum sustained “turbo” level with all cores active. 

Theoretical GFLOPS were calculated based on these clock frequencies and using the given ISA extensions.  
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