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Abstract 
 

Our approach to the Sandia Verification and Validation Challenge Problem is to use probability bounds 

analysis based on probabilistic representation for aleatory uncertainties and interval representation for (most) 

epistemic uncertainties. The nondeterministic model predictions thus take the form of p-boxes, or bounding 

cumulative distribution functions (CDFs) that contain all possible families of CDFs that could exist within the 

uncertainty bounds. The scarcity of experimental data provides little support for treatment of all uncertain inputs 

as purely aleatory uncertainties and also precludes significant calibration of the models. We instead seek to 

estimate the model form uncertainty at conditions where experimental data are available, then extrapolate this 

uncertainty to conditions were no data exist. The Modified Area Validation Metric (MAVM) is employed to 

estimate the model form uncertainty which is important because the model involves significant simplifications 

(both geometric and physical nature) of the true system. The results of verification and validation processes are 

treated as additional interval-based uncertainties applied to the nondeterministic model predictions based on 

which the failure prediction is made. Based on the method employed, we estimate the probability of failure to be 

as large as 0.0034, concluding that the tanks are unsafe. 

Keywords: Sandia challenge problem, Verification and validation, Probability bounds analysis, Area 

Validation Metric, Prediction uncertainty, u-pooling 
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1 Introduction 

As described in the Sandia Verification and Validation (V&V) workshop challenge 

problem [1][2] (herein referred to as the “challenge problem”), MysteryLiquid Co. is a company 

that maintains a large number of storage tanks for storing “Mystery Liquid” at various locations 

around the world. The tanks are cylinders with two hemispherical end caps as shown in Figure 

1. At the junction where the cylindrical portion and the end caps meet, the tanks are supported 

by rings around the circumference. Locations on the tank surface are described by axial 

distance, 𝑥, measured from the central vertical plane, and circumferential angle, 𝜙, measured 

from the vertical down as shown in Figure 1. During standard operation, the liquid level is 

limited to a certain fraction of the tank's height and the remaining space is filled with 

pressurized gas. During standard safety testing, one tank's measurements (out of many tanks) 

exceeded safety specification. This specification has been established from historical data, but 

is not a regulatory requirement. This out-of-spec tank (Tank 0) never physically failed. The out-

of-spec tank and its two neighboring tanks were taken out of service to conduct further testing. 

Also, four tanks, in four different locations, underwent multiple tests while still in service. Data 

from these tests is provided to the challenge workshop participants. A computer program is 

also provided that does inexpensive function evaluations and is assumed to be a proxy for an 

expensive finite element model. All details regarding the challenge problem can be found in 

[1][2]. 

The objective of this analysis is to determine whether the tanks are at risk of failure and 

should they be replaced or can they remain in service for a few years while the replacements 
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are ordered. This recommendation by the participants of the challenge problem is to be based 

upon the calculation of probability of failure. The final decision by the company will be taken 

based upon the results from experimental testing, study of physical models, and the results of 

computational simulation of the physical model.  

Our view of simulation-informed decision-making is that uncertainty in the simulation 

results should be clearly conveyed to the decision maker without incorporating questionable or 

debatable assumptions within the analysis. Stated differently,  the individuals using the results 

of a verification, validation, and uncertainty quantification (VVUQ) analysis should clearly see 

the impact of all important uncertainties on the results of the simulation. Our approach differs 

dramatically from the traditional or common philosophy in uncertainty quantification (UQ) or 

risk assessment analyses. In the traditional approach, the analysis team makes seemingly 

reasonable and common assumptions concerning the conceptualization of the system of 

interest, numerical solution of the mathematical model, assimilation of experimental data, and 

then presents the simulation results to the decision maker. The assumptions and 

approximations may, or may not, be documented in footnotes or an appendix to a written 

report. Our philosophy is to make assumptions and approximations that are clearly defensible 

based on (a) information and experimental data on the system of interest and the conditions to 

which the system is exposed and (b) relevant experience and experimental data for closely 

related systems exposed to similar surroundings. If information is lacking concerning any aspect 

of the analysis, then the uncertainty in the information should be characterized such that no 

additional assumptions are incurred in the characterization of the uncertainty itself. The net 



ASME Journal of Verification, Validation and Uncertainty Quantification 

 
 

5 

 
 

result of our philosophy is that the uncertainty in the predicted System Response Quantities 

(SRQs) will be larger, sometimes much larger, than a traditional approach. We argue that our 

philosophy is appropriate when uncertainty is primarily caused by lack of knowledge as 

opposed to random variability, for example in input data describing the system, the physics 

occurring in the system, and the conditions to which the system is exposed. 

Some examples of uncertainties that are dominated by lack of knowledge, i.e., 

epistemic, uncertainty are: (a) spatial and temporal discretization error that is poorly estimated, 

(b) little or no experimental data exist for input parameters describing the system of interest, 

boundary conditions, or excitation of the system, (c) poor agreement between model 

predictions and experimental data on related systems, and (d) model predictions for physical 

conditions of interest that are far removed from the conditions where experimental data are 

available. Epistemic uncertainties such as these are not properly characterized as random 

variables because they have little relationship to random processes. As a result, mathematical 

structures such as intervals or Dempster-Shafer structures [3] should be used to forthrightly 

represent the actual state of knowledge to the decision maker. We present an approach based 

upon Probability Bounds Analysis (PBA) where aleatory (i.e., random) uncertainties in the input 

quantities are treated probabilistically as usual, but epistemic (i.e., lack of knowledge) 

uncertainties are treated as intervals. Our approach accounts for the effects of both types of 

uncertainties on the SRQs of interest, as well as model form and numerical uncertainty. 

This paper is organized as follows. Before presenting our approach to the challenge 

problem, we make a few qualitative observations in Sec. 2 about the experimental and 
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computational description provided in the challenge problem statement. In Sec. 3, we provide a 

discussion of important concepts and terminology relevant to our approach followed by an 

overview of various steps in our analysis. In Sec. 4, we describe each step of our analysis in 

detail with results. Here, we present the final estimation of total uncertainty and the decision 

about tank safety. We end our response to the 2014 Sandia challenge problem in Sec. 5 with 

some concluding remarks. 

2 Qualitative Examination of Problem 
 

2.1 Experimental data 

The quantities and types of available data (see Refs. [1][2]) for use in this problem 

introduce issues that could adversely affect the probability of failure estimate. Data is collected 

from only six tanks out of a total fleet of 450 tanks – only 1.33% of the population. Additionally, 

the data from each experiment is limited, especially from the experiments reporting the tank 

material properties and dimensions. While legacy data is available, no information is provided 

concerning the methods employed, tolerances allowed, or property distributions identified by 

the manufacturer. Measurement uncertainty assessments are available for some experiments, 

but not all. The main quantity of interest, the stress in the tank walls, is never measured and 

can only be inferred from other quantities.  

Yield strength of the material, which is the primary quantity against which stress 

predictions from simulations are to be compared for reporting failure, is measured at only 10 

locations and only using the out-of-spec tank. It is not known how well any data from a given 



ASME Journal of Verification, Validation and Uncertainty Quantification 

 
 

7 

 
 

tank is correlated to the properties for another tank used in the experiment or to another tank 

within the fleet. No information is provided concerning the operating environments of the tank 

fleet. The effect that Mystery Liquid may have on a tank (e.g. corrosion or oxidation) along with 

the environmental effects such as damage due to a dry, sandy or a humid environment, are not 

provided, nor is it known that the entire fleet experiences the same host of effects. While it is 

stated that the tanks in the fleet range from 4 to 12 years old, the distribution of ages over the 

fleet and the age of any particular tank is not known, nor is there any information on tank 

fatigue due to use. The lack of knowledge concerning the tank environments and life cycle 

could potentially lead to large uncertainties in the prediction of the probability of failure. 

2.2 Modeling and simulation 

There are several known modeling and simulation (M&S) issues present that introduce 

uncertainty into a probability of failure prediction. A tank model has been provided as a Python 

code which acts a proxy for an expensive finite-element code with 4 available mesh levels. This 

model uses the series solution evaluation based upon the Timoshenko-Krieger shell theory for 

cylinders [4].  The finite element model provided considers only the straight, cylindrical portion 

of the tank and does not model the hemispherical tank end-caps. In addition, the model is 

incapable of accounting for non-uniformity in the tank dimensions, e.g., variation of tank wall 

thickness or any tank damage. Uncertainties in SRQs due to the modeling assumptions have not 

been previously studied and are not known. Additionally, the use of the finite element code 

introduces numerical uncertainties into the probability of failure prediction. Though the code is 

reported as having a first-order rate of convergence with consistent grid refinement on 
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previous problems, the present problem being considered is more complex than prior 

verification tests. Simulation is confined to only four meshes on which a given SRQ is not 

necessarily in the asymptotic range. Since our analysis explicitly includes an estimate of 

numerical uncertainty in the SRQs, the result is that the numerical uncertainty is increased 

because of lack of knowledge of these issues. 

3 Methodology 

An overview of our approach is provided in Sec. 3.5. However, first we present various 

concepts and terminology relevant to our approach in Secs. 3.1-3.4. Here, we also include a 

brief survey of relevant work from literature to emphasize the reasoning behind the selection 

of techniques employed in this work. 

3.1 Uncertainty Framework 

In order to quantify the total uncertainty in M&S predictions, it is important to identify 

and quantify all of the relevant uncertainty sources. The three main uncertainty sources are 

input uncertainty (also called parameter uncertainty), uncertainties due to the chosen form of 

the model (model form uncertainty), and uncertainties due to the numerical solution to the 

model (numerical uncertainty). Here we employ a broad approach to quantifying total 

uncertainty in M&S that accounts for all three of these sources [5][6].  

The taxonomy employed for classifying uncertainties is based on their fundamental 

essence. The input or parameter uncertainty includes the uncertainty in the initial conditions, 

boundary conditions, material parameters, geometry, and system excitation. This uncertainty 
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may be purely aleatory (i.e., probabilistic), purely epistemic (arising from lack of knowledge), or 

a mixture of the two. Aleatory uncertainty is uncertainty due to inherent variation or 

randomness. Epistemic uncertainty (also called reducible uncertainty or ignorance uncertainty) 

is uncertainty that arises due to a lack of knowledge on the part of the analyst conducting the 

M&S. If knowledge is added (through experiments, improved numerical approximations, expert 

opinion, higher fidelity physics modeling, etc.) then the uncertainty can be reduced. If sufficient 

knowledge (which costs time and resources) is added, then the epistemic uncertainty can, in 

principle, be eliminated. 

Aleatory uncertainty is typically characterized probabilistically with a precise probability 

density function or Cumulative Distribution Function (CDF). Epistemic uncertainty (and mixtures 

of epistemic and aleatory uncertainty) can be characterized in a number of ways including: 

probabilistically, as second-order probabilities (where the parameters governing the probability 

distribution are themselves uncertainty), as intervals, as Dempster-Shafer structures, and as 

fuzzy probabilities [7]. When one has very little knowledge about the value of a parameter, 

then an interval representation (with no associated probability distribution) is the weakest 

statement that one can make about the value of that parameter. Stated differently, every value 

in an interval-valued uncertainty can realize a probability of unity. This is not possible in precise 

probability theory, but it is allowed in imprecise probability theory. For cases where the 

parameter is known to be a random variable, but little information is available about its specific 

distribution, one may choose to characterize the variable using either a uniform distribution or 
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as a distribution with uncertain descriptive parameters. For this latter case, a mixed aleatory 

and epistemic characterization is appropriate. 

One approach for characterizing mixed aleatory and epistemic uncertainty is a 

probability box (or p-box), which is similar to a CDF but with a finite width representing the 

epistemic uncertainty. The shapes of the two outer bounding CDFs reflect the aleatory 

uncertainty in the variable as seen in Figure 2. The width of the p-box represents the range of 

parameter values that are possible for a given cumulative probability level, whereas the height 

of the p-box represents the range of interval-valued cumulative probabilities associated with a 

given parameter value. 

Unless otherwise noted, in this work, the input uncertainties are categorized as purely 

aleatory, purely epistemic, or mixed based on the available information and, in some cases, 

external information available in the literature. Purely aleatory uncertainty is characterized by a 

precise probability distribution. Purely epistemic uncertainty is characterized as an interval. 

Mixed uncertainty is characterized as imprecise probability distribution, i.e., precise probability 

distribution with interval-valued mean. 

3.2 Uncertainty Propagation 

When sufficient information and data are available such that all parametric 

uncertainties are aleatory, then well-established probabilistic methods for propagating 

uncertainty can be used (e.g., [10][11]). While a probabilistic treatment of epistemic 

uncertainty fits nicely within a Bayesian framework [12], it tends to under-predict the true 

uncertainty [9] and often has a strong (and undesirable) dependence on prior assumptions. For 
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example, when some information is available for an input parameter, a Bayesian approach 

would assume some precise probability distribution representing the degree of belief of the 

analyst (as opposed to actual evidence of frequency of occurrence) [8]. This has two 

detrimental effects with regard to capturing the actual poor state of knowledge. First, the result 

of the Bayesian analysis represents the individual belief of the analyst, as opposed to a result 

that is based on the limited information available. Second, when epistemic uncertainties are 

characterized as random variables, the final Bayesian result for the analysis is a single 

probability distribution as opposed to a set of distributions captured by a p-box. In fact, Beer et 

al. [7] point out that the posterior distribution becomes the prior as the available information 

goes to zero. On the other hand, a more general framework of information theory is described 

in [18] which can handle imprecise probabilities (i.e., aleatory, epistemic, and mixed 

uncertainty) and includes approaches such as probability bounds analysis [13] and evidence 

theory [3].  

In order to propagate mixtures of aleatory and epistemic uncertainty, we employ a 

segregated approach to uncertainty propagation (see [6][16]). In the outer loop, samples from 

the interval-uncertain model inputs are drawn. For each of these sample values, the 

probabilistically uncertain model inputs are propagated using Latin Hypercube Sampling (LHS) 

along with the fixed sample values of the interval-uncertain variables. This propagation of the 

probabilistic uncertainty forms the inner loop of segregated uncertainty propagation. The result 

from one iteration of the outer loop is a possible CDF on the SRQ. The total result of the process 

is an ensemble of possible CDFs on the SRQ. In the limit of infinite samples, this process yields 
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the correct solution for problems in which there is no assumption of independence between 

the interval-uncertain inputs; but it is assumed that the interval-uncertain inputs are 

independent of the probabilistic inputs [9]. 

3.3 Model Form Uncertainty: Validation and Calibration 

There is still a great deal of debate on how to treat model form uncertainty in M&S. One 

extreme is calibration (e.g., via Bayesian updating) which attempts to remove the model form 

uncertainty by using experimental data to improve the model [14][15]. When calibration is used 

to “remove” the model form uncertainty, issues often arise when applying the model outside 

the range of conditions where data are available (as is generally the case when making 

predictions). Another extreme is to use all experimental data to quantify the model form 

uncertainty, a process known as model validation [5][19][20]. There are also numerous 

approaches between these two extremes. For example, Kennedy and O'Hagan [21] developed a 

Bayesian calibration approach which includes a model discrepancy term. Roy and Oberkampf 

[6] allow a partitioning of the available experimental data into a sub-set to be used for 

calibration and another sub-set to be used for estimating model form uncertainty via 

comparison of nondeterministic model and experimental outcomes. Both authors provide an 

approach for extrapolating the model form uncertainty to conditions where experimental data 

are not available: Kennedy and O’Hagan [21] assume a Gaussian process while Roy and 

Oberkampf [6] employ a regression fit of the model form uncertainty along with prediction 

intervals.  
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3.4 Numerical Uncertainty 

Since differential equation-based models rarely admit exact solutions for practical 

problems, approximate numerical solutions must be used. The characterization of the 

numerical approximation errors associated with a simulation is called verification [5][19][20]. It 

includes discretization error, iterative convergence error, round-off error, and also errors due 

to computer programming mistakes. The errors due to programming mistakes can usually be 

found and eliminated using code verification practices. For cases where numerical 

approximation errors can be estimated with a high degree of accuracy, their impact on the M&S 

results can, in principle, be eliminated if sufficient computing resources are available. Since this 

is often not practical, the uncertainties due to numerical errors should generally be converted 

to epistemic uncertainties due to the uncertainties associated with the error estimation process 

itself. Since numerical uncertainty is due to a lack of knowledge (i.e., epistemic), we treat it in 

the same manner as model form uncertainty, i.e., as an interval about the simulation outcome. 

3.5 Overview of the Analysis Process  

Our analysis employed the following steps, which are discussed briefly here. The 

implementation details of these steps are provided in the following sections. 

1. Parametric study – The three control parameters, 𝑃, 𝐻, and 𝜒, were varied over their 

operating envelope to determine their qualitative effects on the maximum von Mises stress.  

2. Sensitivity analyses – Global and local sensitivity analyses were performed to 

determine which of the uncertain variables had the largest impact on the maximum (von Mises) 

stress and maximum displacement. During these sensitivity studies, all uncertain variables were 
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treated as purely aleatory uncertainties, with epistemic uncertainties approximated as uniform 

probability distributions over the estimated interval ranges. The sensitivity analyses were used 

as a screening process to either a) omit certain insignificant variables from the UQ analysis or b) 

to treat epistemic and/or mixed uncertainties as precisely specified random uncertainties.  

3. Numerical uncertainty estimation – Since no information was available regarding the 

code verification status of the software, we proceeded assuming that the code is free from any 

coding mistakes. In practice, rigorous code verification must be performed first for any of the 

downstream verification, validation, and uncertainty quantification activities to have any 

meaning. For this V&V challenge problem, the only numerical error source that was assumed to 

be present was discretization error, which was estimated with a combination of Richardson 

extrapolation and the Grid Convergence Index (GCI). 

4. Uncertainty characterization – The input uncertainties were categorized as purely 

aleatory (A), purely epistemic (E), or mixed (M). Unless otherwise noted, we characterize the 

input uncertainties as follows: pure aleatory uncertainties are treated probabilistically, pure 

epistemic uncertainties are treated as intervals, and mixed aleatory and epistemic uncertainties 

are treated probabilistically with interval-valued means.  

5. Uncertainty propagation – We employ segregated propagation of probabilistic and 

interval-characterized uncertainties using the Probability Bounds Analysis (PBA) framework. 

Interval uncertainties are sampled in the outer loop using Latin Hypercube Sampling (LHS). 

Probabilistic uncertainties are sampled in the inner loop using LHS. 
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6. Model form uncertainty – In this work, we do not employ model calibration. We 

instead utilize the available experimental data to estimate the model form uncertainty. Since no 

data are available for the primary SRQ, i.e. von Mises stress, we employ an approach called u-

pooling [22][23] to convert experimental realizations for displacements to those for von Mises 

stress. (Note: u-pooling is discussed in detail with its implementation in Sec. 4.6). We then use 

the Modified Area Validation Metric (MAVM) to estimate model form uncertainty in von Mises 

stress [24][25]. Since this uncertainty is epistemic, we treat it as an interval about the 

simulation outcome. In our case, the simulation outcome is the p-box found by propagating the 

aleatory, epistemic, and mixed uncertainties through the model. 

7. Estimation of total prediction uncertainty – The total prediction uncertainty in von 

Mises stress is determined by beginning with the p-box found from propagating all input 

uncertainties (aleatory, epistemic, and mixed) through the model. The estimated model form 

and numerical uncertainties are then appended as additional, independent, epistemic 

uncertainties on the bounds of the simulation p-box. 

4 Results and Discussion 
 

4.1 Parametric Study 

As a first step towards qualitatively assessing the computational model available, a 

simple parametric study is performed by varying the three operating parameters over the 

operating range as follows: 

 𝑃 = [15,75] psig: 11 values at intervals of 6 psig 
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 𝜒 = [0.1,1]: 10 values at intervals of 0.1 

 𝐻 = [0,55] inches: 12 values at intervals of 5 in  

All other input variables are kept constant at legacy values: 𝐸 = 3 × 107 psi, 𝜈 = 0.27, 𝐿 = 60 

inches, 𝑅 = 30 inches, and 𝑇 = 0.25 inches. For this parametric analysis (and later, sensitivity 

analysis and uncertainty propagation study), the Dakota software toolkit [26] is used mainly 

due to its capability to perform large number of parallel runs of the model over multiple 

processors. Initially, when information about the computational cost was not known, the finest 

mesh (i.e., 𝑚 = 4) was used for all 1320 = 11 × 10 × 12 cases using the non-uniform mesh 

(option: resultStyle = 2) in the provided code. After information about the cost of 

computation on each mesh level was made available (as shown in Table 1), we recommend the 

use of the coarsest mesh (𝑚 = 1) for parametric analysis. 

The output quantities from each of the 1320 runs include the maximum stress value and 

its location on the cylinder (i.e., axial, and angular locations and whether the maximum stress 

occurs on the internal or external surface). For brevity, only the key observations are discussed 

as follows: 

 As expected, the maximum stress for any liquid composition always appears for 

the largest pressure and liquid height. 

 Maximum stress varies most strongly with the liquid height in the container, less 

strongly with pressure and with liquid composition. A sample set of results are 
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shown in Figure 3 where the effect of varying pressure and liquid composition in 

the parametric space is shown for different values of liquid heights. 

 Variation of maximum stress with liquid composition is not monotonic, i.e., it is 

large at 𝜒 = 0.1, then decreases as 𝜒 increases until 𝜒 ≈ 0.3, and then increases 

from 𝜒 ≈ 0.4 to 𝜒 = 1.0. The variation of maximum stress with pressure is 

almost always linear as expected. 

 The tank has a circular cross section which results in slight nonlinearity in the 

variation of maximum stress with liquid height near 30-50 inches (i.e., when the 

tank is just over half-full). The cylindrical geometry of the tank also effects the 

angular location of maximum stress which moves up to approximately 80° (i.e., 

near the middle of the tank) when liquid height is approximately 35 inches and 

then falls down as the liquid height is further increased. This suggests that the 

middle region of the container is an important region for assessing maximum 

stress. A similar analysis of variation in axial location of maximum stress suggests 

that the regions near the support are important for failure analysis. The 

information about angular and axial locations of maximum stress suggests that 

the input option, 𝑟𝑒𝑠𝑢𝑙𝑡𝑆𝑡𝑦𝑙𝑒 = 2, which reports results on a non-uniform grid 

(with refinement at the centerline and the supports of the tank) is suitable for 

this V&V study. 

4.2 Sensitivity Analysis (SA) 
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Two sensitivity analyses are presented here at the maximum loading conditions (i.e., 

𝐻 = 55 inches, 𝑃 = 75 psig, 𝜒 = 1) with legacy values of the material and geometry 

parameters. The first involves performing a global sensitivity analysis using the Variance-Based 

Decomposition (VBD) method in Dakota [26]. The second involves a local sensitivity analysis 

using simple finite-difference calculations. If resources are a constraint, we recommend the 

local SA around the desired conditions. However, the global SA approach provides measures of 

sensitivity in terms of main and total Sobol’ indices giving an insight into uncertainty in the 

output not only due to the uncertainty in the input variable but also due to the interactions 

between the variables. 

4.2.1 Global Sensitivity Analysis 
 

VBD is used along with a sampling method (LHS). Since this SA was performed prior to 

the characterization of input uncertainties, all input variables are treated as normal probability 

distribution functions during this analysis. We used N=100 samples for each of the M=8 input 

parameters as described in Table 2 for a total of 𝑁 × (𝑀 + 2) = 1000 runs. While sampling for 

input parameters, it was found that the provided code has a calculation of arccosine function 

using liquid height, 𝐻, and tank radius, 𝑅, as arccos((𝐻 − 𝑅1) 𝑅1⁄ ), where 𝑅1 has been created 

by creating a bias/error in the input value of 𝑅 as 

 𝑅1 = (1.5𝑅 − 17)0.9926/𝑚,   (1) 

where, 𝑅 is the tank radius, and 𝑚 = [1,2,3,4] is the meshID. This transformation shifts an 𝑅 of 

28 − 32 inches to an 𝑅1 of 25 − 31 inches. Since the arccosine function here cannot accept 
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𝐻 > 2𝑅1, this results in a rather strict (and complicated) constraint on the upper bound of 𝐻 

and the lower bound of 𝑅. We use a height ratio to work around this issues during the sampling 

process (discussed later). Another consideration that must be made while selecting the input 

parameters is that the liquid composition must strictly follow, 0 ≤ 𝜒 ≤ 1. To deal with these 

requirements, we have used truncated normal distribution functions which affect the mean and 

SD (standard deviation) for 𝐻 and 𝑅 as seen in Table 2. The coefficient of variation (COV) and 

mean values are determined based upon the limited experimental data available. 

The VBD approach provides two primary measures to study how the uncertainty in 

model output can be apportioned to uncertainty in input variables: the main effect and the 

total effect sensitivity indices. The main effect sensitivity index, 𝑆𝑖, corresponds to the fraction 

of the uncertainty in the output (e.g., 𝑌) that can be attributed to an input (e.g., 𝑥𝑖) alone. The 

total effects index corresponds to the fraction of the uncertainty in the output, 𝑌, that can be 

attributed to input, 𝑥𝑖, and its interactions with other input variables. Large values of 𝑆𝑖 indicate 

that the uncertainty in the input variable, 𝑥𝑖, has a large effect on the variance of the output. 

Sum of the main effect indices from different input variable should be approximately equal to 1. 

However, if the sum is significantly less than one, then there could be significant interactions 

between input variables. Further details on interpretation of the Sobol’ indices can be found in 

[27]. 

Two different conditions (at 𝜒 = 1 and 𝜒 = 0.1) were explored, though the results of 

only the more relevant case (𝜒 = 1) are presented here in Table 3 for brevity, where large 

values of sensitivity indices are highlighted. Note that apart from the suggested SRQ of 
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maximum stress (𝜎𝑚𝑎𝑥), we also looked at the deflection at the maximum stress location 

(𝑤@𝜎𝑚𝑎𝑥), and the maximum deflection (or normal displacement, 𝑤𝑚𝑎𝑥) in the simulation. 

Importance is given to both stress and deflection related SRQs in the current V&V study since 

the main quantity of interest for final failure prediction (i.e., 𝜎𝑚𝑎𝑥) is never measured directly 

during the experiments and must be inferred from other properties such as deflection. Based 

on the results shown in Table 3, it is evident that maximum stress is most sensitive to 

uncertainties in tank thickness and radius values. While the deflection SRQs are sensitive to 

tank thickness and radius, they are most sensitive to uncertainties in Young’s modulus of the 

material. The results from all the samples are presented pictorially in Figure 4 and Figure 5 

where maximum stress and maximum deflection, respectively, are plotted against different 

input values. It can be seen from Figure 4(a)(b) and Figure 5(a)(b) that both SRQs are strongly 

correlated with tank radius and thickness. Figure 5(c) shows that the deflection SRQ is most 

strongly correlated with the Young’s modulus of the material whereas the maximum stress has 

zero correlation with the Young’s modulus as seen from Figure 4(c). 

4.2.2 Local Sensitivity Analysis 

A simple local sensitivity analysis is performed using one-sided finite differences. Here, 

the 8 input variables are perturbed one-at-a-time by 0.01% of the initial value at maximum 

loading conditions. Thus this analysis requires only a total of 9 runs which can be performed 

using results from the fine mesh (i.e., 𝑚 = 3). As the inputs have a wide range of magnitudes, 

gradients are formed in a dimensionless manner. For an input 𝑥 and the resulting SRQ, 𝑌(𝑥), 

the gradient is calculated about the desired initial condition, 𝑥0 as simply: 
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𝑑𝑌

𝑑𝑥
|𝑥0

≈  
(𝑌(𝑥0 + 𝛿𝑥) − 𝑌(𝑥0)) 𝑌(𝑥0)⁄

𝛿𝑥/𝑥0 
 (2) 

The results from this local sensitivity analysis are shown in Table 4 and largely support 

the conclusions derived from the earlier Sobol’ indices computations, i.e., the examined SRQs 

are most sensitive to the wall thickness and tank radius, with the deflection SRQs also being 

sensitive to the Young’s modulus. Based only on the finite-difference analysis, arguments could 

be made that variations in the liquid height and tank length are also moderately important, 

especially for the deflection SRQs. 

4.3 Numerical Uncertainty: Grid Effects 

To estimate numerical uncertainty, we examined three cases: two cases at 𝐻 = 𝐻𝑚𝑎𝑥 =

55 inches with (a) 𝜒 = 1 and (b) 𝜒 = 0.1, and one pressure loading only case (i.e. 𝐻 = 0 inch). 

For each of the three cases, simulations were run on all four grid sizes (i.e., 𝑚 = 1,2,3,4). Since 

the exact solution is unknown, the triplets of grids (1,2,3) and grids (2,3,4) (where 1 is the 

coarsest and 4 is the finest grid) were used to  obtain observed orders of accuracy for each of 

the two SRQs (maximum stress and maximum displacement). The observed order with the finer 

grid triplet (2,3,4) always produced negative orders. For the coarser grid triplet (1,2,3), the 

observed order of accuracy of the maximum displacement was approximately 1.5 while the 

observed order for the maximum stress was near zero. For a real FEM solution, this erratic 

behavior for observed orders could be attributed to issues with systematic refinement of the 

finest grid or iterative non-convergence. For the current proxy FEM model, we believe that this 
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erratic behavior is the result of the tank radius transformation (discussed in Eq. 1) which may 

not be well-posed with systematic refinement. 

Since we were limited to the four meshes identified in the problem statement, we chose 

to simply estimate the numerical error using a conservative factor of safety of three. 

Furthermore, we decided to ignore the finest grid results and estimated the exact solution (𝑆̅) 

using the fine (𝑚 = 3) and the medium (𝑚 = 2) grids as follows 

 𝑆̅ = 𝑆3 +
𝑆3 − 𝑆2

𝑟𝑝 − 1
 (3) 

where, 𝑆 represents the simulation solution, 𝑟 is the refinement factor between grids (𝑟 = 2 in 

this study), and 𝑝 is the observed order accuracy limited between, 0.5 ≤ 𝑝 ≤ 1 as 

recommended in [5] (note that 𝑝 = 1 is the stated formal order of accuracy of the FEM code for 

this problem). The numerical uncertainty can then be then estimated for solution on a given 

grid level, 𝑆𝑚, using a factor of safety of, 𝐹𝑠 = 3, as follows: 

 𝑈𝑛𝑢𝑚(%) = 𝐹𝑠 |
𝑆̅ − 𝑆𝑚

𝑆̅
| × 100 (4) 

Note that this procedure is similar to the Grid Convergence Index of [28], but slightly modified 

to explicitly include the estimated exact solution which allows for the estimation of numerical 

uncertainty in each of the coarser mesh levels. The final numerical uncertainties for 𝐻 =

55 inches and 𝜒 = 1 are given in Table 1. A crucial observation was that the maximum stress 

always decreased monotonically with mesh refinement while the maximum displacement 
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always increased monotonically with grid refinement (numerical values not shown here for 

brevity). Thus, one-sided numerical uncertainty intervals can be justifiably used about the 

numerical solution as [𝑆 − 𝑈𝑛𝑢𝑚, 𝑆] for maximum stress and [𝑆, 𝑆 + 𝑈𝑛𝑢𝑚] for maximum 

displacement. Here 𝑆 is the simulation result (deterministic value, CDF, or p-box) and 𝑈𝑛𝑢𝑚 is 

the estimated numerical uncertainty. Based upon the uncertainty levels found in Table 1, we 

propose using the medium mesh (𝑚 = 2) for the uncertainty propagation at nominal 

conditions. This will require using the estimated 𝑈𝑛𝑢𝑚 of (−)24.1% for maximum stress values 

and (+)5.5% when maximum displacement SRQ is considered. 

4.4 Uncertainty Characterization 
 

4.4.1 Description and Characterization of Input Data 
 

All input parameters can be divided into the categories of model input, system 

excitation input (also called operating conditions), and numerical input parameters, as shown in 

Table 5. Note that the liquid specific weight, 𝛾, can be determined directly from a correlation 

function dependent on the liquid composition, 𝜒 (with a relatively small error of ±2%). Thus, 

there is no need to discuss both 𝜒 and 𝛾 during this analysis.  

Proper characterization of the input uncertainties is a crucial step in the current 

probability bounds analysis framework. The three types of characterization (aleatory, epistemic, 

and mixed) are suggested here based upon the nature of the property, information provided in 

the problem statement, the parametric analysis of the input data, and the sensitivity analysis 

conducted. An attempt was made to limit the number of quantities with interval-valued 
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characterization because epistemic and mixed uncertainties rapidly increase the number of 

samples required during the propagation of uncertainties through the model. Thus, if the 

sensitivity analysis showed that an input quantity has very little effect on the maximum stress 

or the wall displacement, then that quantity is characterized as a precise probability 

distribution using a normal distribution function. Although the results of SA matched well with 

our physical understanding of the problem, it must be qualified here that these observations 

were based upon SA performed before any model validation which can sometimes be 

misleading. 

The input uncertainty characterization is summarized in Table 6. The uncertainties are 

characterized about the nominal condition which is defined as the condition at which the 

ultimate failure prediction is to be made. The nominal condition for the control parameters is 

described in the problem statement as: 𝑃 = 73.5 psig, 𝐻 = 50 inches, and 𝜒 = 1. For the 

material and geometry model input parameters, the legacy values are used as the nominal 

values. The liquid composition, 𝜒, and the liquid height, 𝐻, are characterized as interval-valued 

uncertain parameters (i.e., epistemic) with precise lower and upper bounds. Note that the 

upper bound of 𝜒 = 1 is ensured here. Also, the liquid height is input into the code using a 

user-defined normalized height parameter, 𝜓 =
𝐻

2𝑅1
, where 𝑅1 is described in Eq. 1. The use of 

𝜓 to define liquid height ensures the strict mathematical constraint of 𝐻𝑚𝑎𝑥 ≤ 2𝑅1 during the 

sampling process and avoids the otherwise fatal segmentation fault within the 

arccos((𝐻 − 𝑅1) 𝑅1⁄ ) calculation in the code. The lower and upper bounds of 𝐻 are set based 
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upon tank levelling concerns as Δ𝐻 = ±1 inch, while those for 𝜒 were set as Δ𝜒 = ±0.05 

based upon the information in the problem statement.  

The gauge pressure, 𝑃, the Poisson’s ratio, 𝜈, and the tank length, 𝐿 have been 

characterized as aleatory uncertainties using normal (or Gaussian) probability distribution 

functions with known mean (𝜇) and standard deviation (𝑆𝐷). The mean and standard deviation 

(or equivalently, coefficient of variation defined as COV = 𝑆𝐷 𝜇⁄ ) have been selected based 

upon the available experimental data. From Table 6 it can be seen that the COV for 𝑃 is 

selected as 2.5%, for 𝜈 as 4%, and for 𝐿 as 1%. Given the small quantity of experimental data 

available for these input properties, we selected the mean as the legacy value (rather than the 

mean of the experimental data) and COV as 3.5 times the coefficient of variation from the 

experimental data to encompass ~95% of the available data points. 

The mixed uncertainty characterization is employed for the following three model input 

parameters: Young’s modulus, 𝐸, tank surface thickness, 𝑇, and tank radius, 𝑅. Here the mean 

is represented as an uncertain interval-valued parameter with known upper and lower bounds, 

however for each mean value a normal probability distribution is assumed with a selected 

standard deviation. The upper and lower bounds for the mean and the standard deviation for 

the probabilistic distribution are selected after observing the distribution of the (limited) 

experimental data provided. 

 

4.4.2 Description of System Response Quantities 
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For a sampled point in the 8-dimensional input space, we can obtain a solution of the 

mathematical model. While the failure prediction is to be made based upon the von Mises 

stress response from the computational model, the only experimentally measured SRQ is the 

normal (radial) displacement of the tank wall under various loading conditions. Data set #5 (see 

[1][2] for details on various Data sets) provides measured displacements for Tanks 1 and 2, for 

three pressure-only loading conditions at 4 locations on each tank. Measurements on each tank 

were repeated in a second experiment, so we have two independent sets of measurements. 

Data set #6 contains measured displacements for Tanks 3 – 6 for various combinations of 

pressure, liquid height, and Chi, at 20 locations on each tank. Measurements on each tank were 

repeated three times, so three independent sets of measurements are available on each tank. 

One could argue that these data could also be used for computing a validation metric, or for 

calibration of input parameters. However, we decided to not use these data for both these 

purposes since failure prediction is to be based upon the stress SRQ and not displacements. 

Instead we choose to use the experimental realizations of the displacements at the provided 

locations to estimate the von Mises stress using u-pooling in order to estimate the model form 

uncertainty. 

The given mathematical model provides a local value of the von Mises stress, 𝜎, over 

the entire tank surface which can be used to find the maximum value of stress, 𝜎𝑚𝑎𝑥, under a 

given loading condition. The failure criterion in this problem is the requirement that 𝜎𝑚𝑎𝑥 does 

not exceed the yield stress, 𝜎𝑌, by a probability of 10−3. This criterion can be stated as 
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 𝑃(𝜎𝑚𝑎𝑥 > 𝜎𝑌) < 10−3 (5) 

A key issue in interpreting the failure criterion is the characterization of yield stress. Yield stress 

varies from unit-to-unit during manufacturing, depends upon operational history, 

environmental conditions, and also varies locally throughout the volume of a solid. However, 

experimental measurements for 𝜎𝑌 are available at only 10 locations and only on Tank 0. This 

lack of knowledge about yield stress, which is a key property for determining failure, is a major 

challenge and its proper treatment is addressed during the final prediction. Note that the 

uncertainty in the von Mises yield criterion itself should not be significant and gets addressed 

through the uncertainty in yield stress. 

4.5 Uncertainty Propagation 
 

Input uncertainties are propagated through the model using segregated propagation of 

uncertainties as implemented in the Dakota toolkit [26]. Here, the epistemic uncertainties are 

sampled in the outer loop (number of samples=𝑀) and aleatory uncertainties are sampled 

(number of samples=𝑁) within the inner loop. This results in a total of 𝑀 × 𝑁 total samples 

(and thus total number of simulations) within the parametric space of 8 input uncertainties. The 

standard Latin Hypercube Sampling (LHS) is used at all steps with the characterization of input 

uncertainties as described earlier and in Table 6. For the final uncertainty propagation at 

nominal conditions and for the u-pooling study (discussed in next section), the number of 

samples were selected as 𝑀 = 50 for the epistemic variables and 𝑁 = 200 for the aleatory 

variables. The results of uncertainty propagation performed at nominal conditions are shown in 
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Figure 6, where the left figure shows all 50 CDFs for the maximum stress. The outer bounds of 

the ensemble of CDFs result in a p-box which is shown in the right figure. Note that no 

uncertainty structure is assumed within this p-box. 

4.6 Model Form Uncertainty 
 

4.6.1 Obtaining Stress Data 

Tanks 3, 4, 5, and 6 were field tested and 3 sets of experimental results are available for 

each tank at different loading conditions. For each of the resulting 12 experiments, 

displacement measurements are available at the 20 location as identified in Figure 7. As 

mentioned earlier, the experimental data is only available for displacements while a prediction 

is to be made for von Mises stress. To address this concern, we use a surrogate model 

developed from the simulations in order to correlate the measured displacements with stress 

components at the locations provided. Given the complexity of the problem, there is no direct 

correlation between stress and displacement. However, assuming that the system response can 

be represented by a single mode-shape (i.e., the functional form of the solution is known but 

the amplitude is unknown), then we can find exact correlation between the two quantities. 

Furthermore, we find that fitting the displacements from the simulations to the stress 

components resulted in nearly exact fit between the displacements and the von Mises stress. 

The axial stress (𝜎𝑥), the tangential stress (𝜎𝜙), and the cross stress (𝜎𝑥𝜙) terms can be 

combined to obtain the “surrogate” von Mises stress (𝜎) at each of these locations within the 

domain. This approach is somewhat similar to a Proper Orthogonal Decomposition analysis of 

the most important "mode shapes".  
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In order to create the surrogate model that could convert displacements into stress, we 

find the coefficients that correlate each of stress components at a few locations (numbers 1, 5, 

8, 16 and 20) on the tank surface with their respective displacements obtained from a 

parametric run over the operating condition space (𝑃, 𝜒, 𝐻). A total of 125 = 5 × 5 × 5 runs 

were made on the fine mesh (𝑚 = 3) to obtain the coefficients of the displacement-stress 

surrogate model. 

4.6.2 u-pooling 

The goal here is to employ the MAVM to obtain the model form uncertainty in the 

predicted stress which requires multiple experimental data points for each set of conditions. 

However, for each set of experimental conditions only 1 data point for stress is available at 

several locations on the tank. The method of u-pooling [23] is used here to transfer the 5 stress 

values from the 5 locations (numbers 16, 17, 18, 19 and 20) to one location (number 16) so that 

MAVM can be employed using this u-pooled “experimental” stress distribution. The key 

assumption for the use of u-pooling is that the effects of input uncertainties on these 5 

different stress locations are correlated. Essentially, the u-pooling process is used here to 

transform the surrogate stress data to probability space by performing uncertainty propagation 

(while treating the interval uncertainties as uniform probabilities) at the experimental 

operating conditions. Next, the probability values (𝑢-values) obtained from different 

experiments are all pooled to one location at nominal conditions. For example, we used case52 

and case53 (see Table 7) to pool the data to 𝐻 = 51 inches condition as follows: 
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 For conditions of case52 (𝑃 = 63.2 psig, 𝜒 = 0.7, 𝐻 = 51 inches), 10000

samples (M=50, N=200) were selected over the input parameter space and 

nondeterministic simulations were performed. The CDFs for the 5 von Mises 

stress values, called 𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5, at the 5 extreme locations, numbered 16 to 

20, respectively, are probed to find the corresponding probabilities (𝑢-values) for 

the 5 stress values obtained from the surrogate model. Note that the 

“surrogate” stress data was obtained earlier using the displacement data from 

this specific experiment. 

 Similarly, 10000 samples were run for case53 (𝑃 = 64.6 psig, 𝜒 = 0.4, 𝐻 =

54 inches) and after probing the CDFs, 5 𝑢-values are obtained for the 5 

surrogate stress data for this specific experiment. 

 Another non-deterministic run of 10000 samples is performed for the operating

conditions where we want to pool the data (i.e., 𝑃 = 73.5 psig, 𝜒 = 1.0, 𝐻 =

51 inches). The 10 𝑢-values (5 from each of the two experiments) are then used 

to probe the CDF for the stress at location 1 to obtain 10 stress values which we 

refer to as “experimental” stress data. 

The experimental stress data can now be used to estimate the area validation metrics at 𝐻 =

51 inches. For this case, the 10 surrogate stress data points, the corresponding 𝑢-values, and 

the experimental stress data are tabulated in Table 8. Figure 8 shows the process pictorially, 

where in (a) to (e), the probability levels are collected from each of the 5 stress values at the 5 
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locations (shown for case52 only), while in (f), the 10 cumulative probabilities from both cases 

are used to probe for the 10 experimental stress values. 

4.6.3 Modified Area Validation Metrics 

Area validation metrics employ the area between CDFs as the basis for the formation of 

a metric quantifying the disagreement between simulation and experimental outcomes [5][23]. 

The metric 𝑑 is defined for the area validation metric as 

 𝑑(𝐹, 𝑆𝑛) = ∫ |𝐹(𝑌) − 𝑆𝑛(𝑌)|𝑑𝑌
∞

−∞

 (6) 

where, 𝐹(𝑌) is the p-box from the simulations, 𝑆𝑛(𝑌) is the empirical CDF from the 

experiments, and 𝑌 is the SRQ of interest. Within the MAVM employed here [25] which 

accounts for regions in the cumulative probability space where the experimental values are 

larger than the simulation (𝑑+) and where the experimental values are smaller than the 

simulation values (𝑑−) (Please refer to [24][25] for a complete discussion on the process of 

MAVM evaluation). Once these metrics are computed, the model form uncertainty is 

constructed as the following interval around the simulation p-box 

 [𝐹(𝑌) + (
1 − 𝐹𝑠

2
) 𝑑+ − (

1 + 𝐹𝑠

2
) 𝑑−, 𝐹(𝑌) + (

1 + 𝐹𝑠

2
) 𝑑+ − (

1 − 𝐹𝑠

2
) 𝑑−] (7) 

where 𝐹𝑠 is a factor of safety based on the number of experimental samples available. 𝐹𝑠 is 

determined here as 
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 𝐹𝑠(𝑘) = 𝐹1 + 1.2
𝐹0 − 𝐹1

𝑘
1

3⁄
 (8) 

where, 𝑘 is the number of available experimental samples, 𝐹1 = 1.25, and 𝐹0 = 4.0. For 

additional conservativeness, the “average area” definition given in Voyles and Roy [24][25] is 

used. Note that another formulation for 𝐹𝑠 can be found in [25] based on confidence intervals. 

After employing u-pooling, the new “experimental” CDF is compared with the 

simulation p-box (from Figure 6) as shown in Figure 9. Using the u-pooled case at 𝐻 = 51 in, 

the MAVM metrics 𝑑+ and 𝑑− employing the average area are found as 

 𝑑+ = 2210 psi;   and  𝑑− = 20.7 psi (9) 

Here, the factor of safety for 10 available experimental samples was found to be 𝐹𝑠 = 2.72 

from Eq. 8. Thus, from Eq. 7 the final model form uncertainty is estimated to be 

 [𝐹(𝑠1) − 1878, 𝐹(𝑠1) + 4067] psi (10) 

where 𝐹(𝑠1) represents the p-box in this analysis. A similar method can be employed to obtain 

the MAVMs at different liquid heights which can then be interpolated to obtain model form 

uncertainty at any liquid height. However, we use the MAVM from Eq. 10 (i.e., for 𝐻 = 51 

inches) as the final model form uncertainty for total uncertainty estimation as an 

approximation to that at the nominal condition (𝐻 = 50 inches). 
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4.7 Total Prediction Uncertainty 
 

The total prediction uncertainty is determined by appending the numerical uncertainty 

which was estimated in Sec. 4.3 and the estimated model form uncertainty from Sec. 4.6 to the 

p-box obtained from the segregated propagation performed at nominal conditions in Sec. 4.5. 

The resulting total prediction p-box is shown in Figure 10. Note that the numerical uncertainty 

is appended only to the left side of the p-box since maximum stress was found to be 

monotonically decreasing with mesh refinement. Numerical uncertainty remains the largest 

source of uncertainty since the segregated propagation was performed with the medium grid 

(𝑚 = 2). The model form uncertainty is also a large contribution. Although the increase in 

predictive uncertainty due to numerical and model form uncertainties is large compared to the 

contribution of the input uncertainties, it is not claimed that the total uncertainty after 

appending these contributing uncertainties is a certain bound. 

To evaluate the maximum probability of failure at the nominal conditions, the rightmost 

CDF of the total prediction p-box is fitted with a probability distribution. After comparing 

several distributions, it was found that the 3-point log-normal distribution with the parameters, 

𝜇 = 9.8296, 𝑆𝐷 = 0.13876, and threshold parameter, 𝜆 = 12404 provides the best fit based 

upon the Kolmogorov-Smirnov goodness of fit statistic. Similarly, another 3-point log-normal 

distribution is fitted to the leftmost CDF of the total prediction p-box using the parameters, 𝜇 =

10.631, 𝑆𝐷 = 0.03996, and 𝜆 = −26315 for determining the minimum probability of failure. 

The fitted distributions for prediction p-box are shown in Figure 11 using solid curves. 
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The treatment of yield stress is more challenging because the small sample size results 

in a poor fit for most probability distributions. This is a case of lack of enough knowledge about 

a variable that is known to be random and is best characterized as a mixed uncertainty. A 

normal distribution is assumed for the yield stress with the standard deviation calculated from 

the provided sample as, 𝑆𝐷 = 1755.857, while the mean value is an uncertain interval. The 

lower and upper bounds for the mean of the normal distribution are selected as the sample 

mean and the legacy value for yield stress, respectively, resulting in the interval, 𝜇 =

[44203.8,45000]. The resulting p-box for yield stress is plotted as the probability of 

exceedance (also called Complementary CDF (CCDF) or survival function) in Figure 11 using 

dotted curves. CCDF is simply defined as: 𝐶𝐶𝐷𝐹(𝜎) = 1 − 𝐶𝐷𝐹(𝜎). 

In this case, the maximum probability of failure is determined by the complement of 

cumulative probability level where the rightmost prediction CDF exceeds the leftmost CCDF. 

This point of intersection is shown in Figure 11 using a solid circle (right). Similarly, minimum 

probability of failure is determined by the complement of cumulative probability level where 

the leftmost prediction CDF exceeds the rightmost CCDF. This value is found to be zero (within 

machine precision). Our final conclusions regarding failure prediction are as follows:  

 The probability of failure is found as: 𝑃𝑓𝑎𝑖𝑙 = [0, 0.0034].  

 Based upon the available data on yield stress and defined failure criterion, we 

conclude that the tanks are not safe. 
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The final conclusion strongly depends upon the proper characterization of yield stress. 

However, detailed knowledge of yield stress from experimental measurements has not been 

provided in the problem statement. We recommend that accurate interval bounds as well as 

probabilistic distribution be established for 𝜎𝑌 so it can be accurately characterized as a mixed 

uncertainty for comparison with maximum stress prediction. 

4.8 Computational Cost 

The proxy code for FEM simulation provided with the problem statement simply 

performs function evaluations based on Timoshenko-Krieger series solution for cylindrical shells 

[4]. Though these function evaluations are inexpensive (almost instantaneous), the 

corresponding FEM simulation needs several CPU hours depending on the grid level as per the 

data provided in the problem statement. The number of runs performed and the total cost of 

computation in terms of CPU hours are shown in Table 9. 

The largest number of runs (30,000) was performed during the u-pooling step, where 3 

different cases for u-pooling to 𝐻 = 51 inches each were run with 10,000 simulations. Thus, 

the u-pooling study was performed using the coarsest mesh (𝑚 = 1). The MAVM calculations 

used the u-pooling runs and hence no additional runs were required for this part. A bias error 

arises due to the use of different grid sizes for u-pooling and for formation of the simulation p-

box. However, we estimate that the bias error in the formation of MAVM due to the use of 

coarse mesh is small and would lead to further reduction in total uncertainty. 

1,000 runs were made each at 2 different operating conditions (𝜒 = 1 and 𝜒 = 0.1) on 

the coarse mesh for the global SA to determine the Sobol’ indices. For local SA using finite 
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difference method only 9 runs were required for each of the 2 conditions, and thus medium 

mesh (𝑚 = 2) was used for this purpose. The parametric study mentioned in Sec. 4.1 was 

performed with 1320 runs on the finest mesh (𝑚 = 4) before the cost of computation was 

known. However, after the knowledge of the computational cost we recommend replacing this 

study with the parametric runs over the operating conditions space that was done for the 

surrogate model construction in Sec. 4.6, for a total of 125 runs on the fine mesh (𝑚 = 3).  

The solution verification to determine numerical uncertainty was performed using 3 

runs (for the three conditions) on each of the four mesh levels. Finally, the uncertainty 

propagation at the nominal conditions for failure prediction was performed with 10,000 runs 

using the medium mesh (𝑚 = 2). The total cost of computation was found to be approximately 

1.6 million CPU hours which could be expensive for a practical application. Note that the largest 

cost in our analysis arises from the uncertainty propagation step (i.e., 1.05 million CPU hours for 

10,000 simulations). Given the large variation in computational cost with mesh sizes, we 

recommend that more mesh levels be examined (such as intermediate mesh sizes between the 

coarse and medium meshes) to determine whether one could obtain satisfactory results for 

lower computational cost. Also, more information from experimental measurements could 

significantly reduce the interval uncertainty in input variables leading to requiring fewer 

computational simulations for an accurate estimation of total prediction uncertainty. 

5 Conclusions 

In this work, we employed the segregated propagation of probabilistic and interval-

characterized uncertainties using the Probability Bounds Analysis (PBA) framework to address 
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the Sandia challenge problem of tank failure prediction. Systematic analysis was performed 

involving a parametric study to obtain a feel for the problem, global and local sensitivity 

analyses, numerical uncertainty estimation using Richardson extrapolation, and model form 

uncertainty estimation using MAVMs. Input uncertainties were characterized into aleatory, 

epistemic, and mixed uncertainties after careful observation of the provided data, qualitative 

observation from the parametric study, and sensitivity analyses. In order to convert the 

experimental data for displacements to stress data so MAVM could be generated, we used a 

surrogate model to convert experimental displacement data to “surrogate” stress data. We 

then used u-pooling to convert stress data from various conditions to “experimental” stress 

data points. The total uncertainty prediction was formed by appending the numerical 

uncertainty and the model form uncertainty to the p-box obtained from segregated 

propagation of input uncertainties.  

The final p-box for maximum stress SRQ was used to determine that the probability of 

failure at nominal conditions is 𝑃𝑓𝑎𝑖𝑙 = [0, 0.0034]. The tanks are determined to be not safe. 

However, this conclusion is strongly dependent on the uncertainty in yield stress. Specifically, 

not enough data has been provided to characterize a key element of this failure analysis, i.e. 

yield stress.  

The lack of experimental data in quantity (e.g., number of data points), quality (e.g., no 

tolerances or distributions for legacy data), and general information (e.g., age/environmental 

conditions of the tank population) were a major challenge in estimating the model form 

uncertainty. Also, the nature of bias created in the proxy code for radius of the tank (possibly 
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used to mimic the true solution) created problems at various stages of this process. Another 

challenge was that experimental data, especially geometry data, was all from the same tank 

and thus there were no estimates of tank-to-tank uncertainties. 

The uncertainties just mentioned contributed large epistemic and aleatory uncertainty 

to our prediction of tank safety. Because of the large interval value of 𝑃𝑓𝑎𝑖𝑙, one could conclude 

that the tanks may be safe; but that is not the issue that a decision maker must deal with. Faced 

with large uncertainty for a system that does not meet safety or performance requirements, a 

decision maker will then ask: "What are the major contributors to the predicted uncertainty?" 

While the present approach does segregate the effects of epistemic model input uncertainty, 

aleatory model input uncertainty, model form uncertainty, and numerical uncertainty, further 

information on which aleatory or epistemic uncertainties are important requires a sensitivity 

analysis. When interval-valued uncertainties and random variables exist together, as in the 

present analysis, special sensitivity analysis techniques must be used. 
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Nomenclature 
 

𝜎 (psi) von Mises stress 
𝜎𝑌 (psi) Yield stress 
𝑑 or 𝑤 (in) Tank wall displacements, normal to the 

surface 
𝑥 (in) Axial location 
𝜙 (rad) Circumferential angle or angular location 
𝑃 (psig) Gauge pressure 
𝛾 (lbs/in3) Liquid specific weight 
𝐻 (in) Liquid composition or mass fraction 
𝐸 (psi) Young’s modulus 
𝐹𝑠  Factor of safety for numerical uncertainty 
𝐹𝑠(𝑘)  Factor of safety for modified area validation 

metric 
𝐹0, 𝐹1 Constants to determine 𝐹𝑠(𝑘) 
𝐹(𝑌)  Simulation outcome (value, CDF, or p-box) 
𝜈  Poisson’s ratio 
𝐿 (in) Length 
𝑅 (in) Radius 
𝑇 (in) Wall thickness 
𝑚  Mesh ID 
𝑃𝑓𝑎𝑖𝑙   Probability of failure 
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Figures 

 

Figure 1 Side view (left) and axial view (right) of the tanks. 

 

 

Figure 2 An example of probability box (p-box) for a parameter (x) that is a mixture of both aleatory 

(random) and epistemic (lack of knowledge) uncertainty 
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Figure 3 Maximum stress values for the parametric space of pressure and liquid composition for different 

liquid heights: (a) 𝑯 = 𝟓 𝐢𝐧, (b) 𝑯 = 𝟑𝟎 𝐢𝐧, and (c) 𝑯 = 𝟓𝟓 𝐢𝐧. 

 

Figure 4 Effect of perturbing various input variables on maximum stress: (a) tank radiusn (b) tank surface 

thickness, and (c) Young’s modulus. Note that input distribution for radius is truncated at 𝑹 = 𝟑𝟎 𝐢𝐧. 
 

 

Figure 5 Effect of perturbing various input variables on maximum normal displacement: (a) tank radius, (b) 

tank surface thickness, and (c) Young’s modulus. Note that input distribution for radius is truncated at 𝑹 =
𝟑𝟎 𝐢𝐧. 
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Figure 6 Uncertainty propagation at nominal conditions. 𝑴 = 𝟓𝟎 epistemic samples and 𝑵 = 𝟐𝟎𝟎 aleatory 

samples were used (for a total of 10000 simulations) on medium grid (𝒎 = 𝟐): (a) all CDFs, (b) p-box. 

 

 

Figure 7 Locations on the tank surface where displacement data is measured during field tests. 20 locations 

are marked with circles. Filled circles are locations where we convert the displacement data to stress data. 

Location#16 is where all experimental data is pooled for MAVM calculation. 
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Figure 8 The u-pooling process explained for pooling data to one location at 𝑯 = 𝟓𝟏 𝐢𝐧𝐜𝐡𝐞𝐬 liquid height: (a)-

(e) probing for probability levels (𝒖-values) based upon the surrogate stress data, and (f) collecting stress data 

for the experimental CDF. 
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Figure 9 MAVM calculation using simulation p-box and experimental (u-pooled) discrete CDF at 𝑯 =
𝟓𝟏 𝐢𝐧𝐜𝐡𝐞𝐬 operating condition. 

 

 

Figure 10 Total prediction uncertainty. 
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Figure 11Prediction p-box for maximum stress (solid curves) and p-box for yield stress (dotted curves): (left) 

CDFs for maximum stress and CCDFs for yield stress, (right) enlarged view. The relevant point of 

intersection is shown with a solid circle which results in maximum probability of failure as: 𝟏 − 𝟎. 𝟗𝟗𝟔𝟔 =
𝟎. 𝟎𝟎𝟑𝟒. 
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Tables 
 

Table 1 Maximum numerical uncertainty (𝑼𝒏𝒖𝒎) for different grid sizes. 

Grid Level Cost/Run               

(CPU Hours) 

𝑈𝑛𝑢𝑚 (Max 

stress) 

𝑈𝑛𝑢𝑚 (Max 

Displacement) 

Mesh 4 (finest) 10,200 11.3% 2.2% 

Mesh 3 (fine) 1,100 17.0% 3.3% 

Mesh 2 (medium) 105 24.1% 5.0% 

Mesh 1 (coarse) 12 31.2% 7.6% 

 

Table 2 User-defined and Dakota-sampled values of input parameter distribution for global sensitivity 

analysis. 

 User-defined Dakota-sampled 

 Dist. Mean SD COV (%) Mean Var SD COV (%) 

P (psig) Normal 75 1.875 2.5 74.99 3.47 1.86 2.5 
𝜒  Normal 1 0.025 2.5 0.98 2.2E-04 0.0149 1.5 
H (in) Normal 55 0.275 0.5 54.92 0.05 0.22 0.4 
E (psi) Normal 3.0E+07 1.1E+06 3.5 3.0E+07 1.1E+12 1.0E+06 3.5 
𝜈  Normal 0.27 0.0108 4.0 0.27 1.2E-04 0.0109 4.0 
L (in) Normal 60 1.2 2.0 60 1.41 1.19 2.0 
R (in) Normal 30 1.5 5.0 31.20 0.86 0.93 3.0 
T (in) Normal 0.25 0.015 6.0 0.25 0.00 0.02 6.0 

 

Table 3 Main and total Sobol’ indices for global sensitivity analysis. (Bold numbers indicate significant 

correlations) 

 𝜎𝑚𝑎𝑥 𝑤@𝜎𝑚𝑎𝑥 𝑤𝑚𝑎𝑥 

 Main Total Main Total Main Total 

P 0.00 0.00 0.01 0.00 0.00 0.00 
𝜒  0.00 0.00 0.00 0.00 0.00 0.00 
H 0.00 0.00 0.00 0.00 0.00 0.00 

E 0.00 0.00 0.64 0.63 0.71 0.69 
𝜈  0.00 0.00 0.00 0.00 0.00 0.00 
L 0.00 0.00 0.01 0.01 0.01 0.01 
R 0.14 0.18 0.16 0.25 0.08 0.16 
T 0.84 0.85 0.16 0.24 0.18 0.24 
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Table 4 Finite-difference based sensitivity. (Bold numbers represent significant correlations while shaded 

cells represent moderately significant correlations) 

 

𝜎𝑚𝑎𝑥 𝑤@𝜎𝑚𝑎𝑥 𝑤𝑚𝑎𝑥 

𝑑/𝑑𝑃 -0.35 -0.31 -0.23 

𝑑/𝑑𝜒 -0.13 -0.14 -0.15 

𝑑/𝑑𝐻 -0.69 -0.62 -0.46 

𝑑/𝑑𝐸 0.00 4.09 4.09 

𝑑/𝑑𝜈 0.04 0.00 0.00 

𝑑/𝑑𝐿 0.08 -0.42 -0.83 

𝑑/𝑑𝑅 -1.65 -2.75 -2.35 

𝑑/𝑑𝑇 1.55 1.67 1.57 

 

Table 5 Categorization of input parameters. 

Model input parameters (material) Model input parameters (geometry) 

Young’s modulus, 𝐸 Thickness, 𝑇 
Poisson’s ratio, 𝜈 Radius, 𝑅 
 Length, 𝐿 

System excitation (or control) parameters Numerical input parameter 

Gauge pressure, 𝑃 Mesh ID, 𝑚 
Liquid composition, 𝜒  
Liquid height, 𝐻  

 

Table 6 Characterization of input uncertainties. 

Epistemic Nominal Lower bnd. Upper bnd. Type   

𝜒  1.0 0.95 1.0 Interval   
𝐻 (in) 50.0 49.0 51.0 Interval   
𝜓 = 𝐻/2𝑅1  -- 0.9182 0.9557 Interval (for 𝑚 = 1) 
𝜓 = 𝐻/2𝑅1   0.8963 0.9329 Interval (for 𝑚 = 2) 
       

Aleatory 
variable 

Nominal    COV (%) SD 

𝑃 (psig) 73.5   Normal 2.5 1.8375 
𝐿 (in) 60.0   Normal 1 0.6 
𝜈  0.27   Normal 4 0.0108 
       

Mixed Nominal Lower bnd. Upper bnd.  COV (%) SD 

𝐸 (psi) 3E7 2.8141E7 3E7 Interval & Normal  2 0.06E7 
𝑅 (in) 30.0 30.0 31.1527 Interval & Normal 3 0.9 
𝑇 (in) 0.25 0.23132 0.25 Interval & Normal 3 0.0075 
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Table 7 Operating conditions for which displacement data is available from Data set #6. (Only conditions 

relevant to u-pooling are shown here) 

Case# 𝑃 (pisg) 𝜒  𝛾  𝐻 (in) 

Case52 63.167 0.7 3.0183 51 

Case53 64.636 0.4 2.7334 54 

Table 8 u-pooling to get experimental stress data points at 𝑯 = 𝟓𝟏 𝐢𝐧𝐜𝐡𝐞𝐬. 

Case Location 
surrogate 
stress 

u 
exp. stress at 
location#16 
(H=51 in) 

case52 
(H=51 in) 

16 23065 0.8715 26833.7 

17 22049 0.8992 27250.2 

18 20858 0.9866 29925.8 

19 14693 0.6339 24748.0 

20 8521 0.2979 22601.7 

case53 
(H=54 in) 

16 20086 0.8380 26446.5 

17 19041 0.8527 26599.7 

18 16798 0.8459 26527.8 

19 13651 0.8230 26286.2 

20 9049 0.2710 22411.9 

Table 9 Cost of computation. 

Grid Level 
Cost 

(CPU Hours) 
# of Runs 

Cost 
(CPU Hours) 

4 (finest) 10,200 3 30,600 

3 (fine) 1,100 128 140,800 

2 (medium) 105 10,021 1,052,205 

1 (coarse) 12 32,003 384,036 

TOTAL ----- 82,149 1,607,641 
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