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Abstract 

Computational simulation can be defined as any computer application which involves the 

numerical solution to a system of partial differential equations. In this paper, a broad overview is 

given of verification procedures for computational simulation. The two aspects of verification 

examined are code verification and solution verification. Code verification is a set of procedures 

developed to find coding mistakes that affect the numerical discretization. The method of 

manufactured solutions combined with order of accuracy verification is recommended for code 

verification, and this procedure is described in detail. Solution verification is used to estimate the 

numerical errors that occur in every computational simulation. Both round-off and iterative 

convergence errors are discussed, and a posteriori methods for estimating the discretization error 

are examined. Emphasis is placed on discretization error estimation methods based on Richardson 

extrapolation as they are equally applicable to any numerical method. Additional topics covered 

include calculating the observed order of accuracy, error bands, and practical aspects of mesh 

refinement. 

1. Introduction 

Due to increases in computer speed and advances in parallel processing algorithms, the cost of 

computational simulation tends to drop relative to experimentation. While computational simulation 

will never replace experiments, it will continue to play an increased role in the design, analysis, and 

optimization of engineering systems. In order for computational simulation to achieve its full 



 

potential as a predictive tool, engineers must have confidence that the simulation results are an 

accurate representation of reality. Verification and validation provide a framework for building 

confidence in computational simulation predictions.  

In common usage, the words verification and validation are synonymous; however, in current 

engineering usage, they have very different meanings. Verification deals with mathematics and 

addresses the correctness of the numerical solution to a given model. Validation, on the other hand, 

deals with physics and addresses the appropriateness of the model in reproducing experimental data 

[1]. Verification can be thought of as solving the chosen equations correctly, while validation is 

choosing the correct equations in the first place. While many of the examples in the current paper 

are taken from fluid mechanics and heat transfer, the concepts are equally applicable to any 

discipline (e.g., structural mechanics, electrodynamics, astrophysics) which involves the numerical 

solution to partial differential equations, herein referred to as computational simulation.  

There are two fundamental aspects to verification: code verification and solution verification. 

Code verification is the process of ensuring, to the degree possible, that there are no mistakes (bugs) 

in a computer code or inconsistencies in the solution algorithm. Solution verification is the process 

of quantifying the numerical errors that occur in every numerical simulation. Examples of these 

numerical errors include round-off error, iterative error, and discretization error. While code 

verification is generally performed once and for all for a given set of coding options (at least for 

smooth problems), solution verification must be performed for each and every simulation that is 

significantly different than previous simulations.  

The purposes of this paper are to 1) provide a broad overview of verification procedures for 

computational simulation and 2) give details on some of the more practical aspects of verification. 

The first half of the paper (Section 2) addresses code verification. In this section, issues such as 

software quality assurance and order of accuracy verification are addressed, and a significant 

amount of time is spent discussing the method of manufactured solutions. The remainder of the 

paper (Section 3) deals with solution verification and discusses the different sources of numerical 
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error in computational simulation with an emphasis on estimating the discretization error. This 

section gives an introduction to Richardson extrapolation and its use as an error estimator as well as 

some of the more practical aspects of grid refinement.  

2. Code verification 

Coding mistakes are an often overlooked source of error in computational simulation. Although 

a formal proof of the “correctness” of a given simulation code is probably not forthcoming [2], code 

verification provides a framework for developing and maintaining reliable computer codes. This 

framework includes both software quality assurance and verification of the numerical discretization. 

There are two books which contain a wealth of knowledge on the topic of code verification. Roache 

[2] provides an excellent overview of the subject, with emphasis on order of accuracy verification 

and the method of manufactured solutions, both of which are discussed in this section. The book by 

Knupp and Salari [3] is entirely dedicated to code verification, and is the most comprehensive and 

up-to-date reference on the subject.  

2.1. Software quality assurance 

Software Quality Assurance, or SQA, is a formal set of procedures developed to ensure that 

software is reliable. It was developed primarily from within the computer science community, and is 

driven by high-consequence software systems such as aircraft control systems, nuclear power 

plants, and nuclear weapons systems [3]. When applying SQA procedures to computational 

simulation, the most important aspects include planning, configuration management, testing, and 

documentation [4]. 

Careful planning of a software development project is needed to account for manpower 

availability, version release and delivery schedules, and budgetary constraints. As part of the 

planning process, the software requirements should be clearly defined and agreed to by all parties 

involved including code developers, code users, and any additional code customers.  

The overall framework for developing quality computational simulation software is called 

configuration management, and includes a wide variety of activities. Standardized coding practices 
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such as the use of subroutine templates provide uniformity during code development. Configuration 

management software such as the freely available Concurrent Versions System (CVS) [5] is an 

essential tool when a number of developers are involved on a coding project. This software is able 

to integrate changes from multiple developers working on the same source file and provides version 

control which allows access to prior versions of the code by tracking code changes.  

SQA utilizes analysis and testing procedures including static analysis, dynamic analysis, and 

regression testing. Static analysis is any analysis conducted without actually running the code and 

includes such activities as compiling the code (possibly with different compilers on different 

platforms) and running external diagnostic software to check variable initialization and consistency 

of argument lists for subroutines and functions. Dynamic analysis includes any activity which 

involves running the code. Examples of dynamic analysis include run-time compiler options (such 

as options for checking array bounds) and external software to find memory leaks. While numerical 

algorithm testing is technically a form of dynamic testing, it is such an important aspect of code 

verification for computational simulation that it will be addressed in a separate section. Finally, 

regression tests involve the comparison of code output to the output from earlier versions of the 

code, and are designed to find coding mistakes by detecting unintended changes in the code. It is 

important that the regression test suite be designed to obtain coverage of as much of the code as 

possible (i.e., all models and coding options). The results of SQA testing should be logged so that 

failures can be reported and corrected. Finally, code documentation is a critical area and includes 

documentation of code requirements, the software development plan, the verification and testing 

plan, governing and auxiliary equations, and available coding options. 

2.2. Consistency and convergence  

For a numerical scheme to be consistent, the discretized equations must approach the original 

(continuum) partial differential equations in the limit as the element size (∆x, ∆t, etc.) approaches 

zero. For a stable numerical scheme, the errors must not grow in the marching direction. These 

errors can be due to any source (round-off error, iterative error, etc). It should be noted that typical 
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stability analyses such as von Neumann’s method [6] are valid for linear equations only. Finally, 

convergence addresses the issue of the solution to the discretized equations approaching the 

continuum solution to the partial differential equations in the limit of decreasing element size. 

Convergence is addressed by Lax’s equivalence theorem (again valid for linear equations only) 

which states that given a properly-posed initial value problem and a consistent numerical scheme, 

stability is the necessary and sufficient condition for convergence. Thus, consistency addresses the 

equations, while convergence deals with the solution itself. Convergence is measured by evaluating 

(or estimating) the discretization error. For verification purposes, it is convenient to define the 

discretization error as the difference between the solution to the discretized equations fk and the 

solution to the original partial differential equation fexact  

exactkk ffDE −=                                                                            ( 1) 

where k refers to the mesh level. For the purposes of this paper, the round-off and iterative 

convergence error are addressed separately, therefore their contributions to the overall discretization 

error are neglected.  

2.3. Code verification evaluation criteria  

The criteria for assessing code verification are, in order of increasing rigor [3]: 

• expert judgment 

• error quantification 

• consistency/convergence 

• order of accuracy 

The least rigorous of these is expert judgment, where an expert is given the code output for a given 

problem and asked to determine whether or not the results appear correct. The error quantification 

test involves the quantitative assessment of the error between the numerical solution and an exact or 

benchmark solution, and the subsequent judgment of whether the error is sufficiently small. Tests 

for consistency/convergence are used to determine if the discretization error shrinks as the element 

size is reduced. The most rigorous code verification test is the order of accuracy test, which 
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determines whether of not the discretization error is reduced at the expected rate. This test is 

equivalent to determining whether the observed order of accuracy matches the formal order of 

accuracy. For finite-difference and finite-volume methods, the formal order of accuracy is obtained 

from a truncation error analysis, while for finite-element methods it is found from interpolation 

theory. Since it is the most difficult test to satisfy (and therefore the most sensitive to coding 

mistakes), the order of accuracy test is the recommended acceptance test for code verification [3].  

2.3.1. Formal order of accuracy   

For the simplest case of finite-difference schemes, the formal order of accuracy is determined by 

the truncation error. One approach to evaluate the truncation error is to start with a Taylor series 

expansion of the solution variable(s). For example, for the function T(x) expanded about the point 

x0, the Taylor series expansion can be written as 
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Consider the one-dimensional unsteady heat equation given by 
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where the first term is the unsteady contribution and the second term represents thermal diffusion. 

This equation can be discretized with central differences using a forward difference in time and a 

centered second difference in space, resulting in the simple explicit numerical scheme 
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where the subscripts denote spatial location and the superscripts denote the temporal step. In order 

to determine the truncation error for this numerical scheme, we can expand each of the above 

temperature values in terms of the temperature at location i and time step n: 
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Substituting these expressions into the discretized equation and rearranging yields 
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Eq. (4) represents the actual partial differential equation solved by the discretization scheme. The 

left-hand side is the original partial differential equation (evaluated at location i and time level n), 

while the right-hand side represents the difference between the discretized equation and the 

continuum partial differential equation. This difference is the truncation error. The simple explicit 

scheme for the unsteady heat equation is consistent since the truncation error (right-hand side of Eq. 

(4)) goes to zero as ∆x and ∆t go to zero. The formal order of accuracy of the scheme is first order 

in time and second order in space since the leading terms in the truncation error contain the factors 

∆t and (∆x)2, respectively. 

2.3.2. Observed order of accuracy   

The observed order of accuracy is the accuracy that is directly computed from code output for a 

given simulation or set of simulations. The observed order of accuracy can be adversely affected by 

mistakes in the computer code, solutions which are not sufficiently smooth, defective numerical 

algorithms, and numerical solutions which are not in the asymptotic grid convergence range. The 

asymptotic range is defined as the range of discretization sizes (∆x, ∆y, ∆t, etc.) where the lowest-

order terms in the truncation error dominate.  

We will now consider a method for calculating the observed order of accuracy assuming that the 

exact solution is known. The case when the exact solution is not known will be addressed in the 

Solution Verification section. Recall that in Eq. (1) we defined the discretization error as the 
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difference between the numerical solution on a given mesh and the exact (continuum) solution to 

the partial differential equations fexact. Consider a series expansion of the discretization error in 

terms of hk, a measure of the element size on mesh level k 

HOThgffDE p
kpexactkk +=−=                                                            ( 5) 

where fk is the numerical solution on mesh k, gp is the coefficient of the leading error term, and p is 

the observed order of accuracy. The main assumption is that the higher-order terms (HOT) are 

negligible, which is equivalent to saying the solutions are in the asymptotic range. In this case, we 

can write the discretization error equation for a fine mesh (k = 1) and a coarse mesh (k = 2) as 
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Since the exact solution is known, the left-hand sides can be evaluated using the numerical solution. 

Combining these two equations as follows 
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then taking the natural log of both sides and introducing the grid refinement factor r = h2/h1 (i.e., the 

ratio between the coarse and fine mesh element sizes), the observed order of accuracy p becomes 
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Thus, when the exact solution is known, only two solutions are required to obtain the observed 

order of accuracy. The observed order of accuracy can be evaluated either locally within the 

solution domain or globally by employing a norm of the discretization error. 

When evaluating the observed order of accuracy, round-off and iterative convergence error can 

adversely affect the results. Round-off error occurs due to finite digit storage on digital computers. 

Iterative error occurs any time an iterative method is used, as is generally the case for nonlinear 

systems and large, sparse linear systems. Both of these error sources will be discussed in detail in 
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the Solution Verification section. The discretized form of nonlinear equations can generally be 

solved to within machine round-off error; however, in practice, the iterative procedure is usually 

terminated earlier to reduce computational effort. In order to ensure that these sources of error do 

not adversely impact the order of accuracy calculation, both round-off and iterative error should be 

at least 100 times smaller than the discretization error (i.e., < 0.01×DE). 

2.4. Method of exact solutions 

Code verification has traditionally been performed by using the method of exact solutions. This 

approach involves the comparison of a numerical solution to an exact solution to the governing 

partial differential equations with specified initial and boundary conditions. The main disadvantage 

of this approach is that there are only a limited number of exact solutions available for complex 

equations (i.e., those with complex geometries, physics, or nonlinearity). When exact solutions are 

found for complex equations, they often involve significant simplifications. For example, the flow 

between parallel plates separated by a small gap with one plate moving is called Couette flow and is 

described by the Navier-Stokes equations. In Couette flow, the velocity profiles are linear across the 

gap. This linearity causes the diffusion term, a second derivative of velocity, to be identically zero. 

In contrast to the method of manufactured solutions discussed in the next sub-section, the method of 

exact solutions involves the solution to the forward problem. That is, given a partial differential 

equation, boundary conditions, and initial conditions, the goal is to find the exact solution.  

2.5. Method of manufactured solutions 

The method of manufactured solutions, or MMS, is a general and very powerful approach to 

code verification. Rather than trying to find an exact solution to a system of partial differential 

equations, the goal is to “manufacture” an exact solution to a slightly modified set of equations. For 

code verification purposes, it is not required (in fact, often not desirable) that the manufactured 

solution be related to a physically realistic problem; recall that verification deals only with the 

mathematics of a given problem. The general concept behind MMS is to choose the solution a 

priori, then operate the governing partial differential equations onto the chosen solution, thereby 
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generating analytical source terms. The chosen (manufactured) solution is then the exact solution to 

the modified governing equations made up of the original equations plus the analytical source 

terms. Thus, MMS involves the solution to the backward problem: given an original set of 

equations and a chosen solution, find a modified set of equations that the chosen solution will 

satisfy. The initial and boundary conditions are then determined from the solution.  

The use of manufactured solutions and grid convergence studies for the purpose of code 

verification was first proposed by Roache and Steinberg [7]. They employed symbolic manipulation 

software to verify a code for generating three-dimensional transformations for elliptic partial 

differential equations. These concepts were later extended by Roache et al. [8]. The term 

“manufactured solution” was coined by Oberkampf and Blottner [9] and refers to the fact that the 

method generates (or manufactures) a related set of governing equations for a chosen analytic 

solution. An extensive discussion of manufactured solutions for code verification was presented by 

Salari and Knupp [10], and includes both details of the method as well as application to a variety of 

partial differential equation sets. This report was later refined and published in book form by Knupp 

and Salari [3]. A recent review/tutorial was given by Roache [11], and the application of the 

manufactured solutions procedure for the Euler and Navier-Stokes equations for fluid flow was 

presented by Roy et al. [12].  

The procedure for applying MMS with order of accuracy verification can be summarized in the 

following six steps:  

Step 1. choose the form of the governing equations 

Step 2. choose the form of the manufactured solution 

Step 3. derive the modified governing equations 

Step 4. solve the discrete form of the modified governing equations on multiple meshes 

Step 5. evaluate the global discretization error in the numerical solution 

Step 6. apply the order of accuracy test to determine if the observed order of accuracy matches 

the formal order of accuracy 
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The fourth step, which includes the solution to the modified governing equations, may require code 

modifications to allow arbitrary source terms, initial conditions, and boundary conditions to be 

used.  

Manufactured solutions should be chosen to be smooth, analytical functions with smooth 

derivatives. The choice of smooth solutions will allow the formal order of accuracy to be achieved 

on relatively coarse meshes, and trigonometric and exponential functions are recommended. It is 

also important to ensure that no derivatives vanish, including cross-derivatives. Care should be 

taken that one term in the governing equations does not dominate the other terms. For example, 

when verifying a Navier-Stokes code, the manufactured solution should be chosen to give Reynolds 

numbers near unity so that convective and diffusive terms are of the same order of magnitude. 

Finally, realizable solutions should be employed, that is, if the code requires the temperature to be 

positive (e.g., in the evaluation of the speed of sound which involves the square root of the 

temperature), then the manufactured solution should be chosen as such. 

MMS has been applied to the Euler equations, which govern the flow of an inviscid 

(frictionless) fluid [12]. The two-dimensional, steady-state form of the Euler equations is given by 
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where arbitrary source terms f are included on the right-hand side, and et is the specific total energy, 

which for a calorically perfect gas is given by 

21
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The final relation needed to close the set of equations is the equation of state for a calorically 

perfect gas 
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RTp ρ=  

The manufactured solution for this case is chosen as 
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The subscripts here refer to constants (not differentiation) with the same units as the variable, and 

the dimensionless a constants generally vary between 0.5 and 1.5 to provide smooth solutions over 

an L×L square domain. For this case, the constants were chosen to give supersonic flow in both the 

positive x and positive y directions. While not necessary, this choice simplifies the inflow boundary 

conditions to Dirichlet values at the inflow and Neumann (gradient) values at the outflow. The 

inflow boundary conditions are determined from the manufactured solution. A plot of the 

manufactured solution for the mass density is given in Figure 1.  
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Figure 1.  Manufactured solution for mass density. 

 

 12



 

Substitution of the chosen manufactured solutions into the governing equations allows the analytical 

determination of the source terms. For this example, the source term for the mass conservation 

equation is 
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As the governing equations get more complex, the use of symbolic manipulation software such 

as Mathematica™ or Maple™ is strongly recommended. These software packages generally have 

built-in capabilities to output the source terms as computer code in both FORTRAN and C 

programming languages. A plot of the above source term for the mass conservation equation is 

given in Figure 2.  
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Figure 2.  Analytical source term for the mass conservation equation. 
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The governing equations are then discretized and solved on multiple meshes. In this case, two 

different finite-volume Navier-Stokes codes were employed: Premo, an unstructured grid code, and 

Wind, a structured grid code (see Ref. [12] for details). Both codes utilized the second-order Roe 

upwind scheme for the convective terms, and second-order central differencing for the diffusive 

terms. The formal order of accuracy of both codes is thus second order. The five meshes employed 

are summarized in Table 1.  

 

Table 1 
Meshes Employed in the Euler Manufactured Solution 

 
Mesh 
Name 

Mesh 
Nodes 

Grid 
Spacing, h 

Mesh 1 129×129 1 
Mesh 2 65×65 2 
Mesh 3 33×33 4 
Mesh 4 17×17 8 
Mesh 5 9×9 16 

 
The coarser meshes were found by successively eliminating every other grid line from the fine 

mesh (i.e., a grid refinement factor of r = 2). Also, the grid spacing is normalized by the fine mesh 

(k = 1) spacing, thus 
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The global discretization error was then examined by employing discrete L∞ and L2 norms as 

follows: 
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where fexact comes directly from the chosen manufactured solution and n is summed over all of the 

nodes on the mesh. The behavior of these two discretization error norms as a function of the 

measure of the element size h is given in Figure 3. On the logarithmic scale, a first-order scheme 
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will display a slope of unity, while a second-order scheme will give a slope of two. In this case, the 

observed order of accuracy for both codes is two, thus the formal order of accuracy is recovered, 

and the two codes are verified for the options examined.  
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Figure 3. Global norms of the discretization error in mass density. 
 

 
Another method for assessing the observed order of accuracy is to calculate it using the global 

norms of the discretization error. Since the exact solution is known, the relation for the observed 

order of accuracy in terms of the error norms is 
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                                                                ( 8) 

where Lk refers to one of the global error norms given above. A plot of the observed order of 

accuracy as a function of the element size h is presented in Figure 4. The Premo code clearly 

asymptotes to second-order accuracy (p = 2), while the Wind code appears to asymptote to an order 

of accuracy that is slightly higher than two. Further grid refinement would likely provide more 

definitive results for the Wind code. It is important to note that while the current example was 

performed on Cartesian meshes for simplicity, a more general code verification analysis would 

employ meshes with significant stretching and skewness as well as arbitrary orientations for the 

domain boundaries.  
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Figure 4. Observed order of accuracy for the mass density. 

 
The use of MMS for code verification has been shown to be remarkably sensitive to mistakes in 

the discretization (e.g., see Ch. 3.11 of Ref. [2]). In addition to the method’s sensitivity, there are a 

number of other advantages to using MMS for code verification. MMS can verify most of the 

coding options available in codes which numerically solve partial differential equations, and it 

handles nonlinear and coupled sets of equations without additional difficulty. MMS can also be used 

to detect flaws in the solution algorithm that lead to inconsistency or non-convergent behavior. 

Perhaps most importantly, the method works equally well for finite-difference, finite-volume, and 

finite-element schemes. 

There are some disadvantages to using MMS for code verification. MMS requires the ability to 

include arbitrary source terms, initial conditions, and boundary conditions to a code. Even when the 

code does provide a framework for including general source terms, the specific form for each 

manufactured solution must be incorporated into the code. MMS is thus code-intrusive and 

generally cannot be performed as a black-box analysis. In addition, each model option which 

changes the governing or auxiliary equations requires new source terms to be generated, which can 

be time consuming. Since MMS is predicated on having smooth solutions, the analysis of non-

smooth solutions (shock-waves, material interfaces, etc.) is an open research issue. Since MMS can 
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only detect problems in the solution itself, it generally cannot be used to detect coding mistakes 

affecting either the efficiency or robustness of the code.  

2.6. Additional approaches for code verification 

Although less rigorous than the methods discussed previously, there are two approaches to code 

verification can also help build confidence that a code is verified. The first approach is the use of 

benchmark solutions which have been evaluated or calculated with a demonstrated high-degree of 

accuracy. One example is the Blasius solution to the laminar boundary layer equations. The Blasius 

solution employs similarity transformations to reduce the governing partial differential equations to 

ordinary differential equations, which can then be accurately solved using series solution (the 

original approach of Blasius) or by numerical solution. The second approach to code verification is 

code-to-code comparison, where the results from one code are compared to the results from another 

code. This approach should be used with caution since a code cannot be verified with confidence by 

comparison to an unverified code. This method is also susceptible to systematic errors in solution 

algorithms, a situation that can occur when new codes are developed which are even loosely based 

on earlier solution algorithms (as is often the case). See Ref. [13] for more details on the pitfalls of 

using code-to-code comparisons for code verification. 

3. Solution verification 

Solution verification deals with the assessment of the numerical errors which always exist when 

partial differential equations are solved numerically. Solution verification must necessarily take 

place after code verification has been conducted; it does not make sense to perform solution 

verification on a code that contains coding mistakes which affect the discretization error. There are 

three main aspects to solution verification: verification of input data, numerical error estimation of 

the solution, and verification of output data. Verification of input data is needed to ensure that the 

correct input files, grids, tabulated data, etc. are employed. For example, archiving the input file in 

saved files from a simulation run will allow the analyst to go back and double check that the correct 

input file was used. Similarly, verification of output data is needed to ensure that the user takes the 
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correct post-processing steps after the simulation is completed. The main aspect of solution 

verification is the estimation of numerical errors, which is the focus of the current section. 

3.1. Sources of numerical error 

  The three main sources of numerical error in computational simulation are round-off error, 

iterative convergence error, and discretization error. The latter error source includes both errors in 

the interior discretization scheme as well as errors in the discretization of the boundary conditions. 

These error sources are discussed in detail in the following sub-sections.  

3.1.1. Round-off error 

Round-off errors occur due to the use of finite arithmetic on digital computers. For example, in 

a single-precision digital computation the follow result is often obtained 

9999999.0)0.3/0.1(*0.3 =  

while the true answer is of course 1.0. Round-off error can be important for both ill-conditioned 

systems of equations as well as time-accurate simulations. The adverse effects of round-off error 

can be mitigated by using more significant digits in the computation. Standard computers employ 

32 bits of memory for each storage location. In a double precision calculation, two storage locations 

are allocated for each number, thus providing 64 bits of memory. Higher-precision storage can be 

accessed through variable declarations, by using appropriate compiler flags, or by employing one of 

the recently developed 64-bit computer architectures. 

3.1.2. Iterative convergence error 

Iterative convergence error arises due to incomplete iterative convergence of a discrete system. 

Iterative methods are generally required for complex nonlinear systems of equations, but are also 

the most efficient approach for large, sparse linear systems. The two classes of iterative approaches 

for linear systems are stationary iterative methods (Jacobi, Gauss-Seidel, line relaxation, multigrid, 

etc.) and Krylov subspace methods (GMRES, conjugate gradient, Bi-CGSTAB, etc.). Nonlinear 
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systems of equations also employ the above iterative methods, but generally in conjunction with a 

linearization procedure (e.g., Picard iteration, Newton’s method).  

As a simple example of an iterative method for nonlinear equations, consider the one-

dimensional Burgers equation in dimensionless form: 
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This equation contains terms representing unsteadiness, nonlinear convection, and diffusion, and is 

thus a popular model equation for the Navier-Stokes equations governing viscous fluid flow. 

Employing a Picard iteration with a simple linearization of the nonlinear term (denoted by the 

overbar), the resulting linear equation can be discretized using the implicit Euler method to give 
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where the convective and diffusive terms are evaluated at the unknown (n+1) time level. This 

numerical scheme results in a tridiagonal system of algebraic equations which can be solved using 

the well-known Thomas algorithm. Once the unknowns are solved for at the (n+1) time level, the 

linearized portion 1+n
iu  is then updated and the linear solution is repeated until the convergence 

criteria is reached.  

The question now arises of what to use for the convergence criteria. Authors often report the 

convergence of iterative methods in terms of the difference (either absolute or relative) between 

successive iterates. This approach can be misleading when convergence is slow or stalled. A much 

better approach is to evaluate the residual at each iterate, where the residual is found by plugging 

the current numerical solution into the discretized form of the equations. In the above example for 

Burgers equation, the residual R at location i and time level (n+1) is simply 

( )2
1

1
11

1
1

1
1

11
1

1 2
Re
1

2 x
uuu

x
uuu

t
uuR

n
i

n
i

n
i

n
i

n
in

i

n
i

n
in

i ∆
+−

−
∆
−

+
∆
−

=
+
−

++
+

+
−

+
++

+
+                            ( 11) 

The residual will approach zero (within machine round-off error) as the iterations converge.  
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Another approach for assessing the iterative convergence of a numerical method is to estimate 

the actual iterative error in a quantity of interest. Here we define iterative error as the difference 

between the current iterative solution to the discretized equations and the exact solution to the 

discretized equations (note: the latter is not the same as the exact solution to the original governing 

equation). Roy and Blottner [14, 15] utilized knowledge of the convergence behavior of a Navier-

Stokes code to develop a method for estimating the iterative error in quantities of interest. This 

method relies on having solutions at three iteration levels, and was found to provide accurate 

estimates of the iterative error when compared to solutions that were iteratively converged to 

machine zero using double-precision computations. Their method assumes that convergence of the 

iterative method occurs monotonically, while Ferziger and Peric [16] independently developed an 

iterative error estimator which also addresses oscillatory iterative convergence. The latter study by 

Roy and Blottner [15], as well as recent work by Roy et al. [12] has shown that the residual 

reduction tracks extremely well with actual iterative error for a wide range of nonlinear problems in 

fluid mechanics. This observation supports the common practice of assessing iterative convergence 

indirectly by examining the residuals. Examples from manufactured solution computations for a) 

the Euler equations and b) the Navier-Stokes equations are presented in Figure 5. These solutions 

were obtained with a double precision code (Premo) and with a single precision code (Wind). In all 

cases, the residual norms closely follow the actual iterative error, which is determined by taking the 

global L2 norm of the difference between the current iterative solution and the iterative solution 

converged to machine zero. See Ref. [12] for additional details. 
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Figure 5. Global norms of the iterative convergence error and residuals for manufactured 
solutions of a) the Euler equations and b) the Navier-Stokes equations 

3.1.3. Discretization error 

The discretization error was defined in Eq. (1) as the difference between a numerical solution 

and the exact solution to the continuum partial differential equations. It arises due to the conversion 

of the differential equations into an algebraic system of equations (i.e., the discretization process). 

This process necessarily introduces discretization parameters such as the element size (∆x, ∆y, and 

∆z) and/or the time step (∆t). The discretization error can be clearly related to the truncation error 

for linear problems; however, for nonlinear problems, this relationship is not straightforward.  

There are two main reasons for evaluating the discretization error. The first reason is to obtain 

an assessment of the discretization error associated with a given solution, which might be needed 

during analysis of simulation results or for a model validation study. This error assessment can take 

three distinct forms: an error estimate (e.g., the most likely value for the error is -5%), an error band 

(e.g., a confidence level of 95% that the error is within ±8%), or an error bound (e.g., the error is 

guaranteed to be within ±8%). The second reason for evaluating the discretization error is to drive a 

grid adaptation process. Grid adaptation can involve locally adding more elements (h-adaptation), 
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moving points from a region of low error to a region of high error (r-adaptation), or locally 

increasing the formal order of accuracy (p-adaptation).  

3.2. Discretization error estimation 

There are a number of methods available for estimating discretization error. These methods can 

be broadly categorized as a priori methods and a posteriori methods. The a priori methods are 

those that allow a bound to be placed on the discretization error before the numerical solution is 

calculated, i.e., find C and p such that DE < Chp. Here p is simply the formal order of accuracy and 

can be determined by the methods discussed earlier. The determination of the constant C is 

challenging and generally problem dependent, and can be very large (and thus not useful) for 

complex problems. The majority of research today is focused on a posteriori methods for 

estimating the discretization error. These methods provide an error estimate only after the numerical 

solution is computed. The a posteriori methods can be further sub-divided into finite-element-based 

error estimators and extrapolation-based error estimators. Although a brief overview of the former is 

given in the next sub-section, this paper focuses on the latter approach since it is equally applicable 

to finite-difference, finite-volume, and finite-element methods. 

In general, the level of maturity for all of the a posteriori error estimation methods is heavily 

problem dependent [17]. As a whole, they tend to work well for elliptic problems, but are not as 

well-developed for parabolic and hyperbolic problems. The level of complexity of the problem is 

also an important issue. The error estimators work well for smooth, linear problems with simple 

physics and geometries; however, strong nonlinearities, discontinuities, singularities, and physical 

and geometric complexity can significantly reduce the reliability and applicability of these methods.  

3.2.1. Finite-element-based error estimators 

Two fundamentally different types of discretization error estimators have been developed from 

the finite-element method [17]. The most widely-used are recovery methods, which involve post-

processing of the solution gradients (Zienkiewicz-Zhu [18]) or nodal values (Zhang et al. [19]) on 

patches of neighboring elements. The former approach is often referred to as the ZZ error estimator, 
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while the latter as polynomial preserving recovery (PPR). The basic formulations provide error 

estimates only in the global energy norm; extensions to quantities of interest must generally be done 

heuristically (e.g., a 5% error in the global energy norm may correspond to a 10% error in heat flux 

for a given class of problems). Although difficult to analyze mathematically, recovery-based error 

estimators do provide ordered error estimates. That is, the error estimate gets better with mesh 

refinement. Recovery-based methods can be extended to finite-difference and finite-volume 

schemes, but this process generally requires additional effort. 

The second class of error estimators that has arisen from finite elements are residual-based 

methods. These methods take the form of either explicit residual methods (e.g., Eriksson and 

Johnson [20]) or implicit residual methods (e.g., Babuska and Miller [21]). These methods were 

originally formulated to provide error estimates in the global energy norm. Extension of both the 

explicit and implicit residual methods to provide error estimates in quantities of interest generally 

requires the solution to the adjoint system (i.e., the dual problem). The explicit method has been 

extended to finite-volume schemes by Barth and Larson [22]. For more information on residual-

based a posteriori error estimators for finite-elements, see Refs. [23] and [24].  

3.2.2. Extrapolation-based error estimators 

The extrapolation-based error estimators come in two different forms. The most popular 

approach is based on Richardson extrapolation [25, 26] (also referred to as h-extrapolation) and 

requires numerical solutions on two or more meshes with different levels of refinement. The 

numerical solutions are then used to obtain a higher-order estimate of the exact solution. This 

estimate of the exact solution can then be used to estimate the error in the numerical solutions. The 

second type of extrapolation-based error estimator is order extrapolation (p-extrapolation). In this 

approach, solutions on the same mesh, but with two different formal orders of accuracy, are used to 

obtain a higher-order accurate solution, which can again be used to estimate the error. The drawback 

to order-extrapolation is that it requires advanced solution algorithms to obtain higher-order 

numerical schemes, which can be difficult to code and expensive to run. The main advantage of the 
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extrapolation-based error estimators is that they can be applied as a post-processing step to any type 

of discretization, whether it be a finite-difference, finite-volume, or finite-element method.  

3.3. Richardson extrapolation 

Richardson extrapolation [25, 26] is based on the series expansion of the discretization error 

given in Eq. (5), which can be rewritten as 

HOThghghghgffDE kkkkexactkk ++++=−= 4
4

3
3

2
21                               ( 12) 

where gi is the coefficient of the ith order error term and the exact solution fexact is generally not 

known. The assumptions that are required for using Richardson extrapolation are that 1) the 

solutions are smooth, 2) the higher order terms in the discretization error series expansion are small, 

and 3) uniform meshes are used. The second assumption regarding the higher-order terms is true in 

the asymptotic range, where h is sufficiently small that the lower-order terms in the expansion 

dominate. While the last assumption regarding uniform meshes appears to be quite restrictive, 

transformations (either local or global) can be used if the order of accuracy of the transformation is 

equal to (or higher than) the order of the numerical scheme. Transformations will be discussed in 

detail in a later sub-section.  

3.3.1. Standard Richardson extrapolation 

The standard Richardson extrapolation procedure assumes that the numerical scheme is second-

order accurate, and that the mesh is refined or coarsened by a factor of two. Consider a second-

order discretization scheme which is used to produce numerical solutions on two meshes: a fine 

mesh (h1 = h), and a coarse mesh (h2 = 2h). Since the scheme is second-order accurate, the g1 

coefficient is zero, and the discretization error equations on the fine and coarse meshes can be 

rewritten as 

( )
( ) [ ]( )32

22

32
21

22 hOhgff
hOhgff

exact

exact

++=
++=

 

Neglecting higher-order terms, these two equations can be rewritten as 
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Solving the first equation for g2 yields 
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and solving the second equation for fexact gives 
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Substituting Eq. (13) into Eq. (14) gives 
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Standard Richardson extrapolation thus provides a “correction” to the fine grid solution. This 

expression for the estimated exact solution fexact is generally third-order accurate. In Richardson’s 

original work [25], he used this extrapolation procedure to obtain a higher-order accurate solution 

for the stresses in a masonry dam based on two second-order accurate numerical solutions (which 

were calculated by hand!). In Richardson’s case, he employed central differences which cancelled 

out the odd powers in the truncation error. His estimate for the exact solution was thus fourth-order 

accurate. 

3.3.2. Generalized Richardson extrapolation 

Richardson extrapolation can be generalized to pth-order accurate schemes with solutions on a 

fine mesh (spacing h1) and a coarse mesh (spacing h2), which are not necessarily different by a 

factor of two. Introducing the general grid refinement factor 
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and setting h1 = h, the discretization error equations can be written as 
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Neglecting the higher-order terms, these two equations can be solved for fexact to give 
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which is generally a (p+1)-order accurate estimate. Again, it should be emphasized that Richardson 

extrapolation relies on the assumption that the solutions are asymptotic (i.e., the observed order of 

accuracy matches the formal order).  

3.3.3. Observed order of accuracy 

When the exact solution is not known (which is generally the case for solution verification), 

three numerical solutions on different meshes are required in order to calculate the observed order 

of accuracy. Consider a pth-order accurate scheme with numerical solutions on a fine mesh (h1), a 

medium mesh (h2), and a coarse mesh (h3). For the case of a constant grid refinement factor 

2312 // hhhhr ==  

we can thus write 

hrhrhhhh 2
321 ,, ===  

The three discretization error equations can be written as 
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Neglecting the higher-order terms, these three equations can be used to solve for the observed order 

of accuracy p to give 
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Note that here the observed order of accuracy is calculated and does not need to be assumed (as 

with Richardson extrapolation).  

For the case of non-constant grid refinement factors 
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where r12 ≠ r23, the determination of the observed order of accuracy p is more complicated. For this 

case, the following transcendental equation [2] must be solved 
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This equation can be easily solved using a simple Picard-type iterative procedure. 

3.3.4. Richardson extrapolation as an error estimator 

In some cases, researchers mistakenly report discretization error estimates by giving the relative 

difference between two numerical solutions computed on different meshes, i.e.,  
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This relative difference can be extremely misleading when used as an error estimate. To see why, let 

us first develop a discretization error estimator using generalized Richardson extrapolation. The 

relative discretization error (RDE) is simply the difference between the numerical solution and the 

exact solution, normalized by the exact solution, which for the fine grid (k = 1) can be written as 
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Substituting the generalized Richardson extrapolation result from Eq. (17) into the numerator gives 
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The reason for leaving fexact in the denominator will be apparent shortly.  

Consider two numerical solutions where some quantity of interest has a relative difference 

(from Eq. (20)) of 5%. For a third-order accurate scheme with r = 2, the error estimate based on 

Richardson extrapolation (Eq. (22)) is 0.71%. However, for a first-order accurate numerical scheme 
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with a grid refinement factor of 1.5, the error estimate based on Richardson extrapolation is 9.1%. 

Thus, a 5% relative difference in the two solutions can mean very different values for the relative 

discretization error, depending on the order of accuracy of the scheme and the grid refinement 

factor. This example illustrates the importance of accounting for the  factor for obtaining 

accurate error estimates. This understanding led to the development of Roache’s Grid Convergence 

Index, to be discussed in a later sub-section.  

)1( −pr

3.3.5. Example: Richardson extrapolation as an error estimator 

An example of using Richardson extrapolation as an error estimator was presented by Roy and 

Blottner [15]. They examined the hypersonic, transitional flow over a sharp cone. The quantity of 

interest was the heat flux distribution along the surface. The surface heat flux is shown versus the 

axial coordinate in Figure 6a for three mesh levels. Also shown are Richardson extrapolation results 

using the two finest meshes. The sharp rise in heat flux at x = 0.5 m is due to the specification of the 

location for transition from laminar to turbulent flow. In Figure 6b, the Richardson extrapolation 

results are used to estimate the relative discretization error (RDE) in each of the numerical 

solutions. While the coarse mesh shows error estimates as high as 8% in the laminar region, the fine 

mesh error estimates are much smaller at approximately 0.5%. Note that these error estimates will 

only have a confidence level of 50%, that is, the true discretization error has an equal chance of 

being larger or smaller than the error estimate. See Section 3.4 for a discussion of factors of safety 

as they relate to confidence level.  
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In the asymptotic grid convergence region, the discretization error should drop as 1/rp. In the 

current case, the order of accuracy is p = 2 and the grid refinement factor is r = 2. Thus the RDE 

estimates should obey the following relationship: 
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Figure 6. a) Surface heat flux and b) relative discretization error for the transitional sharp cone. 
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The use of Richardson extrapolation to estimate the discretization error results in the left equality in 

Eq. (23) being exactly satisfied. The degree to which the right equality is satisfied provides some 

indication of whether or not the three solutions are in the asymptotic grid convergence range. The 

normalized discretization errors from Eq. (23) are presented in Figure 7. The normalized 

discretization error values generally agree, suggesting that the observed order of accuracy matches 

the formal order of accuracy (p = 2) everywhere except for the transition location, indicating that 

the three solutions are indeed asymptotic.  
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Figure 7. Normalized relative discretization error in the surface heat flux on the transitional 
sharp cone. 

3.3.6. Advantages and disadvantages of extrapolation-based error estimators 

Error estimators based on Richardson extrapolation have a number of advantages over other 

error estimation methods. The primary advantage is that they can be used with any type of 

discretization scheme, whether it be a finite-difference, finite-volume, or finite-element method. 

Extrapolation-based error estimation is also fairly easy to perform since it can be used as a post-

processing step, and thus does not require modifications to the code. Finally, extrapolation-based 

error estimators provide estimates of the global discretization error, and do so for any quantity of 

interest. 

There are, however, some disadvantages of using extrapolation-based error estimators. The 

underlying theory of Richardson extrapolation requires smooth solutions, thus reducing the 

effectiveness of these error estimators for problems with discontinuities or singularities. 

Extrapolation-based error estimators also rely on having multiple numerical solutions in the 

asymptotic grid convergence range, and these solutions can be expensive to compute. In addition, 

the extrapolation procedure tends to amplify other sources of error such as round-off and iterative 

convergence error [2].  
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3.4. Roache’s Grid Convergence Index (GCI) 

In 1994, Roache proposed the Grid Convergence Index, or GCI, as a method for uniform 

reporting of grid refinement studies [27]. The GCI combines the often reported relative difference 

between solutions (Eq. (20)) with the  factor from the Richardson extrapolation-based error 

estimator (Eq. (22)). The GCI also provides an error band rather than an error estimate. 

)1( −pr

3.4.1. Definition of the GCI  

The GCI for the fine grid numerical solution is defined as  
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where Fs is a factor of safety that is usually set to three (Fs = 3). Comparing the GCI to the 

extrapolation-based RDE estimator given in Eq. (22), we see that the GCI uses a factor of safety Fs, 

it employs absolute values to provide an error band, and it replaces fexact in the denominator of Eq. 

(22) with f1. Most importantly, the GCI correctly accounts for the (assumed) order of accuracy p and 

the grid refinement factor r.  

3.4.2. Relationship between the GCI and a Richardson extrapolation-based error band 

The relative discretization error estimate from Eq. (22) can easily be converted to an error band 

(RDEband) by taking the absolute value and multiplying by a factor of safety Fs, resulting in 
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Now, the only difference between the Richardson extrapolation-based error band (RDEband) and the 

GCI is the use of fexact in the denominator rather than f1. Will this make a significant difference? It 

was shown by Roy [28] that the error in the GCI relative to the RDEband is given by  
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The error in the GCI relative to the RDEband is thus an ordered error, meaning that it is reduced with 

mesh refinement (i.e., as h → 0). The range of RDEband values for various values of the GCI 
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between 3% and 21% are presented in Table 2. The two values for the RDEband arise depending on 

whether the quantity (f1 – f2) is positive or negative. It is clear that for reasonable values of the GCI 

(say below 20%), the GCI and the RDEband agree quite well (within 1.5%).  

 

Table 2 
Values for the RDEband for various GCI Values 

 
GCI RDEband

3% 2.97%  or  3.03% 
9% 8.73%  or  9.27% 
15% 14.25%  or  15.75% 
18% 16.92%  or  19.08% 
21% 19.53%  or  22.47% 

 

3.4.3. Factor of safety in the GCI 

It is important to include the factor of safety in the GCI and the RDEband. Both of these error 

bands are based on Richardson extrapolation, and we don’t know a priori whether the estimated 

exact solution is above or below the true exact solution to the continuum partial differential 

equations. Consider Figure 8, which shows two numerical solutions (f1 and f2), the estimated exact 

solution from Richardson extrapolation (fRE), and the true exact solution (fexact). In general, there is 

an equal chance that the true exact solution is above or below the estimated value. Thus a factor of 

safety of Fs = 1 centered about the fine grid numerical solution f1 will only provide 50% confidence 

that the true error (fexact) is within the error band. Increasing the factor of safety should increase the 

confidence that the true error is within the error band.  
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Figure 8. Factor of safety for extrapolation-based error bands 

 
The value for the factor of safety that would provide a 95% confidence band is currently a 

subject of debate. When only two numerical solutions are performed, the observed order of 

accuracy cannot be calculated and must be assumed. For this case, Roache [2] recommends Fs = 3. 

When three solutions are performed, the observed order of accuracy can be calculated. If the 

observed order matches the formal order of accuracy, Roache [2] recommends a smaller factor of 

safety of Fs = 1.25. However, when the solutions are far outside the asymptotic range, the accuracy 

of the extrapolation procedure is unpredictable and possibly random. In this case, no choice for the 

factor of safety is sure to be conservative! 

3.4.4. Effectiveness of the GCI  

Two recent studies have carefully examined the effectiveness of the GCI. Eca and Hoekstra [29] 

examined a wide range of fluid flow problems using a large number of non-integer refined meshes 

(at least sixteen different grids for each case). They found that the GCI with a factor of safety of Fs 

= 1.25 worked well on the finer meshes. Cadafalch et al. [30] examined five test cases for fluid flow 

(some with heat transfer) using four to seven meshes for each case with a grid refinement factor of 

two. They also found good results for the GCI with a factor of safety of 1.25. In all of these studies, 
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the observed order of accuracy was calculated locally at each point in the domain. See also Chapter 

13 of Ref. [31] for additional discussion of the effectiveness of the GCI.  

3.5. Practical aspects of grid refinement 

This sub-section addresses practical aspects of grid refinement for realistic problems of 

engineering interest. When grid refinement/coarsening is used in conjunction with an extrapolation 

procedure, the primary requirement that must be met is that the grid refinement factor must be 

consistent over the entire domain (i.e., it must be constant and not a function of space or time). 

Topics discussed in this section include: grid refinement versus grid coarsening for both structured 

and unstructured meshes, non-integer grid refinement, refinement in only one coordinate direction, 

mesh transformations, and simulations on under-resolved meshes. 

3.5.1. Grid refinement versus grid coarsening for structured meshes  

In theory, it should not make a difference whether we start with the coarse mesh or the fine 

mesh. However, in practice, grid coarsening on structured meshes is often easier than grid 

refinement, especially for complex meshes. Here complex meshes are defined as those with 

complex geometries and/or significant grid clustering. For uniform meshes, refinement can be 

performed by simply averaging neighboring spatial location. For stretched meshes, this type of 

refinement will lead to discontinuities in the ratio of neighboring element sizes near the original 

coarse grid nodes. A better strategy for stretched meshes is to use higher-order interpolation to 

obtain smooth stretching distributions; however, this process can be challenging on highly complex 

grids. The primary problems that arise during mesh refinement are due to a loss of geometric 

definition at object surfaces, especially at sharp corners. Furthermore, for structured grid 

approaches requiring point-to-point match-up at inter-zone boundaries, the refinement strategy must 

ensure that these points are co-located. Thus for complex, structured meshes, it is often easier to 

simply start with the fine mesh and successively remove every other point in each of the coordinate 

directions.  
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3.5.2. Grid refinement versus grid coarsening for unstructured meshes  

For unstructured meshes, it is generally easier to start with the coarse mesh, then refine by sub-

dividing the elements. This is due to the difficulties of merging elements in a manner that preserves 

the element type while enforcing the requirement of a constant grid refinement factor over the entire 

domain. While refinement for unstructured grid approaches inherits all of the drawbacks of 

refinement for structured grids discussed in the previous section, there are currently efforts 

underway to make surface geometry information directly available to mesh refinement routines 

[32]. 

The choice of methods for refining the elements will determine the effective grid refinement 

factor. In two dimensions, triangular elements can easily be refined by connecting the midpoints of 

the edges as shown in Figure 9, thereby creating four new triangular elements. This figure also 

shows a similar refinement strategy for three-dimensional tetrahedra, where the midpoints of each 

edge are connected, eventually resulting in eight smaller tetrahedra. In both cases shown, the grid 

refinement factor is two. 

 

 

 

a) 2D: r = 2 b) 3D: r = 2a) 2D: r = 2 b) 3D: r = 2  
 

Figure 9. Refinement strategy for unstructured meshes: a) 2D triangles and b) 3D tetrahedra. 

 

3.5.3. Non-integer grid refinement  

It is not necessary to use grid refinement factors of two, a process referred to as grid doubling or 

grid halving (depending on whether one starts with the fine mesh or the coarse mesh). For simple 

meshes, grid refinement factors as small as r = 1.1 can be employed [2]. Using non-integer grid 
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refinement factors may increase the chance of getting all mesh solutions into the asymptotic grid 

convergence range. However, non-integer grid refinement factors are difficult to apply to complex 

meshes, especially those involving significant mesh stretching. For simulations on complex, 

structured meshes, the grid generation can sometimes make up the majority of the overall analysis 

time. Thus, relying on the original grid generation procedure for grid refinement can be expensive; 

furthermore, it is difficult to enforce a constant grid refinement factor over the entire domain. 

Higher-order interpolation can be used for non-integer grid refinement. Here it is again better to 

start with the fine mesh and then coarsen (at least for structured meshes); however, the same 

geometry definition problems discussed earlier still exist. When a grid refinement factor of two is 

employed, there is only significant effort involved in generating the fine mesh; the coarser meshes 

are found by simply removing every other point. The drawback is not only that the fine mesh may 

be unnecessarily expensive, but there is also an increased chance that the coarse mesh will be 

outside the asymptotic grid convergence range.  

3.5.4. Independent coordinate refinement  

It is sometimes the case that the discretization errors come primarily from just one of the 

coordinate directions. In such cases, it can be helpful to perform independent refinement in the 

coordinate directions to determine which one is the primary contributor to the overall discretization 

error. For independent refinement in x and y, we can write  

HOTygxgff q
ky

p
kxexactk +∆+∆+= )()(                                    ( 26) 

where the error terms for each direction are included. In order to keep the analysis general, the order 

of accuracy in the x direction is p and the order of accuracy in the y direction is q, where the two 

may or may not be equal. Note that for some numerical schemes, a cross term (e.g., gxy(∆x)s(∆y) t) 

may also be present. As in Richardson extrapolation, assume that p and q are equal to the formal 

order of accuracy. Consider the case of two solutions (k = 1 and k = 2) with refinement only in the x 

direction by a factor of rx. As the ∆x element size is refined, the term gy(∆yk)q will be constant. We 

are now unable to solve for the exact solution fexact, but instead must solve for the quantity 
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which includes the error term due to the ∆y discretization. Neglecting higher-order terms, the 

following two equations  
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Similarly, introducing a third solution (k = 3) with coarsening only in the y direction allows us to 

solve for the y-direction error term 
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The size of the two error terms from Eqs. (27) and (28) can then be compared to determine the 

appropriate direction for further mesh refinement.  

3.5.5. Mesh transformations  

Most discretization approaches are developed for uniform meshes (∆x, ∆y, ∆z, ∆t = constant). 

For general geometries, some form of transformation must be applied. In the finite-difference 

method, global transformations are used which actually modify the governing equations. For finite-

element methods, local transformations are employed centered about each element. Finite-volume 

methods can employ either local or global transformations. In any case, if the transformation is 

analytical, no additional numerical errors are introduced. However, when discrete transformations 

are employed, an ordered error is added to the numerical solution. Discrete transformations should 

be of the same order as (or higher than) the underlying numerical scheme. Mistakes in the 
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transformations will introduce errors into the numerical solutions which can adversely affect the 

order of accuracy. 

3.5.6. Simulations on under-resolved meshes  

For computational simulations where the physics and/or geometry are complex (especially time-

dependent, three-dimensional cases) the meshes are often under-resolved due to computational 

resource limitations. By under-resolved we mean that the simulations are not in the asymptotic 

range where the observed order of accuracy matches the formal order. The results of such 

simulations should be used with caution since all methods for estimating the discretization error rely 

on the solutions being asymptotic. As discussed earlier in Section 3.4.3, discretization error 

estimates for solutions outside the asymptotic range are generally unreliable, and the behavior of the 

error estimator is possibly random due to the influence of the higher-order terms.  

A classic example of an under-resolved mesh from fluid mechanics is a flow containing a 

shock-wave discontinuity. When the Navier-Stokes equations are used, it is possible to refine the 

mesh enough to resolve the viscous (i.e., frictional) dissipation in the region of the shock wave and 

thus reach the asymptotic convergence range. However, such high resolution is rarely practical due 

to the large number of mesh points required, especially for multi-dimensional flows. In the case 

where viscous effects are omitted (i.e., the Euler equations), the shock wave will result in 

discontinuities in the primitive flowfield variables. Recent work by Carpenter and Casper [33] 

suggests that for the Euler equations on sufficiently refined meshes, the simulation of flows 

containing shock waves will reduce down to first-order accuracy, regardless of the formal order of 

the numerical scheme employed.  

4. Summary and conclusions 

Verification deals with the mathematical correctness of the solution to a given set of equations. 

The appropriateness of the equations to provide accurate predictions of reality (i.e., experimental 

data) falls under the heading of validation and is not addressed in the present work. This paper 

specifically deals with the numerical solution to partial differential equations, termed computational 
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simulation. While most of the examples given are from fluid dynamics and heat transfer, the 

concepts can be equally applied to any computational simulation discipline (e.g., structural 

mechanics, electrodynamics, astrophysics).  

The first aspect of verification addressed was code verification, a process designed to find 

mistakes in the computer code. The most general approach to code verification is the method of 

manufactured solutions which provides a procedure for generating exact solutions to a modified set 

of governing equations. The generated exact solution (or manufactured solution) can then be 

combined with order of accuracy verification, resulting in a highly efficient process for finding 

coding mistakes.  

Solution verification is concerned with assessing the numerical errors that exist in every 

computational simulation: round-off error, iterative convergence error, and discretization error. 

Discretization error is generally the dominant source of numerical error in computational 

simulation, and significant research is ongoing in a posteriori error estimation methods. This paper 

focuses primarily on the extrapolation-based error estimators as they are the most general error 

estimation approach, equally applicable to finite-difference, finite-volume, and finite-element 

methods. The underlying theory for extrapolation-based error estimation is based on the Richardson 

extrapolation technique for taking numerical solutions on two different meshes and extrapolating to 

a higher-order accurate solution. The basic concept can be easily extended to allow the calculation 

of the observed order of accuracy. Further developments, such as Roache’s Grid Convergence 

Index, provide for the estimation of an error band rather than an error estimate. Error bands are an 

important building block when considering the overall uncertainty (or predictability) of 

computational simulation results.  
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