
Accepted for Publication in Computers and Fluids, March 2015

1

Directive-Based GPU Programming for Computational

Fluid Dynamics

Brent P. Pickeringa, Charles W. Jacksonb, Thomas R.W. Scoglandc, Wu-Chun Fengd, Christopher J. Roye

a Virginia Tech Dept. of Aerospace and Ocean Engineering, 215 Randolph Hall Blacksburg,

VA 24061, United States, bpickeri@vt.edu (Corresponding Author)
b Virginia Tech Dept. of Aerospace and Ocean Engineering, 215 Randolph Hall Blacksburg,

VA 24061, United States, cwj5@vt.edu
c Virginia Tech Dept. of Computer Science, 2202 Kraft Drive Blacksburg, VA 24060, United

States, tom.scogland@gmail.com
d Virginia Tech Dept. of Computer Science, 2202 Kraft Drive Blacksburg, VA 24060, United

States, feng@cs.vt.edu
e Virginia Tech Dept. of Aerospace and Ocean Engineering, 215 Randolph Hall Blacksburg,

VA 24061, United States, cjroy@vt.edu

Directive-based programming of graphics processing units (GPUs) has recently appeared

as a viable alternative to using specialized low-level languages such as CUDA C and OpenCL

for general-purpose GPU programming. This technique, which uses “directive” or

“pragma” statements to annotate source codes written in traditional high-level languages, is

designed to permit a unified code base to serve multiple computational platforms. In this

work we analyze the popular OpenACC programming standard, as implemented by the PGI

compiler suite, in order to evaluate its utility and performance potential in computational

fluid dynamics (CFD) applications. We examine the process of applying the OpenACC

Fortran API to a test CFD code that serves as a proxy for a full-scale research code

developed at Virginia Tech; this test code is used to asses the performance improvements

attainable for our CFD algorithm on common GPU platforms, as well as to determine the

modifications that must be made to the original source code in order to run efficiently on the

GPU. Performance is measured on several recent GPU architectures from NVIDIA and

AMD (using both double and single precision arithmetic) and the accelerator code is

benchmarked against a multithreaded CPU version constructed from the same Fortran

source code using OpenMP directives. A single NVIDIA Kepler GPU card is found to

perform approximately 𝟐𝟎 × faster than a single CPU core and more than 𝟐 × faster than a

16-core Xeon server. An analysis of optimization techniques for OpenACC reveals cases in

which manual intervention by the programmer can improve accelerator performance by up

to 30% over the default compiler heuristics, although these optimizations are relevant only

for specific platforms. Additionally, the use of multiple accelerators with OpenACC is

investigated, including an experimental high-level interface for multi-GPU programming

that automates scheduling tasks across multiple devices. While the overall performance of

the OpenACC code is found to be satifactory, we also observe some significant limitations

and restrictions imposed by the OpenACC API regarding certain useful features of modern

Fortran (2003/8); these are sufficient for us to conclude that it would not be practical to

apply OpenACC to our full research code at this time due to the amount of refactoring

required.

mailto:bpickeri@vt.edu
mailto:cwj5@vt.edu
mailto:tom.scogland@gmail.com
mailto:feng@cs.vt.edu

Accepted for Publication in Computers and Fluids, March 2015

2

Keywords: Graphics Processing Unit (GPU), Directive-based programming, OpenACC, Fortran, finite-difference

method

1. Introduction

Many novel computational architectures have become available to scientists and engineers in the field of high

performance computing (HPC) offering improved performance and efficiency through enhanced parallelism. One of

the better known is the graphics processing unit (GPU), which was once a highly specialized device designed

exclusively for manipulating image data but has since evolved into a powerful general purpose stream processor—

capable of high computational performance on tasks exhibiting sufficient data parallelism. The high memory

bandwidth and floating point throughput available in modern GPUs makes them potentially very attractive for

computational fluid dynamics (CFD), however the adoption of this technology is hampered by the requirement that

existing CFD codes be re-written in specialized low-level languages such as CUDA or OpenCL that more closely

map to the GPU hardware. Using platform specific languages such as these often entails maintaining multiple

versions of a CFD application, and given the rapid pace of hardware evolution a more portable solution is desired.

 Directive-based GPU programming is an emergent technique that has the potential to significantly reduce the

time and effort required to port CFD applications to the GPU by allowing the re-use of existing Fortran or C code

bases [1]. This approach involves inserting “directive” or “pragma” statements into source code that instruct the

compiler to generate specialized code in the areas designated by the programmer; because such statements are

ignored by compilers when unrecognized, directives should permit an application to be ported to a new platform

without refactoring the original code base. The particular scheme of directive-based programming examined in this

work is OpenACC, which is a standard designed for parallel computing that emphasizes heterogeneous platforms

such as combined CPU/GPU systems. OpenACC defines an API that will appear familiar to any programmer who

has used OpenMP, making it straightforward for domain scientists to adopt. Additionally, OpenACC is relatively

well supported, with major compiler vendors such as Cray and PGI providing implementations.

 One of the principle objectives of this project was to evaluate OpenACC for use in an in-house CFD application

called SENSEI, which is a multi-block, structured-grid, finite-volume code written in Fortran 03/08 that currently

uses a combination of OpenMP and MPI for parallelism [2, 3]. SENSEI is designed to solve the compressible

Navier-Stokes equations in three dimensions using a variety of time integration schemes and subgrid-scale

Accepted for Publication in Computers and Fluids, March 2015

3

(turbulence) models. It has a substantial code base that incorporates several projects into a single CFD framework—

due to this complexity, applying OpenACC to SENSEI was anticipated to be a labor-intensive undertaking that

could have unforeseen complications. Furthermore, because SENSEI is fully verified and being actively extended

for ongoing research projects, major alterations to the code structure were seen as undesirable unless the

performance benefits were very significant. It was therefore decided to first test OpenACC on a simpler surrogate

code with the aim of uncovering any major difficulties or incompatibilities before work began on the full-scale code

and permitting an easier analysis of various refactoring schemes. This proxy code, which is discussed in more detail

in Section 2, was derived from a preexisting Fortran finite-difference code written to solve the incompressible

Navier-Stokes equations. Its simplicity, small size and limited scope made major revisions and even creating

multiple experimental versions feasible within a limited timeframe, yet the data layout, code structure and numerical

algorithm are still representative of SENSEI and many other structured-grid CFD codes.

1.1. GPU Programming Considerations

 Modern graphics processors derive most of their computational performance from an architecture that is highly

specialized for data parallelism, sacrificing low-latency serial performance in favor of higher throughput. They are

sometimes referred to as massively parallel because the hardware is capable of executing (and maintaining context

for) thousands of simultaneous threads, which is two orders of magnitude greater than contemporary CPUs [4, 5].

To efficiently express this level of concurrency, common general-purpose GPU (GPGPU) languages (such as

NVIDIA CUDA) use programming models that are intrinsically parallel, where user-specified threads are applied

across an abstract computational space of parallel elements corresponding to the hierarchy of hardware resources

(e.g., CUDA defines “thread blocks” that map to the “streaming multiprocessors”, and the thread blocks contain

parallel “threads” that map to the CUDA cores) [5]. This fundamental difference between GPGPU programming

languages and the languages traditionally used in CFD, such as C and Fortran, makes porting existing codes to GPU

platforms a non-trivial task.

 Current generation GPUs are strictly coprocessors and require a host CPU to control their operation. On most

HPC systems, the CPU and GPU memory spaces are physically separate and must communicate via data transfers

across a PCIe (Peripheral Component Interconnect Express) interface, so GPGPU programming models include

functions for explicitly managing data movement between the host (CPU) and device (GPU) [5, 6]. Contemporary

AMD and NVIDIA devices usually implement either the PCIe 2.0 or 3.0 standards, which permit maximum

Accepted for Publication in Computers and Fluids, March 2015

4

bandwidths of approximately 8GB/s or 16GB/s respectively. This is an order of magnitude lower than the RAM

bandwidths typically seen in HPC, so for data-intensive applications the PCIe connection can easily become a

bottleneck—in general, it is best practice to minimize data transactions between the GPU and host [5].

1.2. The OpenACC Programming Model

 OpenACC is a standard designed to enable portable, parallel programming of heterogeneous architectures such

as CPU/GPU systems. The high-level API is based around directive or pragma statements (in Fortran or C/C++

respectively) that are used to annotate sections of code to be converted to run on an accelerator or coprocessor (e.g.,

a GPU). In Fortran, these directives take the form of comment-statements similar to those used in OpenMP [6]:

!$acc directive-name [clause [[,] clause]…] new-line

As with OpenMP, the directives are used to designate blocks of code as being suitable for parallelization. Ideally, no

modification of the original source code is necessary—within an appropriate region the compiler can recognize data

parallelism in sequential structures, such as loops, and automatically convert this into equivalent functionality in an

accelerator specific language.

 The programming model defines two main constructs that are used to indicate parallel regions in a code: parallel

and kernels. Each type of region can be entered via the respective “!$acc parallel” or “!$acc kernels”

statement, and all operations contained within will be mapped to the accelerator device. The difference between the

two lies in how program statements such as loop-nests are translated into accelerator functions. A parallel region

represents a single target parallel operation that compiles to a single function on the device, and uses the same

parallel configuration (e.g., number of threads) throughout. As an example, a parallel statement will correspond to a

single CUDA kernel on an NVIDIA device, mapping all concurrent operations to the same kernel launch

configuration. A parallel region requires that the programmer manually identify data-parallel loops using relevant

clauses, otherwise they will default to sequential operations repeated across the parallel elements of the accelerator.

This is analogous to the OpenMP parallel directive, which implicitly begins a set of worker threads that redundantly

execute sequential program statements until a clause indicating a work-sharing loop is reached. By contrast, a

kernels region can represent multiple target parallel operations and will map each loop-nest to a separate accelerator

function, meaning that a single kernels construct might compile into multiple CUDA kernels. Manual annotation of

Accepted for Publication in Computers and Fluids, March 2015

5

loops is optional within a kernels region, as the compiler will attempt to automatically detect data-parallelism and

generate the most appropriate decomposition for each loop—serial sections will default to serial accelerator

functions [6].

 OpenACC uses an abstract model of a target architecture that consists of three levels of parallelism: gang,

worker and vector. Each level comprises one or more instances of the subsequent levels, meaning each gang will

contain at least one worker which is itself divided into vector elements. The actual mapping from this representation

into a lower-level accelerator programming model is specific to each target platform, so by default the

decomposition of loop-nests is made transparent to the programmer. OpenACC does provide clauses permitting the

user to override the compiler analysis and manually specify the gang, worker and vector arrangement—with

appropriate knowledge of the target hardware, this can be used as a means of platform-specific optimization. On

NVIDIA GPUs it is usual that the gang dimension will correspond to the number of CUDA thread-blocks while the

worker and/or vector elements correspond to the threads within each block, so it is possible to use these clauses to

specifically define a kernel launch configuration [7]. As will be discussed further in Section 4.2, this can have a

significant effect on the performance of OpenACC code.

On heterogeneous platforms in which the host and device memory spaces are separate (which includes most

contemporary GPUs) any data structures accessed within an accelerator region will be implicitly copied onto the

device on entry and then back to the host when the region terminates. This automatic data management is

convenient, but in many cases it is much less efficient than allowing the data to persist on the device across multiple

kernel calls. For this reason, the OpenACC API also defines a data construct along with an assortment of data

clauses that permit manual control over device memory. The data region behaves similarly to an accelerator region

with regards to data movement, but it can be used to wrap large blocks of non-accelerator code to manage data

across multiple accelerator regions. Using the various data clauses that can be appended to the accelerator and data

directives, users can designate data structures to be copied on or off of the accelerator, or allocated only on the

device as temporary storage. There is also an update clause that can be used within a data region to synchronize the

host and device copies at any time.

Accepted for Publication in Computers and Fluids, March 2015

6

2. CFD Code

 The CFD code investigated in this paper solves the steady-state incompressible Navier-Stokes (INS) equations

using the artificial compressibility method developed by Chorin [8]. The INS equations are a nonlinear system with

an elliptic continuity equation that imposes a divergence free condition on the velocity field. In 𝑁 dimensions, there

are 𝑁 + 1 degrees of freedom (N velocity components and pressure). Letting 𝜌 be the density constant and 𝜈 =

𝜇/𝜌 be the kinematic viscosity, the complete system takes the familiar form below.

 𝜕𝑢𝑗

𝜕𝑥𝑗

= 0

(1)

 𝜕𝑢𝑖

𝜕𝑡
+ 𝑢𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗

+
1

𝜌

𝜕𝑝

𝜕𝑥𝑖

− 𝜈
𝜕2𝑢𝑖

𝜕𝑥𝑗𝜕𝑥𝑗

= 0

(2)

The artificial compressibility method transforms this INS system into a coupled set of hyperbolic equations by

introducing a “pseudo-time” pressure derivative into the continuity equation. Since the objective is a steady state

solution, the “physical” time in the momentum equations can be equated with the pseudo-time value and the

following system of equations will result:

 1

𝛽2

𝜕𝑝

𝜕𝑡
+

𝜕𝑢𝑗

𝜕𝑥𝑗

= 0

(3)

 𝜕𝑢𝑖

𝜕𝑡
+ 𝑢𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗

+
1

𝜌

𝜕𝑝

𝜕𝑥𝑖

− 𝜈
𝜕2𝑢𝑖

𝜕𝑥𝑗𝜕𝑥𝑗

= 0

(4)

In Equation (3), 𝛽 represents an artificial compressibility parameter which may either be defined as a constant over

the entire domain or derived locally based on flow characteristics; the INS code does the latter, using the local

velocity magnitude 𝑢𝑙𝑜𝑐𝑎𝑙 along with user defined parameters 𝑢𝑟𝑒𝑓 (reference velocity) and 𝑟𝜅 to define 𝛽2 =

max(𝑢𝑙𝑜𝑐𝑎𝑙
2 , 𝑟𝜅 ∗ 𝑢𝑟𝑒𝑓

2). The artificial viscosity based INS equations can be solved using any numerical methods

Accepted for Publication in Computers and Fluids, March 2015

7

suitable for hyperbolic systems—by iteratively converging the time derivatives to zero, the divergence free

condition of the continuity equation is enforced and the momentum equations will reach steady state.

2.1. Discretization Scheme

 The spatial discretization scheme employed in the INS code is a straightforward finite difference method with

second order accuracy (using centered differences). To mitigate the odd-even decoupling phenomenon that can

occur in the pressure solution, an artificial viscosity term (based on the fourth derivative of pressure) is introduced to

the continuity equation, resulting in the following modification to Equation (3).

 1

𝛽2

𝜕𝑝

𝜕𝑡
+

𝜕𝑢𝑗

𝜕𝑥𝑗

− 𝜆𝑗Δ𝑥𝑗𝐶𝑗

𝜕4𝑝

𝜕𝑥𝑗
4 = 0

(5)

In this format, the 𝐶𝑗 terms represent user adjustable parameters for tuning the amount of viscosity applied in each

spatial dimension (typical values ~0.01), while Δ𝑥𝑗 represents the corresponding local grid spacing. The 𝜆𝑗 terms

are determined from the local flow velocity as follows.

𝜆𝑗 =

1

2
(|𝑢𝑗| + √𝑢𝑗

2 + 4𝛽2)

(6)

 Note that in two dimensions, the fourth derivatives of pressure will require a

9-point stencil to maintain second order accuracy, while all other derivatives used

in the solution need at most a 5-point stencil. These two dimensional stencils

necessitate 19 solution-data loads per grid node or approximately 152B (76B)

when using double (single) precision. For stencil algorithms such as this, which

exhibit spatial locality in their data access patterns, much of the data can be

reused between adjacent grid nodes via caching so that the actual amount of data

loaded from main memory is significantly less. Effective use of cache or GPU

shared memory (either by the programmer or compiler) is an important

performance consideration that is discussed further in Section 4. The complete

numerical scheme uses approximately 130 floating point operations per grid node, including three floating point

Figure 1. Illustration of a 9-

point finite-difference stencil.

Required to approximate the

fourth derivatives of pressure

with second order accuracy.

Accepted for Publication in Computers and Fluids, March 2015

8

division operations and two full-precision square roots. Boundary conditions are implemented as functions

independent from the interior scheme, and in cases where approximation is required (such as pressure extrapolation

for a viscous wall boundary) second-order accurate numerical methods are employed.

 The time-integration method used for all of the benchmark cases was forward-Euler. While the original INS code

was capable of more efficient time-discretization schemes, a simple explicit method was selected (over implicit

methods) because it shifts the performance focus away from linear equation solvers and sparse-matrix libraries and

onto the stencil operations that were being accelerated.

2.2. Code Verification and Benchmark Case

 The INS code was verified using the method of manufactured solutions (MMS) with an analytic solution based

on trigonometric functions [9]. The code was re-verified after each major alteration, and it was confirmed that the

final OpenACC implementation displayed the same level of discretization error and observed order of accuracy as

the original Fortran version. As an additional check, the solutions to the benchmark case (described below) were

compared between the versions and showed no discrepancy beyond round-off error.

 Throughout this paper the INS code is used to run the familiar lid-driven cavity (LDC) problem in 2-dimensions,

which is a common CFD verification case that also makes a good performance benchmark. All of the benchmark

cases were run on a fixed-size square domain, with a lid velocity of 1 𝑚/𝑠, Reynolds number of 100 and density

constant 1 𝑘𝑔/𝑚3. The computational grids used for the simulations were uniform and Cartesian, ranging in size

from 128 × 128 to 8192 × 8192 nodes. A fully converged solution is displayed in Figure 2.

 To evaluate relative performance of different versions of the code, the wall-clock time required for the

benchmark to complete a fixed number of time-steps (1000) was recorded. Then, to make the results easier to

compare between dissimilar grid sizes, this wall-clock time was converted into a GFLOPS (billion floating point

operations per second) value based on the known number of floating point operations used for the calculations at

each grid point. The GFLOPS metric is used in all figures and speedup calculations in subsequent sections, and is

equivalent to a constant (130) multiplied by the rate of nodes per second computed. Note that division and square-

root are counted as single floating-point operations in this metric, even though these are disproportionately slow on

all the CPU and GPU architectures tested [5, 10]. Also note that, due to the smaller stable time-step, 1000 iterations

Accepted for Publication in Computers and Fluids, March 2015

9

results in a less converged solution for larger grid sizes than the smaller ones; this was considered acceptable for our

purposes because computational performance was observed to be independent of the state of the solution (i.e., a

nearly converged solution runs at the same rate as an initialized solution).

3. Preliminary Code Modifications

Before attempting to migrate the INS code to the GPU, some general high-level optimizations were investigated.

These were simple modifications to the Fortran code that required no language extensions or specialized hardware

aware programming to implement, but yielded performance improvements across all platforms. Some of these

alterations also reduced the memory footprint of the code, which permitted larger problems to fit into the limited

GPU RAM. Additionally, the layouts of the main data structures were revised to permit contiguous access on the

GPU (and other SIMD platforms). Note that although adjustments were made to the implementation, no alterations

were made to the mathematical algorithm in any version of the INS code.

3.1. Reducing Memory Traffic

 The most successful technique for reducing data movement was the removal of temporary arrays and

intermediate data sets wherever possible by combining loops that had only local dependencies. As an example, the

original version of the INS code computed an artificial viscosity term at each node in one loop, stored it in an array,

Figure 2. Horizontal velocity component and streamlines for a converged solution of

the LDC benchmark.

Accepted for Publication in Computers and Fluids, March 2015

10

and then accessed that array at each node in a separate residual calculation loop. By “fusing” the artificial viscosity

loop into the residual loop, and calculating the artificial viscosity when needed at each node, it was possible to

completely remove the artificial viscosity array and all associated data access.

 In the INS finite-difference scheme a total of three performance-critical loops could be fused into one (artificial

viscosity, local maximum time-step and residual) which resulted in an overall performance increase of

approximately 2x compared to the un-optimized version (see Figure 3). It should be noted that fusing loops in this

manner is not always straightforward for stencil codes since the stencil footprints may differ, meaning the domains

or bounds of the loops are not the same. In this particular case, the artificial viscosity, local time-step and residual

stencils were 9-point, 1-point and 5-point respectively, which necessitated “cleanup” loops along the boundaries and

slightly increased the complexity of the code. It was also not possible to fuse all of the loops in the code because

some operations, such as the pressure-rescaling step, were dependent on the output of preceding operations over the

whole domain.

 An additional modification made to decrease memory traffic was to replace an unnecessary memory-copy with a

pointer-swap. The INS code includes multiple time integration methods, the simplest being an explicit Euler

scheme. This algorithm reads solution data stored in one data structure (solution “A”) and writes the updated data to

a second structure (solution “B”). In the original version, after solution B was updated, the data was copied from B

back to A in preparation for the next time step. Obviously the same functionality can be obtained by swapping the

data structures through a pointer exchange, thus avoiding the overhead of a memory-copy. The pointer swap was

trivial to implement and resulted in an additional speedup of approximately 25% (Fig. 3). This could also be

effective in more complex time integration algorithms that require storage of multiple solution levels, such as

multistage Runge-Kutta methods, although the speedup may not be as significant.

Accepted for Publication in Computers and Fluids, March 2015

11

3.2. Data Structure Modification: AOS to SOA

 One of the more extensive alterations made to the INS code when preparing for OpenACC involved revising the

layout of all data structures to ensure contiguous access patterns for SIMD hardware. The main solution data in the

code comprises a grid of nodes in two spatial dimensions with three degrees of freedom (DOF) per node

corresponding to the pressure and two velocity components at each grid location. In the original version this data

was arranged in an “array-of-struct” (AOS) format in which all three DOF were consecutive in memory for each

node—meaning accessing a given DOF (e.g., pressure) for a set of multiple consecutive nodes produced a non-unit-

stride (non-contiguous) access pattern. To permit efficient SIMD loads and stores across sequential grid nodes the

data structure was altered to a “struct-of-array” (SOA) format, in which it was essentially broken into three separate

two 2D arrays, each containing a single DOF over all the nodes (Figure 4). Contiguous memory transactions are

usually more efficient on SIMD hardware because they avoid resorting to scatter-gather addressing or shuffling of

vector operands; both Intel and NVIDIA recommend the SOA format for the majority of array data access [5, 10].

Figure 3. High-level optimizations applied to INS Fortran code, cumulative from left

to right. CPU performance on LDC benchmark, 512x512 grid. Dual-socket Xeon x5355

workstation, 8 threads / 8 cores (note that this is an older model than the Nehalem 8-core

CPU benchmarked in Section 4.5).

0

1

2

3

4

5

6

7

8

9

10

Original Code Loop fusion (remove
temporary arrays)

Loop fusion+ Replace
copy with pointer swap

G
FL

O
P

S

Accepted for Publication in Computers and Fluids, March 2015

12

Array-of-Struct

Pressure

Node 1

U-velocity

Node 1

V-velocity

Node 1

Pressure

Node 2

U-velocity

Node 2

V-velocity

Node 2

Pressure

Node 3

U-velocity

Node 3

V-velocity

Node 3

Struct-of-Array

Pressure

Node 1

Pressure

Node 2

Pressure

Node 3

U-velocity

Node 1

U-velocity

Node 2

U-velocity

Node 3

V-velocity

Node 1

V-velocity

Node 2

V-velocity

Node 3

 Figure 4. Illustration of the “array-of-struct” and “struct-of-array” layouts for a sequence of 3 grid nodes in

linear memory (3-DOF per node). Red cells represent access of the pressure field for three consecutive nodes.

4. Porting to the GPU with OpenACC

 Because the INS code was being used to test potential enhancements to a full-scale CFD research code, it was

important to examine not just performance metrics but the entire procedure involved when using the OpenACC API.

The objective here was to evaluate its practicality for use with complex CFD applications, including assurance that

OpenACC would not require major alterations to the original source code that might complicate maintenance or

degrade the performance on the CPU. It was also desirable that OpenACC work well with modern Fortran features

and programming practices, including object-oriented extensions such as derived types [2, 11].

 The OpenACC code was constructed from the branch incorporating the high-level optimizations and data-

structure refactoring described in Section 3, so the memory layout was already configured for contiguous access.

The next task involved experimenting with OpenACC data clauses to determine the optimal movement of solution

data between host and device. As expected, best efficiency was observed when the entire data structure was copied

onto the GPU at the beginning of a run and remained there until all iterations were complete, thus avoiding frequent

large data transfers across the PCIe bus. Maintaining the solution data on the GPU was accomplished by wrapping

the entire time-iteration loop in a “!$acc data” region, and then using the “present” clause within the

enclosed subroutines to indicate that the data was already available on the device. If the data were needed on the

host between iterations (to output intermediate solutions, for example) the “!$acc update” directive could be

used in the data-region to synchronize the host and device data structures, however this practice was avoided

whenever possible as it significantly reduced performance (updating the host data on every iteration increased

runtime by an order of magnitude). The only device to host transfers strictly required between iterations were the

norms of the iterative residuals, which consisted of three scalar values (one for each primitive variable) that were

needed to monitor solution convergence. Small transactions were generated implicitly by the compiler whenever the

Accepted for Publication in Computers and Fluids, March 2015

13

result of an accelerator reduction was used to update another variable; these were equivalent to synchronous

cudaMemcpy calls of a single scalar value.

 For the 2D INS code, which has a single-block grid structure and only required two copies of the solution for

explicit time integration, problems with over 200 million double-precision DOF fit easily into the 5-6GB of RAM

available on a single compute card. This was aided by the reduced memory footprint that the optimizations in

Section 3.1 provided; if the temporary arrays had not been removed, the total memory used would be approximately

30% greater. Codes with more complicated 3D data structures, more advanced time integration schemes and/or

additional source terms would likely see fewer DOF fit into GPU memory, so either data would have to be

transferred to and from host memory on each iteration or multiple GPUs would be needed to run larger problems.

 Ideally, applying OpenACC directives to existing software should be possible without any modification to the

original source code; however, we encountered two instances where restrictions imposed by the API forced some

refactoring. One case stemmed from a requirement (of OpenACC 1.0) that any subroutine called within an

accelerator region be inlined, which in Fortran means that the call must satisfy all the criteria for automatic inlining

by the compiler [6]. For the INS code this was merely inconvenient, necessitating manual intervention where one

subroutine was causing difficulty for the PGI 13.6 compiler, however this inlining requirement also has the

significant consequence of prohibiting function pointers within accelerator regions. Function pointers form the basis

of runtime polymorphism in object-oriented languages such as C++ and Fortran 2003 (e.g., virtual methods, abstract

interfaces) which can be very useful in practical CFD applications—for example, SENSEI uses such capabilities

present in Fortran 2003 to simplify calling boundary condition routines [2]. Applications that use these language

features would need to be rewritten to work with OpenACC, possibly by replacing polymorphic function calls with

complicated conditionals. Even in the newer OpenACC 2.0 standard (which relaxes the requirements on function

inlining) there is no support for function pointers in accelerator code [12], and although CUDA devices do support

the use of function pointers [5] this is not necessarily true for every supported accelerator platform, so it seems

likely that OpenACC users will have to work with this restriction for now.

 Another inconvenience for modern Fortran programs is the prohibition of allocatables as members of derived

types. Within an accelerator region, the versions of the PGI compiler that we tested did not permit accessing

allocatable arrays that were part of a user-defined type, although arrays consisting of user-defined types were

allowed (Figure 5). This is unfortunate because using a derived type to hold a set of arrays is a convenient method of

Accepted for Publication in Computers and Fluids, March 2015

14

expressing the SOA data layout, which is better for contiguous memory access on the GPU. In the relatively simple

INS code this was easy to work around, but in the full scale research code derived types are used extensively to

manage allocated data structures, so applying OpenACC would entail more refactoring [2].

4.1. OpenACC Performance

 In this section the computational performance of the OpenACC code is evaluated on three models of NVIDIA

GPU representing two distinct microarchitectures—the specifications of the test devices are presented in Table A1

of the Appendix. The compiler used for these test cases was PGI 13.6, which implements the OpenACC 1.0

standard. This version was only capable of generating accelerator code for CUDA enabled devices, limiting the

selection of hardware to that made by NVIDIA; in Section 4.4 a newer version (PGI 14.1) is also evaluated which is

capable of compiling for AMD devices, and the code is run on AMD 7990 and 7970 cards. Compilation was carried

out using the flags “-O4 -acc -Mpreprocess -Minfo=accel -mp -Minline” set for all test runs. No

additional architecture specific flags or code modifications were used—the PGI compiler was capable of

automatically generating binaries for CUDA compute capability 1.x, 2.x and 3.x devices.

 A check of the accelerator-specific compiler output (generated with the “-Minfo=accel” flag) indicated that

shared memory was being used to explicitly cache the solution data around each thread-block. The statement

“Cached references to size [(x+4)x(y+4)x3] block” corresponds correctly to the dimensions

needed for the 9-point finite difference stencil in the interior kernel, however the exact shared memory layout and

access pattern cannot be determined without direct examination of the generated CUDA code. As shown by the red

lines in Figure 6, preliminary benchmark results displayed steady high performance on medium and large grid sizes

with declining performance as problem size decreased—this could be the result of kernel call overhead or less

efficient device utilization on the smallest grids. These results were obtained using the default OpenACC

configuration; as discussed in the next section, this performance can in some cases be improved upon through

tunable parameters that are part of the OpenACC API (Figure 6, green lines).

!AOS: permitted in accelerator regions
 Velocity(i,j)%V1 = 0.0_dp
 Velocity(i,j)%V2 = 0.0_dp

!SOA: not permitted in accelerator regions
 Velocity%V1(i,j) = 0.0_dp
 Velocity%V2(i,j) = 0.0_dp

Figure 5. Example AOS and SOA derived types. Allocated arrays of derived types are

permitted (left), but types containing allocated arrays are not (right).

Accepted for Publication in Computers and Fluids, March 2015

15

Figure 6. Double-precision performance of LDC benchmark on NVIDIA C2075 (left) and K20x (right). The

red line indicates the default OpenACC kernel performance, while the green line indicates the maximum

performance attained through tuning with the vector clause. The K20c results are not pictured, but are

approximately 12% lower than the K20x for all grid sizes.

4.2. Tuning OpenACC

 The OpenACC standard is designed to be transparent and portable, and provides only a few methods for

explicitly controlling the generated device code. Notable examples are the gang and vector clauses, which as

described in Section 1.2 can be used to manually specify the CUDA thread-block and grid dimensions: by default,

the PGI compiler automatically defines grid and block dimensions based on its analysis of the user code, but this

behavior can be overridden by inserting gang and vector parameters near the directives annotating loops. On CUDA

devices, the launch configuration can have a significant influence on kernel performance because it affects the

utilization of multiprocessor resources such as shared memory and registers, and can lead to variations in

occupancy. More subtly, changes to the shape of the thread blocks in kernels using shared memory can also affect

the layout of the shared data structures themselves, which in turn might lead to bank conflicts that reduce effective

bandwidth [5].

Accepted for Publication in Computers and Fluids, March 2015

16

Figure 7. Mapping of CUDA thread-blocks to computational domain. (Adapted from [5]) Each CUDA thread-

block maps to a rectangular subsection of the solution grid, with each thread performing independent operations on

a single grid-node. Altering the x and y dimensions of the thread-blocks can significantly affect performance.

 For the INS code, compiler output indicated that the interior kernel (which was derived from two tightly nested

loops) defaulted to a grid of 2-dimensional 64x4 thread-blocks, while the boundary scheme used 1-dimensional

blocks with 128 threads each; this same structure was used for both compute capability 2.x and 3.x binaries. The

larger dimension (64) in the interior kernel corresponds to the blockDim.x parameter in CUDA C and was

mapped by OpenACC to the inner loop, which seems like a reasonable heuristic since this will result in each of the

eight 32-thread warps accessing data in a contiguous (unit-stride) manner. To test if this configuration was actually

optimal for all architectures, the code was modified using the vector clause so that the 2D block dimensions of the

interior scheme could be specified at compile time. The compiler was permitted to choose the number of blocks to

launch (gang was not specified) and the entire parameter space was explored for a fixed size problem of 50 million

DOF. A surprising observation made during this test was that the total number of threads per block was limited to a

maximum of only 256; larger numbers would still compile, but would generate an error at runtime. This was

unexpected because the number of threads per block permitted by compute capability 2.0 and greater should be up to

1024 [5]. Exactly why this limitation exists was never determined—there was no evidence that more than 256

threads would consume excessive multiprocessor resources (e.g., shared memory), while the runtime error messages

Computational Domain
(n×n finite-difference grid)

Accepted for Publication in Computers and Fluids, March 2015

17

were inconsistent between platforms and seemed unrelated to thread-block dimensions. It could be speculated that

there is some “behind the scenes” allocation at work that is not expressed in the compiler output (such as shared

memory needed for the reduction operations) but this could not be verified.

 On the Fermi device it was found that the compiler default of 64x4 was not the optimal thread-block size,

although the difference between default and optimal performance was small. As seen in Figure 8, best double

precision performance occurs at block sizes of 16x8 and 16x4, both of which yield nearly 48 GFLOPS compared to

44.6 GFLOPS in the default configuration. This is a difference of less than 8%, so there appears to be little benefit in

manually tuning the OpenACC code in this instance. For Kepler, a similar optimal block size of 16x8 was obtained,

however the difference in performance was much more significant: on the K20c, the 64x4 default yielded 68.5

GFLOPS while 16x8 blocks gave 90.6 GFLOPS, an increase of over 30% (Figure 8). This result illustrates a

potential tradeoff between performance and coding effort in OpenACC—relying on compiler heuristics does not

necessarily yield peak performance, however it avoids the complexity of profiling and tuning the code for different

problem/platform combinations.

Figure 8. Double-precision performance vs. thread-block dimensions for a fixed-size LDC benchmark.

(4097x4097, 50 million DOF). NVIDIA C2075 (left) and K20c (right)

4.3. Single Precision Results

 The use of single-precision (32-bit) floating point arithmetic has the potential to be much more efficient than

double-precision on NVIDIA GPUs. Not only is the maximum throughput 2-3x greater for single-precision

Accepted for Publication in Computers and Fluids, March 2015

18

operations, but 32-bit data types also require only half the memory bandwidth, half the register file and half the

shared memory space of 64-bit types. In the Fortran code it was trivial to switch between double and single-

precision simply by redefining the default precision parameter used for the real data type; because the INS code

used the iso_c_binding module for interoperability with C code, the precision was always specified as either

c_double or c_float [11].

 It is beyond the scope of this paper to analyze the differences between double and single precision arithmetic in

CFD, however for the particular case of the INS code running the LDC benchmark it was observed that single

precision was perfectly adequate to obtain a converged solution; in fact, there was no discernible difference between

the double and single precision results beyond the expected round-off error (about 5 significant digits). The LDC

benchmark uses a uniform grid, which is probably more amenable to lower precision calculations than a grid with

very large ratios in node spacing (e.g., for a boundary layer), but the result does constitute an example in which

single precision is effective for incompressible flow calculations. The combination of OpenACC and Fortran made

alternating between double and single precision versions of the INS code very straightforward.

 On both the Fermi and Kepler devices the PGI compiler defaulted to the same 64x4 thread-block size that it

used for the double precision cases, and as before this was found to be suboptimal. As seen in Figure 9, the C2075

was observed to perform best with a block size of 16x6, attaining almost 17% better performance than default, while

the K20c saw only a 3% speedup over default at its best size of 32x4. Interestingly, the default configuration on the

K20c was nearly optimal for single precision but performed poorly for double precision, while the reverse was true

for Fermi—there was no single block size that provided peak (or near-peak) performance on both architectures for

both the single and double precision cases. This reiterates the notion that heuristics alone are insufficient for

generating optimum code on the GPU and illustrates the difficulty of tuning for multiple platforms.

Accepted for Publication in Computers and Fluids, March 2015

19

Figure 9. Single-precision performance vs. thread-block dimensions for a fixed-size LDC benchmark.

(4097x4097, 50 million DOF). NVIDIA C2075 (left) and K20c (right)

The speedups observed with single precision arithmetic were less impressive than expected based on the theoretical

throughputs given in Table A1. On the C2075, the difference was about 50%, while the K20c saw a speedup of more

than 100% at the default block size and about 70% for the tuned configuration. These numbers are still significant,

however, and given the ease with which the code can alternate between double and single precision it is probably

worth testing to see if the full-scale CFD code achieves acceptable accuracy at lower precision. A comparison of the

double and single precision results at default and optimal block sizes are displayed in Figure 10.

Tesla C2075

(Fermi)
Default

Block Size

(GFLOPS)

Optimal

Block Size

(GFLOPS)

Speedup

(%)

Double Precision

(GFLOPS)

44.6 47.9 7.4%

Single Precision

(GFLOPS)

64.5 75.4 16.9%

Speedup

(%)

44.6% 57.4%

Figure 10. Effects of thread-block optimizations and single vs double precision artithmetic on OpenACC

performance. Fixed-size LDC benchmark: 4097x4097, 50 million DOF.

Optimal Thread-

block Dimension

Double

Precision

Single

Precision

C2075 (Fermi) 16x4

(16x8)

16x6

K20c (Kepler) 16x8 32x4

Tesla K20c

(Kepler)
Default

Block Size

(GFLOPS)

Optimal

Block Size

(GFLOPS)

Speedup

(%)

Double Precision

(GFLOPS)

68.5 90.6 32.3%

Single Precision

(GFLOPS)

149.2 153.5 2.9%

Speedup

(%)

117.8% 69.4%

Accepted for Publication in Computers and Fluids, March 2015

20

4.4. Targeting Multiple GPUs and Architectures with OpenACC

 While OpenACC is designed to provide a portable programming model for accelerators, there are certain

configurations that still require manual intervention by a programmer. Perhaps the most important of these is the use

of multiple accelerators. When a region is offloaded with OpenACC, it is offloaded to exactly one device. A number

of modifications are necessary to allow support for multiple devices, and further to support multiple devices of

multiple types. In order to explore this issue, we evaluated our test code with two approaches to spreading work

across multiple GPUs: we created a version that manually partitions the work and hand-tuned the data transfers and

also evaluated an extension to OpenACC/OpenMP that automatically provides multi-device support.

In order to exploit multiple devices when available, the application needs to be structured such that the work can

be divided into a number of independent workloads, or blocks, much like the more traditional issue with distributed

computing models such as MPI. Our 2D INS code lends itself to a straightforward decomposition into blocks along

the y-axis, resulting in contiguous chunks of memory for each block and only boundary rows to be exchanged

between devices across iterations. The multi-GPU version determines how many blocks are required by using the

“acc_get_num_devices(<device_type>)” API function provided by OpenACC, but this in and of itself

presents an issue. While the API is quite simple, the device_type is implementation defined, and the PGI accelerator

compiler provides no generic device type for “accelerator” or “GPU.” Instead, the options are

ACC_DEVICE_NVIDIA, ACC_DEVICE_RADEON and ACC_DEVICE_HOST. Since the number of accelerators

must be known, and there is no generic way to compute it, we check the availability of both NVIDIA and AMD

Radeon devices, falling back on the host CPU whenever the others are unavailable.

 Given the number of devices, an OpenMP parallel region creates one thread per device, and sets the device of

each thread based on its ID. As with the single GPU case, data transfer costs are a concern, so each thread uses a

data-region to copy in the section of the problem it requires. Unlike the single GPU case, the data cannot all be left

on each GPU across iterations, since the boundary values all must be copied back to main memory at the end of each

iteration and exchanged to other GPUs before the beginning of the next. This change incurs both extra

synchronization between threads, and extra data movement, meaning that the multi-GPU version is less efficient on

a single device than the single-GPU version described above. To mitigate this, we implemented the transfer to only

copy the boundary elements back and forth, and to do that asynchronously. While this does not completely offset

Accepted for Publication in Computers and Fluids, March 2015

21

the cost, it does lower it considerably. Mechanisms do exist to transfer these values directly from one GPU to

another, but they are not exposed through the OpenACC programming model at this time.

 We evaluated this version of the code with a recently released version of the PGI OpenACC compiler, version

14.1 with support for both NVIDIA and AMD Radeon GPUs. The GPU hardware specs are described in Tables A1

and A2 in the Appendix, and results are presented in Figure 11. Even with a relatively simple decomposition, the

INS code clearly benefits from the use of multiple GPUs, scaling 3.8 times from one NVIDIA c2070 to four, or

nearly linear scaling onto four devices. The NVIDIA k20x system performs better than the c2070s, and in fact on a

single k20x outperform the k20c described earlier by a small margin. The Kepler architecture seems to be materially

more sensitive to the extra synchronization overhead and the high register usage of the application than the Fermi

architecture for this code. Finally, the AMD architecture proves to perform extremely well for this kind of

application, with a single consumer-grade GPU board containing two GPU dies outperforming both of our NVIDIA

configurations by a relatively wide margin. This is especially unexpected due to the lower theoretical peak floating

point performance per die on the AMD 7990. Based on our tests, and discussions with PGI engineers, the result

appears to be due to the simpler architecture of the AMD GPU making it easier to attain close to theoretical peak on

the hardware, where the NVIDIA GPUs might still perform better with a greater degree of hand-optimization.

Figure 11. Double-precision performance and scaling of multi-GPU LDC benchmark. NVIDIA c2070, NVIDIA

k20x and AMD Radeon 7990, across number of GPUs for a fixed grid size of 70002.

51.9

100.9

139.6

181.8

96

188.3

120.6

216.9

150

103.96

0

50

100

150

200

250

1 2 3 4

P
e

rf
o

rm
an

ce
 (

G
FL

O
P

S)

Number of GPUs

NVIDIA c2070 NVIDIA k20x AMD 7990 k40 + 7970 k40 AMD 7970

Accepted for Publication in Computers and Fluids, March 2015

22

 In addition to our manual version, we also evaluate a version using an experimental multi-GPU interface, called

CoreTSAR [13]. In essence, CoreTSAR allows users to specify the associations between their computations and

data, and uses that information to automatically divide the work across devices, managing the splitting, threading

and data transfer complexities internally. The resulting implementation is simpler than the manual version evaluated

above, but not necessarily as tuned. Figure 12 shows our results with both versions scaling across the four NVIDIA

Fermi c2070 GPU system. As you can see from these results, CoreTSAR does in fact scale with the additional

GPUs, but not as well as the manual version, scaling to only 2.6x rather than nearly 4x for the manual version on

four GPUs. The reason appears to be an increase in the cost of the boundary exchange after each step, since

CoreTSAR requires the complete data set to be synchronized with the host to merge data before sending the updated

data back out. As solutions like CoreTSAR mature, we suggest that they focus on offering simple and efficient

boundary transfer mechanisms to better support CFD applications.

Figure 12. Scaling of manual and CoreTSAR scheduled versions of LDC across GPUs.

4.5. Comparisons with CPU performance

To evaluate the performance benefits of OpenACC acceleration, the results from the GPU benchmarks were

compared against the INS code re-compiled for multicore x86 CPUs. This represents a unified INS code base

capable of running on either the CPU or GPU. It is identical to the Fortran+OpenACC code discussed throughout

Section 4 except that the OpenACC directives are switched off in favor of OpenMP statements (using the

preprocessor) and the compiler flags are modified appropriately to generate efficient CPU code: “-O4 -Minfo -

Mpreprocess -mp=all -Mvect -Minline”. The compiler used for the CPU case was PGI 13.6, and

according to the output from the “-Minfo” flag this compiler was able to automatically generate vector instructions

0

50

100

150

200

1 2 3 4

P
e

rf
o

rm
an

ce
 (

G
FL

O
P

S)

Number of GPUs

CoreTSAR on c2070s Manual c2070

Accepted for Publication in Computers and Fluids, March 2015

23

(SSE, AVX) for the target CPU platforms. The same version was also used to generate code for the NVIDIA

platforms, while version 13.10 was used for the AMD GPU.

The CPU test hardware consisted of two dual-socket Intel Xeon workstations that were selected to match the

GPU hardware of comparable generations. Thus there is an 8-core Nehalem workstation to match the Fermi GPUs,

and a 16-core Sandy Bridge for comparison against the Keplers. More detailed specifications for these test platforms

are given in the appendix (Table A3). In Figure 13 we compare the maximum double-precision performance attained

by each platform on large grids (with over 4000×4000 nodes). In Figure 14, the relative speedups of each GPU vs

the two CPU platforms are shown.

 Figure 13. Maximum double-precision performance attained on large LDC benchmark cases (over

4000×4000). Color indicates the compiler and directives used: Blue = PGI 13.6 Fortran/OpenMP; Red = PGI 13.6

Fortran/OpenACC; Black = PGI 13.10 Fortran /OpenACC. (Note that the PGI 13.10 compiler shows slightly

reduced performance compared to the 14.1 version tested in Section 4.4.)

26

41
48

90

101

112

0

20

40

60

80

100

120

OpenMP (Xeon
X5560, 8T/8C)

OpenMP (Xeon
E5-2687W,
16T/16C)

OpenACC
(NVIDIA C2075)

OpenACC
(NVIDIA K20C)

OpenACC
(NVIDIA K20X)

OpenACC
(AMD 7990 [1

of 2 dies])

G
FL

O
P

S

Accepted for Publication in Computers and Fluids, March 2015

24

The results presented in Figure 13 represent the best performance attained for each platform on large LDC

benchmark cases (over 4000 × 4000 nodes); this means that the most optimized versions of the OpenACC code

from Section 4 were used, not the default. In the case of the CPU (OpenMP) version of the code, the grid size was

selected carefully to return the best results, because the actual performance varied significantly with the size of the

grid on the CPU platforms, as illustrated in Figure 15. The precise reasons for this erratic performance are not

completely understood, but the small oscillations visible in the plot could be the result of variations in the address

alignment of the solution array columns, which can have an effect on the bandwidth of SIMD load/store operations

on Intel CPUs [10, 14]. The larger performance drops (such as the 4096 × 4096 grid size) are most likely caused

by cache conflict misses, which have been shown to have significant performance ramifications for stencil codes on

x86-64 hardware [15, 16]. A complete analysis of the CPU performance is well beyond the scope of this work,

however these results are presented here to highlight an important advantage of the software-managed shared

memory on the GPU, which is free from the effects of cache associativity and shows relatively uniform

performance.

0

0.5

1

1.5

2

2.5

3

OpenACC
(NVIDIA
C2075)

OpenACC
(NVIDIA
K20C)

OpenACC
(NVIDIA
K20X)

OpenACC
(AMD

7990 (1 of
2 dies))

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

OpenACC
(NVIDIA
C2075)

OpenACC
(NVIDIA
K20C)

OpenACC
(NVIDIA
K20X)

OpenACC
(AMD

7990 (1 of
2 dies))

Figure 14. Relative speedup of each GPU platforms vs CPU platforms. (Left) Speedup over

Sandy Bridge E5-2687W 16-cores. (Right) Speedup over Nehalem X5560 8-cores.

Accepted for Publication in Computers and Fluids, March 2015

25

 Figure 15. Performance of CPU (OpenMP) code vs grid size. Xeon X5560 workstation, 16T/8C. (Left) All grid

sizes from 128×128 to 8192×8192, in increments of 128. (Right) Detail of grid sizes above 4096×4096, in

increments of 1.

5. Conclusions

The directive-based OpenACC programming model proved very capable in our test CFD application, permitting

the creation of an efficient cross-platform source code. Using the implementation of OpenACC present in the PGI

compiler suite, we were able to construct a portable version of the finite-difference INS code with a unified Fortran

code base that could be compiled for either x86 CPU or NVIDIA GPU hardware. The performance of this

application on a single high-end NVIDIA card showed an average speedup of more than 20× vs. a single CPU core,

and approximately 2.5× when compared to the equivalent OpenMP implementation run on a dual-socket Xeon

server with 16 cores. Results with multiple GPUs displayed excellent scalability as well, and tests with a version of

the PGI compiler capable of generating code for AMD GPUs illustrated how an OpenACC application can be

transparently extended to new accelerator architectures, which is one of the main benefits of directive-based

programming models.

It was noted that some non-trivial modifications to the original version of the Fortran INS code were required

before it would run efficiently on the GPU, particularly alterations to the data structures needed for contiguous

memory access. These modifications required additional programming effort, but did not harm the CPU

performance of the INS code—in fact, they appear to have improved CPU performance in some cases (possibly due

to better compiler vectorization). More significant setbacks were the restrictions imposed by OpenACC 1.0 and the

PGI compiler on device function calls and derived types containing allocatables, both of which disable very useful

features of modern Fortran (e.g. function pointers). These limitations were sufficient for us to decide that it would

Accepted for Publication in Computers and Fluids, March 2015

26

not be productive to apply OpenACC to the Fortran 2003 code SENSEI at this time, as it would require too many

alterations to the present code structure. We are instead investigating newer directive-based APIs that may

ameliorate some of these issues, particularly the OpenMP 4.0 standard which promises to support similar

functionality as OpenACC (on both CPU and GPU platforms) [17].

Appendix

The specifications of several CPU and GPU platforms are listed in the tables below for reference.

Model Architecture Compute

Capability

ECC Memory

(Size)

Memory

(Bandwidth)

Peak SP

GFLOPS

Peak DP

GFLOPS

Tesla C2070 Fermi GF110 2.0 Yes 6 GB 144 GB/s 1030 515

Tesla C2075 Fermi GF110 2.0 Yes 6 GB 144 GB/s 1030 515

Tesla K20c Kepler GK110 3.5 Yes 5 GB 208 GB/s 3520 1170

Tesla K20x Kepler GK110 3.5 Yes 6 GB 250 GB/s 3950 1310

Tesla K40 Kepler GK110 3.5 Yes 12 GB 288 GB/s 4290 1430

Table A1. NVIDIA GPUs.

Model Architecture ECC Memory

(Size)

Memory

(Bandwidth)

Peak SP

GFLOPS

Peak DP

GFLOPS

HD 7970 Southern Islands GCN No 3 GB 264 GB/s 3788 947

HD 7990 Southern Islands GCN No 3GB (x2) 288 GB/s (x2) 4100 (x2) 947 (x2)

Table A2. AMD GPUs. The HD 7970 is a single die version of the HD 7990.

Model Architecture ISA

Extension

Threads

/ Cores

Clock

(MHz)

ECC Memory

(Bandwidth)

Peak SP

GFLOPS

Peak DP

GFLOPS

X5355 Core SSSE3 4/4 2667 Yes 21 GB/s 84 42

X5560 Nehalem SSE4.2 8/4 3067 Yes 32 GB/s 98 49

E5-2687W Sandy Bridge AVX 16/8 3400 Yes 51 GB/s 434 217

Table A3. Intel Xeon CPUs. Clock frequency represents maximum sustained “turbo” level with all cores active.

Theoretical GFLOPS were calculated based on these clock frequencies and using the given ISA extensions.

Acknowledgments

This work was supported by an Air Force Office of Scientific Research (AFOSR) Basic Research Initiative in

the Computational Mathematics program with Dr. Fariba Fahroo serving as the program manager.

Bibliography

[1] R. Reyes, I. Lopez, J. Fumero and F. de Sande, "Directive-based Programming for GPUs: A Comparative

Study," in IEEE 14th International Conference on High Performance Computing and Communications,

Liverpool, 2012.

[2] J. M. Derlaga, T. S. Phillips and C. J. Roy, "SENSEI Computational Fluid Dynamics Code: A Case Study in

Modern Fortran Software Development," in 21st AIAA Computational Fluid Dynamics Conference, San Diego,

2013.

[3] B. P. Pickering, C. W. Jackson, T. R. Scogland, W.-C. Feng and C. J. Roy, "Directive-Based GPU

Accepted for Publication in Computers and Fluids, March 2015

27

Programming for Computational Fluid Dynamics," in AIAA Scitech, 52 Aerospace Sciences Meeting, National

Harbor, Maryland, 2014.

[4] J. Sanders and E. Kandrot, CUDA by Example: An Introduction to General-Purpose GPU Programming,

Addison-Wesley Professional, 2010.

[5] NVIDIA Corporation, CUDA C Programming Guide, Version 5.5, 2013.

[6] The OpenACC Application Programming Interface, Version 1, OpenACC, 2011.

[7] C. Woolley, "Profiling and Tuning OpenACC Code," in GPU Technology Conference, 2012.

[8] A. Chorin, "A Numerical Method for Solving Incompressible Viscous Flow Problems," Journal of

Computational Physics, vol. 2.1, pp. 12-26, 1967.

[9] P. Knupp and K. Salari, Verification of Computer Codes in Computational Science and Engineering, Chapman

& Hall/CRC, 2003.

[10] Intel Corporation, Intel 64 and IA-32 Architectures Optimization Reference Manual, 2013.

[11] W. Brainerd, Guide to Fortran 2003 Programming, Springer-Verlag, 2009.

[12] The OpenACC Application Programming Interface, Version 2, 2013.

[13] T. R. W. Scogland, W.-C. Feng, B. Roundtree and B. R. de Supinski, "CoreTSAR: Core Task-Size Adapting

Runtime," IEEE Transactions on Parallel and Distributed Systems, 2014.

[14] Intel Corporation, Intel Architecture Instruction Set Extensions Programming Reference, 2012.

[15] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker, D. Patterson, J. Shalf and K. Yelick,

"Stencil Computation Optimization and Auto-tuning on State-of-the-Art Multicore Architectures," in

International Conference for High Performance Computing, Networking, Storage and Analysis, Austin, TX ,

2008.

[16] M. J. Livesey, Accelerating the FDTD Method Using SSE and Graphics Processing Units, Manchester:

University of Manchester, 2011.

[17] OpenMP Application Programming Interface, Version 4.0, OpenMP Architecture Review Board, 2013.

[18] P. N. Glaskowsky, NVIDIA’s Fermi: The First Complete GPU Computing Architecture, NVIDIA Corporation,

2009.

[19] AMD Graphics Cores Next (GCN) Architecture, Advanced Micro Devices, Inc., 2012.

