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Abstract

Numerical simulations are performed for Mach 8 laminar flow of a calorically perfect gas

over a spherically-blunted cone. Code verification calculations are conducted to provide confi-

dence that there are no coding mistakes and include comparisons to highly accurate inviscid

benchmark solutions as well as code-to-code comparisons. Special attention is paid to the numer-

ical accuracy of the solutions by carefully monitoring iterative convergence errors and by con-

ducting an extensive grid convergence study. Non-monotonic convergence of the surface pressure

and drag are observed with mesh refinement. The source of this non-monotonicity is explored in

detail. The standard method for determining the spatial order of accuracy is shown to be inade-

quate for the numerical algorithm employed, and an alternative method is proposed. The overall

discretization error of the fine grid surface pressure distributions is estimated to be below 0.4%,

with the maximum errors found at the sphere-cone tangency point. With the accuracies demon-

strated we recommend that the present computations can be used as a numerical benchmark solu-

tion for code verification.
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Nomenclature

f solution variable

gi ith-order error term coefficient

h measure of the grid cell spacing

M Mach number

N total number of grid cells 

Pr Prandtl number (= 0.71)

p pressure, N/m2, or spatial order of accuracy

RN nose radius (= 0.00508 m)

r grid refinement factor (r = hk+1/hk)

t time, s

T temperature, K

W molecular weight (= 28.013 kg/kmol for N2)

x axial coordinates, m

y radial coordinate, m

α constant

β constant

γ ratio of specific heats

ε iterative convergence error

ε21 solution difference between mesh levels 2 and 1 (ε21 = f2 - f1)

ε32 solution difference between mesh levels 3 and 2 (ε32 = f3 - f2)

Λ iterative convergence parameter
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Subscripts and Superscripts

exact exact (or best estimate) value

k mesh level

n iteration number

RE Richardson Extrapolation

Introduction

With advances in computing power, engineers increasingly rely on modeling and simulation

for the design, analysis, and certification of engineering systems. Thus, there is a need to increase

the confidence in these simulations, especially in high-risk areas such as aviation, nuclear power

generation, and nuclear weapons systems. Verification and validation provides the primary means

by which the overall accuracy of computational simulations can be assessed.

In order to develop a computational model, one must first define a conceptual model of the

physical system. Verification is the process of both determining that a model implementation ac-

curately represents the developer’s conceptual description and assessing how accurately this con-

ceptual model is solved.1 Validation, as defined in Ref. 1, is “the process of determining the

degree to which a model is an accurate representation of the real world from the perspective of the

intended uses of the model.” Simply put, verification asks the mathematical question “are we

solving the equations right?” while validation asks the physical question “are we solving the right

equations?”

Verification can be separated into two parts, code verification and solution verification. Code

verification is used to find coding errors in the discrete solution to a given set of governing equa-

tions and boundary conditions. Code verification can be assessed by comparison to exact analyti-
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cal solutions, the method of manufactured solutions,2,3 comparison to highly accurate numerical

benchmark solutions, and code-to-code comparisons. The first two approaches are rigorous code

verification procedures, especially when the order of accuracy of the numerical method is veri-

fied. The last two approaches are less rigorous and can be classified as confidence-building ap-

proaches, where other tests such as quantifying the error (or difference) may be used for code-to-

code comparisons. In this article, code verification is addressed through a comparison to highly

accurate numerical benchmark results for inviscid flow and through code-to-code comparisons.

Solution verification (or numerical error assessment) is concerned with quantifying the nu-

merical error of a given simulation and should ideally take place after code verification has been

completed. Solution verification should be performed for each application of the code that is sig-

nificantly different than previous applications. For steady-state problems, the two main aspects of

solution verification are iterative convergence and grid convergence. The former deals with the

marching of a solution in pseudo-time towards a steady state, while the latter addresses the ade-

quacy of the mesh upon which the discrete equations are being solved. The spatial order of accu-

racy is also an important metric for assessing the errors due to spatial resolution. This paper places

a strong emphasis on solution verification. In particular, issues dealing with numerical schemes

which have mixed-order spatial accuracy will be addressed.

The goal of the current study is to assess the numerical accuracy of axisymmetric simulations

for Mach 8 flow past a spherically-blunted cone. The Reynolds number is sufficiently low so that

the flow remains laminar, and the flow of a calorically perfect gas is assumed. In the companion

study,4 validation comparisons are made between the numerical solutions and the experimental

data for surface pressure reported in Refs. 5 and 6. However, before model validation can take

place, the numerical accuracy of the simulations must be quantified. 
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The remainder of this paper is organized as follows. A brief description is given of the compu-

tational tool and the flowfield conditions. Next, code verification studies are presented and in-

clude comparisons to highly accurate inviscid benchmark solutions as well as code-to-code

comparisons. A comprehensive analysis of the numerical accuracy of the simulations is then pre-

sented, including a discussion of the iterative and spatial errors and the non-monotonic solution

behavior as the grid is refined. Finally, error estimates are given for the surface pressure distribu-

tions using the mixed-order method. 

Flowfield Model

The computational fluid dynamics code used herein is SACCARA, the Sandia Advanced

Code for Compressible Aerothermodynamics Research and Analysis. The SACCARA code was

developed from a parallel distributed memory version7,8 of the INCA code,9 originally written by

Amtec Engineering. The SACCARA code is used to solve the Navier-Stokes equations for con-

servation of mass, momentum, and energy in axisymmetric form. Prior code verification studies

with SACCARA include code-to-code comparisons with other Navier-Stokes codes10,11 and with

the Direct Simulation Monte Carlo method.12 The governing equations are discretized using a

cell-centered finite-volume approach. The convective fluxes at the interface are calculated using

the Steger-Warming13 flux vector splitting scheme. Second-order reconstructions of the interface

fluxes are obtained via MUSCL extrapolation.14 The viscous terms are discretized using central

differences. A flux limiter is employed which reduces the spatial discretization to first order in re-

gions of large second derivatives of pressure and temperature. This limiting is used to prevent os-

cillations in the flow properties at shock waves. The use of flux limiting results in a mixture of

first- and second-order accuracy in space. The ramifications of the mixed-order scheme on the
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grid convergence behavior will be discussed in detail.

The SACCARA code employs a massively parallel distributed memory architecture based on

multi-block structured grids. The point-implicit solver is a Lower-Upper Symmetric Gauss-Seidel

scheme based on the works of Yoon et al.15,16 and Peery and Imlay,17 which provides for scal-

ability up to thousands of processors.18 The simulations presented herein were run using a single

400 MHz processor of a Sun Enterprise 10000 shared-memory machine. The only exception was

the finest mesh level (960×960 cells), which was domain decomposed and run in parallel on 50

processors of the ASCI Red teraflops machine.

Flowfield Conditions

The problem of interest is the Mach 8 perfect gas flow of nitrogen (γ = 1.4) over a spherically-

blunted cone. The cone half-angle is 10 deg and the model has a total length of 0.2639 m and a

nose radius of 0.00508 m. A sample flowfield mesh is shown in Fig. 1 along with an enlargement

of the spherical nose region. The freestream boundary conditions given in Table 1 are applied at

the outer boundary, symmetry is applied at y = 0, and a no-slip boundary condition is employed at

the vehicle surface with a constant wall temperature of 316.7 K as recommended in Ref. 19.

These conditions correspond to the validation experiments conducted by Oberkampf et al.5,6

which include surface pressure data.

The flow in the base region is not computed due to the large computational expense; thus, a

supersonic outflow boundary condition (i.e., zero gradient extrapolation) is applied at the outflow

plane. The grid lines which intersect with the body are normal to the surface and employ hyper-

bolic tangent functions to insure smooth variations in grid spacing for adjacent cells. For the finest

mesh, the height of the first cell at the wall is approximately 5.0×10-7 m at the stagnation point
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and 3.0×10-6 m at the aft corner. The spacing along the surface varies from 1.0×10-5 m near the

stagnation point to 2.5×10-4 m at the end of the body. The coarser meshes, Mesh 2 (480×480

cells) through Mesh 7 (15×15 cells), are specified by successively eliminating every other grid

line (i.e., grid halving). All calculations used the freestream properties as initial conditions over

the entire domain.

Code Verification

Benchmark Inviscid Solutions

Inviscid solutions with the SACCARA code were computed using the grids discussed above

and then compared with two highly accurate numerical benchmark results. The first set of bench-

mark results are for the inviscid flow of a perfect gas (γ = 1.4) over a sphere and were provided by

Mark Carpenter of NASA Langley Research Center.20 These calculations employed a high-order,

shock-fitting Chebyshev collocation spectral method to achieve accuracies on the order of eight

significant figures (see Refs. 21 and 22 for more details). The second set of inviscid benchmark

calculations are for the Mach 8 perfect gas flow (γ = 1.4) over a 10 deg half-angle spherically-

blunted cone. These calculations used shock-fitting finite-difference methods and employed tem-

poral marching in the subsonic region and a space marching procedure in the supersonic re-

gion.23,24

Surface pressure distributions over the spherical nose tip are given in Fig. 2 for the SAC-

CARA code, the Chebyshev collocation benchmark solution, and the finite-difference benchmark

solution. Good agreement is seen between the three methods. The error in the inviscid SAC-

CARA solution with respect to each of the benchmark solutions is shown in Fig. 3 for two mesh

levels, 240×240 and 480×480 cells. This error is defined by
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(1)

where f refers to a SACCARA solution and fbenchmark refers to one of the two benchmark solu-

tions. These two benchmark numerical solutions for surface pressure are in excellent agreement

on the spherical nose but show some minor differences near the sphere-cone tangency point. The

effects of grid refinement are to reduce the error by a factor of two on the finer mesh indicating

first-order spatial accuracy, which is lower than the nominal accuracy of the scheme (second or-

der). This reduction in the observed order of accuracy will be explored in detail in the Solution

Verification section. The increase in error near y/RN = 0.9 is due to the lack of axial clustering at

the sphere-cone tangency point in the SACCARA solution. While the surface location and slope

are continuous in this region, the curvature is discontinuous and, as a result, requires further axial

clustering to achieve small errors. The magnitude of the errors in surface pressure away from this

region are approximately 0.3% and 0.15% for the 240×240 and 480×480 cell meshes, respective-

ly.

The finite-difference benchmark solution of Lyubimov and Rusanov also provides flow prop-

erties on the conical portion of the body, although the estimated error in the benchmark solution

on the cone are larger than those on the sphere.23,24 A comparison of the inviscid SACCARA so-

lution for surface pressure on the cone is shown in Fig. 4, with good qualitative agreement seen.

An expanded scale is used on the y-axis so as to emphasize differences in the solutions. The pres-

sure values for three grid levels using the SACCARA code are given in Table 2 along with the

data from the finite-difference benchmark solution. In this case, the SACCARA solutions do not

appear to converge to the benchmark solution. Possible sources of error in the benchmark calcula-

tions include interpolation error between the time-marching scheme (subsonic region) and the

Error (%)
f fbenchmark–

fbenchmark
----------------------------- 100×=
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space-marching scheme (supersonic region), and the increase in error as the space-marching

method proceeds downstream. Both of these error sources are discussed in detail in Ref. 23

and 24. It should be noted that only four significant figures are provided for this benchmark solu-

tion, with errors estimated to be as large as ±0.001 by the authors. 

Navier-Stokes Code-to-Code Comparisons

Comparisons have been made using the thin-layer Navier-Stokes code NSEQ25,26 and the

parabolized Navier-Stokes code SPRINT27,28 to increase the confidence in the laminar SAC-

CARA simulations. Both of these codes have been used extensively at Sandia National Laborato-

ries for the analysis of hypersonic flows. The SPRINT code uses NSEQ to provide initial

conditions for the space-marching procedure. These two formulations employ shock fitting and

use a finite-difference scheme, whereas the SACCARA code uses a finite-volume shock-captur-

ing approach. 

Figure 5 presents results for surface pressure, with good agreement shown between the three

codes. Quantitative differences between these three codes are given in Fig. 6. Again, the largest

differences are seen near the sphere-cone tangency point (x/RN ≈ 1). Away from this region, the

differences between the SACCARA code and NSEQ are fairly constant at approximately 0.25%,

while the differences between SACCARA and SPRINT show more variation and peak near 0.4%.

Consistent with the inviscid space-marching procedure discussed in the previous section, the

SPRINT solution also suffers from interpolation error during initialization and error accumulation

at the downstream locations. The large number of points used in the axial direction for SPRINT

are required since the space-marching procedure is nominally first-order accurate in the marching

direction. The benchmark inviscid solutions, the code-to-code comparisons, and the previously

published results10,12 all provide a level of confidence that the SACCARA code is free from cod-
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ing errors in the exercised portions of the code.

Solution Verification

Iterative Convergence Error

The standard method for assessing iterative convergence is to monitor the L2 norms of the re-

siduals for the governing equations over the entire domain. The residuals are formed by simply

substituting the current numerical solution into the discretized form of the steady-state equations,

which should approach zero as iterative convergence is achieved. A solution can be considered

fully iteratively converged, within the precision of the computer used, when the residuals are re-

duced to machine zero (approximately fifteen orders of magnitude for a double precision comput-

er). However, the practice of monitoring iterative convergence does not necessarily provide

information on the iterative error in a given flowfield quantity. Furthermore, for engineering cal-

culations, it is not always necessary, or even possible, to converge the solution to machine zero. 

For the axisymmetric, laminar, perfect gas flowfield examined herein, the residuals for each

of the governing equations were reduced by approximately fourteen orders of magnitude on all

grid levels. The reduction of the residuals to machine zero provides confidence that the iterative

errors in the solution variables are small; however, it does not provide quantitative estimates of

the iterative errors. In order to assess the actual iterative convergence errors in the surface pres-

sure, the method developed in Ref. 29 is employed for the fine grid calculations. This method is

repeated below for completeness. 

The accuracy of a given flowfield variable f relative to the steady-state value is determined by

expressing the numerical solution at time tn as
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(2)

The exact steady-state value is fexact and the convergence error at time tn is εn. The iterative con-

vergence error of the SACCARA code has generally been observed to have an exponential de-

crease in time which gives the following variation as the solution approaches a steady state

(3)

where α and β are constants. Equations (2) and (3) may be combined and rewritten as

(4)

Equation (4) is evaluated at three time levels, (n - 1), n, and (n + 1), and the three relations are

used to eliminate α and obtain

If the time increments are equal, then  =  and the above becomes

The exact steady-state value is solved for in the above equation which gives

(5)

The iterative convergence error becomes

f tn( ) fn fexact εn+= =

εn αe βtn–=

βtn αln fn fexact–( )ln–=

β tn tn 1––( ) fn 1– fexact–( ) fn fexact–( )⁄[ ]ln=

β tn 1+ tn–( ) fn fexact–( ) fn 1+ fexact–( )⁄[ ]ln=

tn tn 1––( ) tn 1+ tn–( )

fn 1– fexact–( ) fn 1+ fexact–( ) fn fexact–( )2=

fexact
fn Λnfn 1––

1 Λn–
----------------------------,= where   Λn fn 1+ fn–( )

fn fn 1––( )
--------------------------=
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and the percent convergence error relative to the exact steady-state value becomes

(6)

Similar results were independently developed by Ferziger and Peric30,31 for determining the

convergence error of the numerical iterative solution of difference equations, but their results

have been obtained with a different approach. In their work, the parameter  is the spectral radi-

us (or the magnitude of the largest eigenvalue) of the iteration matrix. If the eigenvalues are com-

plex, then the present approach is not appropriate. The complex eigenvalue case has been

considered by Ferziger and Peric in Ref. 31.

The local iterative error estimates for various surface quantities at the stagnation point are pre-

sented in Fig. 7 along with the best estimates. The local error estimates obtained from Eq. (6)

based on time levels (n-1), n, and (n+1) are indicated by the symbols. The lines in Fig. 7 represent

the percent error obtained from the best estimate of the exact solution given by Eq. (5). This best

estimate is determined from the final three iteration levels of the solution before machine zero is

reached. These estimates indicate that the surface pressure, shear stress, and heat flux at the stag-

nation point all converge to machine zero at roughly 100,000 iterations. The pressure and heat

flux exhibit approximately a thirteen order of magnitude drop from the initial error values, while

the surface shear stress achieves only an eleven order of magnitude drop. The limited conver-

gence of the stagnation point shear stress is possibly due to the fact that the exact value at this lo-

cation is zero and thus is more susceptible to round-off errors. While the required number of

iterations is high, the diagonal point-implicit scheme, which has excellent parallel scalability, re-

εn fn 1+ fn–( ) 1 Λn–( )⁄–=

% Error of  fn 100 fn 1+ fn–
fn Λn– fn 1–----------------------------–=

Λn
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quires essentially the same computational cost per iteration as an explicit scheme. 

The iterative convergence behavior at a location halfway down the body (x/RN = 27.2) is pre-

sented in Fig. 8. The surface properties converge to machine zero by approximately 400,000 iter-

ations. At this location, all of the surface properties exhibit a thirteen order of magnitude drop in

error. The larger number of iterations for this downstream location is indicative of the hyperbolic

nature of the problem, where iterative convergence errors in the upstream regions essentially

serve as varying boundary conditions for the downstream locations.

The iterative convergence behavior for the forebody drag (excluding the base region which

was not simulated) is shown in Fig. 9. The total forebody drag converges in a manner similar to

the downstream surface pressure, which is not surprising since the pressure drag makes up more

than 90% of the total drag. Also shown in Fig. 9 is the convergence of the drag contributions com-

ing from the nose region (Zone 1) and the aft region (Zone 5). Zones 1 through 5 are each made

up of 192 axial and 96 radial cells adjacent to the surface and arise from the parallel domain de-

composition (used for the finest mesh only). The slower convergence of the aft region is again in-

dicative of the hyperbolic nature of the flow. The iterative errors in the surface pressure are below

10-12% and are much smaller than the spatial errors, as will be demonstrated in the next section. 

Grid Convergence Error

Richardson Extrapolation

The Richardson Extrapolation procedure is a technique by which two discrete solutions on

different grid levels are used to obtain a solution extrapolated to zero mesh size. These Richard-

son Extrapolated values can be used as a more accurate solution, or more importantly, as an ap-

proximation to the exact continuum solution which can then be used to obtain error estimates in

the discrete solutions. See Ch. 5 of Ref. 3 for a thorough discussion of the basic Richardson Ex-
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trapolation technique. The underlying assumption in the Richardson Extrapolation procedure is

that the discrete solutions f on mesh level k have a series representation in powers of the mesh

size, i.e., 

(7)

In Eq. (7), fexact is the exact continuum solution, g1 and g2 are coefficients for the first- and sec-

ond-order terms, respectively, and hk is some measure of the grid spacing on mesh level k. The re-

quired conditions for applying general Richardson-type extrapolations are that the observed order

of the scheme is known and that the grids are sufficiently refined so as to be in the asymptotic grid

convergence range (i.e., the higher-order terms in Eq. (7) are small).

For a numerical method with second-order spatial accuracy, the coefficient g1 is zero. If two

second-order solutions are available, one on Mesh 1 (fine mesh) and one on Mesh 2 (coarse

mesh), then Eq. (7) can be solved using these two discrete solutions to obtain a third-order

(fourth-order if central differences are employed) accurate estimate of fexact, i.e., 

(8)

where fRE is the Richardson Extrapolated estimate. Furthermore, if a grid refinement factor of two

is used (i.e., grid halving/doubling), then Eq. (8) reduces to the standard second-order Richardson

Extrapolation expression:

(9)

Again, the assumptions that go into using Eq. (9) are that the scheme is second-order accurate, the

solutions are in the grid asymptotic range, and the grid refinement factor is two. 

fk fexact g1hk g2hk
2 O hk

3( )+ + +=

fexact fRE f1
f1 f2–

r2 1–
--------------+=≅

fRE f1 f1 f2–( ) 3⁄+=
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Solutions were obtained for seven grid refinement levels, from Mesh 1 (960×960 cells) to

Mesh 7 (15×15 cells), with each successive grid level determined by eliminating every other grid

line in each coordinate direction (i.e., grid halving). The standard second-order Richardson Ex-

trapolation method was then applied using the two finest mesh levels to obtain a nominally third-

order accurate estimate of the exact solution. Fig. 10 shows the normalized surface pressures for

the seven grid levels along with the Richardson Extrapolation results. Differences between the

finer grid solutions and the extrapolated results are not discernible from the figure. The limits of

the pressure axis have been chosen so as to highlight the differences in the solutions. In general,

the Richardson Extrapolation values can be used to obtain error estimates on the various grid lev-

els; however, the assumptions of second-order accuracy and asymptotic grid convergence must

first be verified.

Order of Accuracy

An additional solution can be used to verify the spatial order of accuracy of the numerical

scheme. The standard method3,32 for determining the order of accuracy is to assume that there is a

single dominant error term of order p, i.e.,

(10)

Using three discrete solutions with a constant grid refinement factor (r = h2/h1 = h3/h2), the sys-

tem of equations found from Eq. (10) can be solved for the order of accuracy to give the following

relationship:

(11)

fk fexact gphk
p O hk

p 1+( )+ +=

p
ε32
ε21
------- 
  r( )ln⁄ln=
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where ε21 and ε32 represent differences between the discrete solutions:

(12)

The order of accuracy as determined by Eq. (11) is presented in Fig. 11 for the surface pres-

sure distributions using the three finest mesh levels. The solution accuracy varies locally from

negative values to values as large as eight. Assessment of the order of accuracy from these types

of plots is not possible; furthermore, Eq. (11) is undefined when the three pressure solutions are

non-monotone (i.e., local maxima or minima exist in the surface pressure versus grid spacing

curve). Also shown in the figure are two locations which will be used for additional analysis (x/

RN = 0 and x/RN = 27.2). The results shown in Fig. 11 imply that one of the assumptions used in

developing Eq. (11) is not valid. 

One assumption to examine is the assumption of a constant grid refinement factor. A

stretched, curvilinear mesh was used, so the mesh spacing is not uniform in physical space; how-

ever, the governing equations are transformed into a computational space with fixed spacing. The

assumption of a constant grid refinement factor should thus be valid. The transformation itself can

introduce error into the discrete solutions, but this error is expected to be very small since smooth

hyperbolic tangent grid point distributions were used for clustering near to the surface. In addi-

tion, the maximum ratio of adjacent cell sizes (cell stretching factors) for the finest mesh were

1.007 normal to the body and 1.03 along the body. 

The remaining two assumptions are that there is a single dominant error term and that the dis-

crete solutions are in the asymptotic grid convergence range. These two assumptions are related

since in the true asymptotic grid convergence range (i.e., as h→0), the lowest-order error term that

is non-zero will be the dominant error term. The Steger-Warming upwind scheme used in the sim-

ε21 f2 f1–=

ε32 f3 f2–=



17

AIAA 99-

ulations employs a flux limiter which reduces the spatial accuracy of the scheme from second-or-

der to first-order in regions of large second derivatives. For the finer meshes, the flux limiter is

expected to be activated only at the shock wave. Thus, although the numerical scheme is nominal-

ly second-order accurate, there are regions in the domain where the scheme will be first-order ac-

curate, resulting in a mixed first- and second-order scheme. The order of accuracy calculation

from Eq. (11) (and shown in Fig. 11) is not appropriate when the first- and second-order error

terms are of the same magnitude. 

Further insight into the above behavior can be gained by assuming that both first- and second-

order error terms are present.11,33 The series representation for the discrete solution from Eq. (7)

is again assumed; however, now both the first-order (g1) and second-order (g2) terms will be re-

tained. Three solutions are required and take the following form:

(13)

If the three solutions (f1, f2, and f3) are known along with the three mesh spacing values (h1, h2,

and h3), then Eq. (13) forms a linear system which may be solved for the first- and second-order

error coefficients (g1 and g2) and the third-order accurate estimate of the exact solution fexact. If

we arbitrarily set h1 = 1, then the solution to this linear system gives

(14)

(15)

f1 fexact g1h1 g2h1
2 O h1

3( )+ + +=

f2 fexact g1h2 g2h2
2 O h2

3( )+ + +=

f3 fexact g1h3 g2h3
2 O h3

3( )+ + +=

g1
ε32– r2ε21+

r r 1–( )2
------------------------------≅

g2
ε32 rε21–

r r 1+( ) r 1–( )2--------------------------------------≅
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(16)

where again a constant mesh refinement factor r is assumed.

The mixed-order method has been applied to the surface pressure solutions on the seven mesh

levels. Figure 12 shows the behavior of the error in the surface pressure at the stagnation point.

The error is calculated using the third-order accurate estimate for fexact from Eq. (16) above using

the finest three mesh levels and can be written as 

(17)

Due to the highly refined nature of the finest three grids, these spatial error estimates are expected

to be very close to the true discretization error. The spatial error estimates are plotted versus

h = (N1/Nk)1/2, where N1 is the total number of cells on Mesh 1 (the fine mesh) and Nk is the num-

ber of cells on Mesh k. Since a grid refinement factor of two (grid halving in each coordinate di-

rection) was used, the discrete solution points fall at 1, 2, 4, 8, 16, 32, and 64 (from finest to

coarsest). 

Also shown in Fig. 12 are the normalized magnitudes of the first- and second-order error

terms, respectively, 

(18)

along with the normalized magnitude of their sum:

fexact f1
ε32 r2 r 1–+( )ε21–

r 1+( ) r 1–( )2
------------------------------------------------+≅

Spatial Error (%)
fk fexact–

fexact
--------------------- 100×=

g1h
fexact
----------- 100×      and     g2h2

fexact
----------- 100×
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(19)

The first-order error term has a slope of unity on the log-log plot, while the second-order error

term has a slope of two. The magnitude of the sum of the two terms (solid line) is forced to pass

through the points associated with Meshes 1 through 3 since these discrete solutions are used in

the solution to Eqs. (14)-(16). First-order accuracy is seen in the fine grid solutions, while the

coarse grid solutions begin to exhibit a second-order behavior. Indeed, the discretization error on

the coarser grids begins to approach the second-order slope. In this case, the first- and second-or-

der coefficients (g1 and g2) have the same sign, so the magnitude of the sum of the error terms is

larger than each of the individual error terms. Also shown in the figure is the observed order of ac-

curacy p as calculated from Eq. (11). Since the order of accuracy requires three discrete solutions,

results are only available for Meshes 1 through 5. For this case, the observed order of accuracy is

well-defined and varies around unity (p = 1).

The error in surface pressure at a location halfway down the body (x/RN = 27.2) is given in

Fig. 13. As was seen in Fig. 12, the solutions display first-order grid convergence for the finer

grids and second-order convergence for the coarser grids. In this case, however, the first- and sec-

ond-order error coefficients are of opposite sign, giving error cancellation at the cross-over point

(h ≈ 7). The non-monotone behavior predicted from the mixed-order error analysis (using the

three finest mesh solutions only) is qualitatively seen in the discretization error estimates on the

coarser meshes. The fact that the pressure does not converge monotonically results in singular be-

havior for the standard method for calculating the observed order of accuracy (also shown in the

figure) since the argument of the natural logarithm in Eq. (11) becomes negative.

The error in the forebody drag, a global quantity, is shown in Fig. 14. Again, the first- and sec-

g1h g+ 2h2

fexact
-------------------------- 100×
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ond-order error terms are of opposite sign, resulting in error cancellation at h ≈ 4. Since there is a

discrete solution at h = 4, the effects of the error cancellation are quite pronounced in this case,

with the error in the drag for the 240×240 cell grid almost two orders of magnitude lower than on

the 960×960 grid. This figure clearly demonstrates how non-monotonic grid convergence can be

caused by error cancellation for mixed-order schemes. Moreover, non-monotonic grid conver-

gence greatly complicates the process of error assessment.

The assumption that both the first- and second-order error components are important is sup-

ported by the qualitative agreement between the coarse grid error estimates (solid lines) and the

discrete errors (symbols) shown in Figs. 12 through 14. The fact that the order of accuracy tends

towards first order as the grid is refined is not a new finding. Carpenter and Casper34 showed that

all shock-capturing schemes reverted to first order behind the shock for sufficiently refined mesh-

es. Two differences between their approach and the current work are that they employed higher-

order methods (third- and fourth-order methods) and they did not use a flux limiting procedure.

The fact that Carpenter and Casper saw a reduction to first order without using flux limiters is sur-

prising and implies that the current shock-capturing schemes are only capable of transferring in-

formation in a first-order manner through discontinuities, at least in two dimensions and higher.

See Ref. 34 for more details.

The capturing of discontinuities (e.g., shock waves) without oscillation requires a reduction in

the local spatial accuracy of a numerical scheme to first order.35 The prevention of oscillations is

especially critical for chemically reacting flows, where nonphysical temperature extrema can

strongly affect the chemistry. For the Mach 8 sphere-cone simulations presented herein, the first-

order behavior at the shock wave leads to the presence of a first-order error component (however

small) everywhere downstream due to error “pollution.” As the mesh spacing is refined and h→0,
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this first-order error component must eventually dominate. The standard method for assessing the

order of spatial accuracy given in Eq. (11) is inadequate when the first- and second-order error

terms are of the same magnitude. In a strict sense, the asymptotic grid convergence regime occurs

when there is a single dominant error term as h→0, which for this case is first order. Downstream

of the shock wave, the coefficient on the first-order error term g1 is small, with the magnitude

possibly related to the proximity to the discontinuity. In these regions, a second-order asymptotic

region may exist which corresponds to the local discretization error. Once sufficient grid refine-

ment is performed, the errors from the discontinuity become significant, thus resulting in a first-

order asymptotic region. For practical purposes, the second-order asymptotic range should be suf-

ficient for engineering calculations; however, the error and order of accuracy analyses must take

into account the fact that both first- and second-order error terms may be present. The effects of

the first-order “pollution” error from the discontinuity could be mitigated by clustering to the

shock; however, no attempt to provide such clustering was made in the current work. 

Error Assessment

The error of the surface pressure distributions relative to the third-order accurate estimate

from Eq. (16) is presented in Fig. 15 for nose and the beginning of the conical region. The errors

are largest at the sphere cone juncture (x/RN ≈ 0.83), which indicates that additional grid refine-

ment is required at geometric boundaries with discontinuous surface curvature. The errors on the

conical portion of the body are given in Fig. 16 for the region in which experimental data are

available (6 < x/RN < 46). The spatial errors in this region are below 0.06% for Mesh 1 and 0.11%

for Mesh 2. The comparisons to the experimental data are presented in the companion article

(Ref. 4). 

The numerical errors at the stagnation point, the sphere-cone tangency point, and x/RN = 27.2
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are summarized in Table 3. The non-monotonic grid convergence behavior observed at x/

RN = 27.2 in Fig. 13 is clearly evident in the table. With the exception of the sphere-cone juncture

point, the spatial errors on the three finest meshes are all below 1%. For the two finest meshes, the

maximum numerical errors in the surface pressure are 0.36% (Mesh 1) and 0.74% (Mesh 2), and

are considered sufficiently small to qualify as numerical benchmark solutions for code verifica-

tion. 

Concluding Remarks

Code verification efforts were performed including comparisons to inviscid benchmark solu-

tions and a code-to-code comparison. These activities give increased confidence that the SAC-

CARA code is free from coding errors. Simulations have been conducted for the laminar, perfect

gas flow over a 10 deg half-angle sphere-cone. A method for monitoring the iterative convergence

error during a calculation was presented. Application of this technique to the fine grid calculation

was used to obtain iterative convergence of the surface pressure down to machine zero, or 10-12%

error. Solutions on seven mesh levels were obtained in order to assess the adequacy of the compu-

tational meshes and to gain insight into the grid convergence behavior. Non-monotonic conver-

gence of the surface pressure and forebody drag was observed and was found to be related to the

presence of both first- and second-order terms in the discretization error. The grid convergence er-

rors for surface pressure were estimated to be below 0.36% and 0.74% for Meshes 1 and 2, re-

spectively. These numerical errors are sufficiently small to qualify as numerical benchmark

solutions. Detailed surface and field files for this numerical benchmark solution are available

from the first author.

In general, it is desirable to use numerical schemes which reduce to first-order accuracy
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through discontinuities such as shock waves in order to prevent numerical oscillations. The first-

order behavior at the shock wave leads to the presence of a first-order error component (however

small) everywhere downstream. As the mesh spacing is sufficiently refined, this first-order error

component must eventually dominate. The standard method for assessing the order of spatial ac-

curacy was shown to be inadequate when the first- and second-order error terms were of similar

magnitude. An alternative method was applied for analyzing the convergence behavior of mixed

first- and second-order schemes. This method allows solution non-monotonicity due to the can-

cellation of first- and second-order error terms. Although this alternative method requires only

three grid solutions, the authors recommend that a fourth mesh level be computed to verify that

the error behaves as predicted.
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Table 1  Flowfield conditions for sphere-cone geometry

Flow Parameter Value

Freestream Mach Number 7.841
Stagnation Pressure 2.4724×106 N/m2

Stagnation Temperature 632.8 K
Freestream Static Pressure 286.8 N/m2

Freestream Static Temperature 47.7 K
Freestream Unit Reynolds Number 6.88×106/m

Wall Temperature 316.7 K
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Table 2  Comparison of SACCARA results to Lyubimov and Rusanov24 normalized surface 
pressures (p/p∞) for a 10 deg sphere-cone

x/RN
120×120 

Cells
240×240 

Cells
480×480 

Cells
Lyubimov 

and Rusanov

1 6.248 6.293 6.279 6.258
2 4.959 4.974 4.990 4.982
3 4.133 4.146 4.155 4.156
4 3.645 3.656 3.667 3.663
5 3.366 3.378 3.380 3.376
10 3.030 3.032 3.035 3.050
15 3.215 3.216 3.215 3.242
20 3.466 3.468 3.468 3.496
25 3.679 3.680 3.680 3.705
30 3.830 3.830 3.830 3.850
40 3.998 3.999 3.999 4.014
50 4.049 4.052 4.053 4.060
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Table 3  Normalized surface pressure p/p∞ for p∞ = 286.8 N/m2 (percent error)

Mesh Level Stagnation Point Sphere-Cone
Juncture x/RN =27.2

15×15  (-5.9%)  (52.4%)  (-1.9%)
30×30 77.66557 (-2.5%) 9.370761 (23.3%) 3.692487 (-0.43%)
60×60 78.74681 (-1.1%) 8.315920 (9.4%) 3.706927 (-0.041%)

120×120 79.22133 (-0.54%) 7.858402 (3.4%) 3.710240 (0.048%)
240×240 79.42112 (-0.28%) 7.723745 (1.6%) 3.711381 (0.079%)
480×480 79.54735 (-0.13%) 7.658460 (0.74%) 3.710982 (0.068%)
960×960 79.60108 (-0.060%) 7.629082 (0.36%) 3.709991 (0.041%)

1st+2nd Order 
Extrapolation

79.64854 7.601881 3.708474
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Fig. 1  Sample flowfield mesh for axisymmetric calculations.
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Fig. 2  Comparison of SACCARA pressure distribution with benchmark inviscid 
solutions20,24 on the spherical nose-tip.
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Fig. 4  Comparison of SACCARA pressure distribution with benchmark inviscid solution24 
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Fig. 10  Surface pressure distributions for the 10 deg half-angle sphere-cone simulations 
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Fig. 14  Magnitude of the error components in forebody drag (neglecting base drag).
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Fig. 15  Error in the surface pressure distributions in the nose region using six mesh 
levels.
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Fig. 16  Error in the surface pressure distributions along the cone using six mesh levels.


