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SUMMARY

The method of manufactured solutions is used to verify the order of accuracy of two fi-

nite-volume Euler and Navier-Stokes codes. The Premo code employs a node-centered ap-

proach using unstructured meshes, while the Wind code employs a similar scheme on

structured meshes. Both codes use Roe’s upwind method with MUSCL extrapolation for the

convective terms and central differences for the diffusion terms, thus yielding a numerical

scheme that is formally second-order accurate. The method of manufactured solutions is em-

ployed to generate exact solutions to the governing Euler and Navier-Stokes equations in

two dimensions along with additional source terms. These exact solutions are then used to

accurately evaluate the discretization error in the numerical solutions. Through global dis-

cretization error analyses, the spatial order of accuracy is observed to be second order for

both codes, thus giving a high degree of confidence that the two codes are free from coding

mistakes in the options exercised. Examples of coding mistakes discovered using the meth-
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od are also given.

Keywords:

• Euler / Navier-Stokes equations
• Exact solution
• Code verification
• Manufactured solution
• Benchmarking
• Order of accuracy

1. INTRODUCTION

Modeling and Simulation (M&S) has enormous potential to impact the design, analysis,

and optimization of engineering systems. Here M&S is viewed as the numerical solution to

any set of partial differential equations that govern continuum mechanics or energy transport

(e.g., structural dynamics, heat conduction, electrostatics, fluid dynamics). In order for M&S

to fully achieve its potential, the engineering community must gain increased confidence

that it can provide accurate predictions. Although the specific examples presented herein are

for Computational Fluid Dynamics (CFD), the general concepts apply to any M&S code.

The sources of error in M&S can be categorized into two distinct areas [1, 2], physical

modeling errors (validation-related) and mathematical errors (verification-related). The

physical modeling errors arise due to shortcomings in the chosen model or when a model is

applied outside of its intended range. An example of the latter is a turbulence model which

provides surface heating results for an attached boundary layer flow within 10% accuracy.

When this model is applied outside the range where it was calibrated, say for shock-induced

separation, then the model may only give 50% accuracy on heating rates.

Mathematical, or verification-related, errors can arise from a number of sources includ-
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ing insufficient mesh resolution, improper time step, incomplete iterative convergence,

round-off, and coding mistakes (i.e., coding bugs). The presence of coding mistakes is an of-

ten overlooked source of error in M&S. Code developers often rely on expert judgement to

determine when a code is producing the correct results. As M&S codes become more com-

plex with numerous modeling options and multiphysics coupling, the reliance on expert

judgement can be problematic. This paper will discuss a rigorous method for finding and

eliminating coding mistakes known as the method of manufactured solutions [1, 3].

Verification is defined as ensuring that a model implementation matches the developer’s

conception [2]. Verification can be broken down into two distinct categories: code verifica-

tion and solution verification. Code verification is a process performed to provide a high de-

gree of certainty that a code is free from coding mistakes (i.e., coding bugs); however, a

formal proof that a piece of software is “bug-free” is probably not forthcoming. If done rig-

orously, the code verification process needs to be done only once for each independent por-

tion of the code, assuming no subsequent changes to the code are made.

There are four different ways to verify a code: the method of exact solutions, the method

of manufactured solutions, comparison to benchmark numerical solutions, and code-to-code

comparisons. The latter two are really confidence-building exercises, and should not take the

place of rigorous code verification. In the method of exact solutions, numerical solutions are

compared to exact solutions, often with simplifications to the equations and/or the boundary

conditions. In the method of manufactured solutions, an analytical solution is chosen a prio-

ri and the governing equations are modified by the addition of analytical source terms.

The use of manufactured solutions and grid convergence studies for the purposes of code
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verification was first proposed by Roache and Steinberg [4]. They employed the symbolic

manipulation software Macsyma to verify a code for generating three-dimensional transfor-

mations for elliptic partial differential equations. These concepts were later extended by

Roache et al [5]. The term “manufactured solution” was coined by Oberkampf and Blottner

[6] and refers to the fact that the method generates (or manufactures) a related set of govern-

ing equations to a chosen analytic solution. An extensive discussion of manufactured solu-

tions for code verification was presented by Salari and Knupp [7], and includes both details

of the method as well as application to a variety of partial differential equation sets. This re-

port was later refined and published in book form by Knupp and Salari [3]. A recent review/

tutorial was also given by Roache [8].

The first CFD code to be verified in the current work is the Premo code, which is being

developed as part of the Department of Energy’s Accelerated Strategic Computing Initiative

(ASCI) to meet the needs of the Stockpile Stewardship Program. The Premo code is one of a

number of mechanics and energy transport codes that serves as a module to the SIERRA

multi-mechanics framework [9]. The SIERRA framework provides services for I/O, domain

decomposition, massively parallel processing, mesh adaptivity, load balancing, code cou-

pling, and interfaces to a host of linear and nonlinear solvers. 

The second CFD code to be verified is version 6.0 of the Wind code [10] (projected to be

released in 2004), the primary component of the National Project for Applications-oriented

Research in CFD (NPARC) Alliance Flow Simulation System. Wind is derived from the

NASTD code, which was donated by the Boeing Company to NPARC in 1997. Wind is de-

veloped and maintained jointly by the Arnold Engineering Development Center, NASA
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Glenn Research Center, and the Boeing Company under the auspices of the NPARC Alli-

ance. 

2. NUMERICAL FORMULATION

2.1. Euler Equations

The two-dimensional Euler equations in conservation form are

(1)

(2)

(3)

where ρ is the mass density, u and v the Cartesian velocity components, p the static pressure,

and et the total energy (internal plus kinetic). The first term is the unsteady term, the next

two terms are the convective terms in the x and y directions, respectively, and a general

source term is included on the right-hand side. For a calorically perfect gas, the Euler equa-

tions are closed with two auxiliary relations for energy

(4)
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(5)

and with the ideal gas equation of state

(6)

where T is the temperature. For the solutions presented herein, the ratio of specific heats is

γ = 1.4 and the specific gas constant is R = 287.0 N·m/(kg·K). 

2.2. Navier-Stokes Equations

For viscous flows, the mass conservation equation given in Equation (1) is still valid;

however, the inviscid momentum equations are replaced by the Navier-Stokes equations,

which may be written in two-dimensional form as

(7)

Including the viscous effects, the energy conservation equation is now:

(8)

For the two-dimensional Navier-Stokes equations, the shear stress tensor is

et e u2 v2+
2
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(9)

and the heat flux vector is given by:

(10)

For the Navier-Stokes simulations presented herein, the absolute viscosity is chosen to be a

large constant value (µ = 10. N·s/m2) in order to obtain a balance between convection and

diffusion. The thermal conductivity k is determined from the viscosity by specifying a con-

stant Prandtl number (Pr = 1):

(11)

2.3. Discretization

The spatial discretization employed in the Premo code is a node-centered finite-volume

formulation [11]. This discretization is implemented on unstructured meshes using an edge-

based scheme which allows arbitrary element topologies, where an element is determined by

connecting nearest-neighbor nodes. The surfaces of the control volume are found by con-

necting nodal edge midpoints and element centroids, i.e., the median dual mesh. The con-

τxx
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vective fluxes are evaluated with Roe’s approximate Riemann solver [12]. Second-order

spatial accuracy is achieved via MUSCL extrapolation [13] for the primitive variables to the

control-volume surface. This extrapolation takes the form

(12)

where L and R refer to the nodes to the left and right of the control surface, the - and + refer

to the left and right Riemann states, respectively, and  is distance vector

.

The left and right states for the node-centered control volume are shown graphically in

Figure 1. For the results presented herein, the gradient is evaluated using the least-squares

gradient operator [14]. This gradient is also used in the evaluation of the viscous fluxes at

the control-volume surface, resulting in a second-order discretization for the viscous terms.

On uniform meshes, this scheme results in an upwind-biased Fromm's stencil for convection

[15] and central difference for diffusion. For the simulations discussed in this paper, the

governing equations are integrated in time to a steady state using a low-storage, four-stage

Runge-Kutta method [16]. See Reference [11] for more details on the temporal and spatial

discretization of the Premo code. 

The Wind code also employs a finite-volume discretization in the solution of the govern-

ing equations. Interior mesh points are treated as cell centers and the corners that define a

given control volume around them are computed by averaging the coordinates of neighbor-

φ- φL
1
2
--- φL∇[ ] ∆r•+=

φ+ φR  12
---– φR∇[ ] ∆r•=

∆r

∆r xR xL–( ) î yR yL–( ) ĵ+=
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ing cell centers. With this information, cell volumes and face areas can be readily computed.

On the boundaries, however, Wind uses a technique that was inherited from the NASTD

code. Rather than solving half cells at boundaries, the nearest interior cell is enlarged to

reach all the way to the boundary. Therefore, if a uniform grid is input, this results in so-

called “fat” cells at boundaries, as illustrated in Figure 2. These fat cells have two main

drawbacks: first, they introduce a discontinuity in the grid spacing at the boundaries, and

second, the cell centers of the fat cells are not actually in the center of mass of the cell (even

on a uniform grid). Both of these issues can introduce errors. In order to avoid problems

with fat cells in the current work, a pre-processor was employed to read in a smooth, well-

defined nodal grid, compute cell centers, and add a fringe of boundary points around the

edges. This “cell-centered” grid results in better behaved boundary cells as shown in

Figure 3. For the cases reported here, this procedure yields cells which are truly uniform

across the domain and cell centers that are exactly in the center of mass of the cell. Thus, the

Wind code behaves much like a cell-centered finite-volume code, although the internal algo-

rithm remains node-centered. In order to compare the results from Wind and Premo in a con-

sistent fashion, the solution at the original grid nodes was computed using an average of the

values at the surrounding cell centers. Since this averaging procedure is a second-order pro-

cess on uniform meshes, this should not affect the predicted order of the scheme, although

the absolute magnitude of the error will change.

For the current computations, the Wind code, much like Premo, uses Roe’s approximate

Riemann solver for the evaluation of the convective fluxes. An approximate factorization

implicit scheme is used to integrate the solution in time. For the Navier-Stokes results, the
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viscous fluxes are evaluated at cell faces using a central-difference scheme. This results in

an overall scheme which, on uniform meshes, is formally second order in space. One major

difference between Premo and Wind is that the latter cannot presently be run in double pre-

cision (64 bit) mode. Thus, all Wind results shown here employ single precision (32 bit)

computations. For more details regarding the numerics of Wind, see References [10, 17-19].

2.4. Boundary Conditions

The Euler simulations are for supersonic flow and thus employ exact Dirichlet values for

all primitive variables at the inflow boundaries based on the specified manufactured solu-

tion. For the Premo code, which employs a node-centered finite-volume discretization, the

Dirichlet boundary condition is enforced by simply setting the nodal boundary value. For the

outflow boundary nodes the weak form of the boundary condition is used where the nodal

values are updated from the flux balance consistent with the Roe discretization. These nodal

values are used for the entire control-volume surface along the outflow boundary. The Wind

code uses a similar treatment at inflow boundaries, while first-order extrapolation of all the

variables is used at the supersonic outflow boundaries. 

For the Navier-Stokes simulations which employ subsonic flow, the viscosity was cho-

sen to be a large value in order to ensure that the diffusive terms are on the same order as the

convective terms (see [20] for details). By setting the viscosity to a large value, the charac-

teristic-based boundary conditions for inflow and outflow, which are based on one-dimen-

sional inviscid theory, are no longer valid. Therefore, for the Navier-Stokes simulations, the

exact Dirichlet values for all primitive variables are specified on both inflow and outflow

boundaries.
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3. CODE VERIFICATION

Code verification is a way to build confidence that there are no coding mistakes (or

“bugs”) in a simulation code. While no rigorous proof of code verification currently exists

(and none may be forthcoming), the procedures discussed in this section can provide a high

degree of confidence that a code is mistake free. There is an ongoing debate as to whether

code verification is something that must be done only once for a given set of code options

[1,8], or whether code verification is a process by which code verification evidence is gath-

ered to provide increased confidence that the code is “bug” free [21]. The authors subscribe

to the view that, if done properly, code verification need be performed only once for a given

set of code options.

3.1. Method of Exact Solutions

In the method of exact solutions, specialized cases are identified where exact solutions

exist to a given set of governing equations. For the Euler and Navier-Stokes sets of equa-

tions, there are only a limited number of exact solutions. Furthermore, these exact solutions

may not exercise all of the terms in the governing equations. For example, in the flow be-

tween two infinite parallel plates, one moving relative to the other (Couette flow), the veloc-

ity profile is linear, hence the diffusion term, a second derivative of velocity, is identically

zero and therefore would not be fully exercised.

3.2. Method of Manufactured Solutions

A more general approach to code verification is the method of manufactured solutions

[1,7]. With this approach, the mathematical form of the solution is chosen a priori. The dif-
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ferential operator for the governing equations is applied to this chosen analytical solution to

generate analytical source terms. These source terms are implemented within the code, and

the modified governing equations (including the source terms) are then discretized and

solved numerically and compared to the exact solution. 

There are a variety of acceptance criteria for code verification [3,7]. In order of increas-

ing rigor these criteria are:

     • expert judgement

     • error quantification

     • consistency

     • order of accuracy

The order of accuracy test is the most rigorous test and is therefore the recommended accep-

tance criteria. This test involves evaluating the numerical solution on a series of grids, and

with various time steps for unsteady problems. The spatial (and/or temporal) discretization

error is monitored to determine if the observed order of accuracy matches the formal order

of accuracy, which can be determined by a truncation-error analysis of the discretized equa-

tions. The discretization error is defined as the difference between the solution to the dis-

cretized equations and the exact solution to the continuum partial differential equations. The

discretization error will generally decrease as , where r is the grid refinement factor

(e.g., r = ∆xcoarse/∆xfine) and p is the order of accuracy. For example, if the numerical

scheme is second order (p = 2) and the grid is doubled (r = 2), then the discretization error

should decrease by a factor of four as the mesh is refined.

Although the form of the manufactured solution is somewhat arbitrary, it should be cho-

sen to be smooth, infinitely differentiable, and realizable (i.e., solutions should be avoided

1 r p⁄
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which have negative densities, pressures, temperatures, etc.). Solutions should also be cho-

sen that are sufficiently general so as to exercise all terms in the governing equations. Ad-

herence to these guidelines will help ensure that the formal order of accuracy is attainable on

reasonably coarse meshes. Symbolic manipulation tools such as Mathematica™ or Maple™

can be used to apply the differential operator to the solution and generate source terms.

These tools can then be used to generate the FORTRAN or C coding for the source term au-

tomatically. See References [1,7] for more information on the method of manufactured solu-

tions.

While the method of manufactured solutions can be used to rigorously test the spatial

and temporal discretization of a code, as well as the associated boundary conditions, this

method will not test the efficiency or robustness of a given numerical solution method. In

addition, the method cannot be used to test the stability of a given algorithm. Furthermore,

options that are not exercised by the given manufactured solution are not verified.

The six steps required for implementing the method of manufactured solutions are:

Step 1) Choose the form of the governing equations

Step 2) Choose the form of the manufactured solution

Step 3) Apply the governing equations to the manufactured solution to generate analytical 

source terms

Step 4) Discretize the equations and solve on multiple mesh levels using analytical bound-

ary conditions and source terms from the manufactured solution

Step 5) Evaluate the global discretization error in the numerical solutions

Step 6) Determine whether or not the observed order of accuracy matches the formal order 
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of accuracy

If the comparison in Step 6 is favorable, then the coding options exercised are verified. If the

comparison is unfavorable, then one generally examines the local discretization error, uses

this information to debug the code, then returns to Step 4. The manufactured solution itself

can be used to help debug the code by selectively turning off certain solution terms (viscous

terms, a given spatial variation, etc.).

3.3. Order of Accuracy

The most rigorous test for code verification is the order of accuracy test. This test assess-

es whether or not the numerical method reproduces the formal order of accuracy in space

and/or time. As previously discussed, the discretization error should drop as 1/r p, where in

the current case the grid refinement factor is r = 2 and the nominal order of accuracy is

p = 2; thus the error should drop by a factor of four on each successively refined mesh level.

In order to examine the behavior of the global discretization error, the discrete L2 and L∞

norms of the discretization error (φk,n - φexact,n) are used

(13)

where k refers to the discrete mesh level and n varies over all interior mesh nodes N on the

coarsest mesh. Since the L∞ norm represents the maximum discretization error over the en-

L2 normk

φk n, φexact n,– 2

n 1=

N

∑

N
------------------------------------------------------

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

1 2⁄

=

L∞ normk max φk n, φexact n,–=



15

tire domain, obtaining the formal order of accuracy in this norm is generally more difficult

than the other error norms. When these global error norms do not reproduce the formal order

of accuracy, it is often helpful to examine the behavior of the local discretization error. 

The observed order of accuracy can be calculated given two discrete mesh levels (k and

k + 1) and the exact solution by 

(14)

where “L” refers to one of the discrete error norms from Equation (13), k + 1 refers to the

coarser mesh level, and r is the grid refinement factor. Once the order of accuracy is verified

(assuming it is greater than zero), it is clear that the code is consistent in the sense that the

numerical solution approaches the continuum solution (which was chosen in the beginning)

as ∆x and ∆y approach zero. 

4. RESULTS

This section reports manufactured solution results for the two-dimensional Euler and

Navier-Stokes equations. Since the manufactured solutions exist for all x and y, we are free

to choose any sub-domain on which to solve the governing equations. For the cases present-

ed herein, the numerical solutions are obtained on the domain 

pk
Lk 1+

Lk
-------------

⎝ ⎠
⎜ ⎟
⎛ ⎞

r( )ln⁄ln=

0 x L⁄ 1≤ ≤
0 y L⁄ 1≤ ≤



16

with L = 1 m. The mesh sizes examined are given in Table 1, where hk is the ratio of the ele-

ment size at the kth level to the element size at the finest level:

Note that since only uniform Cartesian meshes are examined, the codes can not be said to be

verified for arbitrary meshes.

4.1. Euler Equations

The method of manufactured solutions is first applied to the Euler equations given by

Equations (1)-(3) along with the auxiliary relations given in Equations (4)-(6). These equa-

tions govern the conservation of mass, momentum, and energy for an inviscid (frictionless)

fluid. With the governing equations specified, the next step is to choose the form of solution.

The general form of the primitive solution variables is chosen as a function of sines and co-

sines

(15)

where φ = ρ, u, v, or p for density, u-velocity, v-velocity, or pressure, respectively, and fs(⋅)

denotes either the sine or cosine function. Note that in this case, φx, φy, and φxy are constants

(the subscripts do not denote differentiation). See Appendix A for the form of these primi-

tive variables for the Euler and Navier-Stokes results presented herein. The chosen solutions

are thus smoothly varying functions in space, while the temporal accuracy is not addressed

hk
∆xk
∆x1
---------

∆yk
∆y1
---------= =

φ x y,( ) φ0 φx fs
aφxπx

L
---------------⎝ ⎠

⎛ ⎞ φy fs
aφyπy

L
---------------⎝ ⎠

⎛ ⎞ φxy fs
aφyxπxy

L2
--------------------

⎝ ⎠
⎜ ⎟
⎛ ⎞

+ + +=
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in this study. The constants used in the manufactured solutions for the supersonic Euler case

are given in Table B.1 of Appendix B. These solutions are presented graphically in Figure 4,

and are chosen to be smooth to allow the formal order of accuracy to be achieved on rela-

tively coarse meshes.

The governing equations (Equations (2)-(6)) were applied to the chosen solutions using

the Mathematica™ symbolic manipulation software to generate FORTRAN code for the re-

sulting source terms. The analytical source term for the Euler mass conservation equation is

given in Appendix C. The source terms for each of the governing equations for this case are

shown graphically in Figure 5.

The governing equations (Equations (2)-(6)) were then discretized and solved numeri-

cally, including the analytical source terms. For a given control volume, the source terms

were simply evaluated using the values at the control-volume centroid. The numerical solu-

tions were then compared to the manufactured solution to determine the discretization error

in the solutions. The formal order of accuracy of both the Premo and Wind codes is second

order in space. 

For the steady-state solutions examined, all solutions are iterated in pseudo-time to

achieve iterative convergence. The most common method for judging iterative convergence

is to examine the steady-state residuals of the governing equations. The steady-state residu-

als are defined by plugging the discrete solution for the current iteration into the discrete

form of the steady-state equations (including the source terms). For nonlinear equations, the

relationship between the steady-state residuals and the iterative error in the dependent vari-

ables (ρ, ρu, ρv, and ρet) is difficult to determine and is related to the condition number of
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the discretized system. Both the steady-state residuals and the iterative errors will be exam-

ined.

The Premo solutions were marched to a steady-state solution using the four-stage

Runge-Kutta temporal integration, while the Wind solutions employed the implicit approxi-

mate factorization scheme. All solutions presented herein were integrated in time until the

L2 norm of the steady-state residuals was converged to machine zero. The Premo code was

run in double precision (64 bit) mode, and the steady-state residuals were reduced by at least

13 orders of magnitude from their initial levels. The Wind code was run in single precision

(32 bit) mode, and the residuals were reduced by at least 6 orders of magnitude from their

initial levels. Figure 6 shows the steady-state residual histories for the mass and energy

equations on the 33×33 node mesh using both codes (lines).

Also shown in Figure 6 is the L2 norm of the iterative error in the mass ρ and the energy

ρet (symbols). The iterative error is defined as the difference between the computed solution

at the current iteration and the computed solution at the final iteration. In all cases, the

steady-state residuals are driven to machine zero by the final iteration. The steady-state re-

siduals in Figure 6 are scaled so as to give approximately the same order of magnitude as the

iterative errors. It is clear from the figure that a drop in the residuals (the quantities most of-

ten examined in steady-state calculations) provides a corresponding drop in the iterative er-

ror. Similar iterative convergence was found for momentum (ρu and ρv). As a rule of thumb,

the iterative error will not pollute the discretization error studies if the iterative errors are

driven roughly two orders of magnitude smaller than the discretization error on all mesh lev-

els.
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The discretization error norms for this case are presented in Figure 7 for the mass density

using both the Premo and Wind codes. The abscissa shows the measure of the grid spacing h

on a log scale, with h = 1 being the finest mesh (129×129 nodes). Also shown on the plot are

curves for the first- and second-order slopes for reference. Both the discrete L2 and L∞

norms of the discretization error (see Equation (13)) drop by a factor of four with each mesh

refinement, thus matching the second-order slope and verifying that both codes are produc-

ing second-order accurate results. For both codes, the discretization error levels are at least

two orders of magnitude larger than the iterative error levels from Figure 6 as desired.

The observed order of accuracy can be calculated given two discrete mesh levels (k and

k + 1) and the exact solution by Equation (14). These order of accuracy results are shown

graphically in Figure 8 which again show that the solutions are second-order accurate as the

mesh is refined. In fact, the observed order of accuracy of the Wind code appears to be

slightly higher than second order for this case. Although not shown, similar behavior was

found for the other conserved variables (ρu, ρv, and ρet). 

The manufactured solutions can also be used to compute local discretization error in the

numerical solutions. The discretization error in the finest grid solution using the Premo code

is given in Figure 9. The largest errors (+0.006% and -0.014%) occur at the top and right

boundaries, respectively. Since the flow is everywhere supersonic in both the x- and y-direc-

tions for this case, the mean flow direction is oriented at a 45 deg angle to the grid. The error

at the bottom left corner both convects downstream and propagates along characteristic

Mach lines through the domain.
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4.2. Navier-Stokes Equations

A manufactured solution was generated for the Navier-Stokes equations

(Equations (1),(7), and (8)), along with the auxiliary relationships given in Equations (4)-(6)

and (9)-(11). The flow was assumed to be subsonic over the entire domain. The constants

used in this manufactured solution are given in Table B.2 of Appendix B. In order to ensure

that the viscous terms were of the same order of magnitude as the convective terms, the ab-

solute viscosity was chosen as µ = 10 N·s/m2. By balancing these two terms, the possibility

of a “false positive” on the order of accuracy test is minimized [8, 20]. If instead, only high

Reynolds number solutions were examined (where the diffusive terms were much smaller

than the convective terms), then extremely fine meshes would be needed in order to detect

discretization mistakes in the viscous terms. These solutions and source terms for mass, mo-

mentum, and energy are shown graphically in Figures 10 and 11, respectively. Again, both

the solutions and the source terms are shown to be smooth, with variations in both the x and

y directions.

Iterative convergence histories for both the Wind and Premo codes are given in

Figure 12. In order to present results from both codes in the same figure, the number of iter-

ations for the Premo code, which employs an explicit time integration scheme, were scaled

down by a factor of 100. Again, the steady-state residuals for the governing equations (lines)

were scaled in order to match the magnitude of the iterative error (symbols). The residuals of

the mass and energy equations provide a good indication of the level of iterative error in ρ

and ρet, respectively. Similar convergence behavior was observed for momentum (ρu and

ρv) and for the other meshes examined. As will be shown, the iterative-error norms are sig-
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nificantly lower than the discretization-error norms.

Discretization-error norms for the conserved variable energy (ρet) are given in

Figure 13. Due to the inefficiency of the Runge-Kutta temporal integration scheme, the fin-

est mesh run with the Premo code is the 65×65 node mesh. For both codes, the norms ap-

proach the second-order slope as the mesh is refined. These results for spatial convergence

are confirmed by examining the observed order of accuracy, shown in Figure 14. Although

not shown, a similar behavior was found for the other conserved variables. 

The local discretization error in the energy (ρet) is presented in Figure 15 for the fine

grid Wind solution. The magnitude of this error is largest at the top boundary (+0.015%) and

the right boundary (-0.01%). This error near the boundaries is likely caused by the over-

specification of the boundary conditions with the exact Dirichlet values. Recall that, in a

one-dimensional inviscid sense, a subsonic inflow requires the specification of two proper-

ties and the extrapolation of one property from within the domain, while a subsonic outflow

boundary requires the specification of one property and the extrapolation of two properties

from within the domain. While the application of a large viscosity value for this manufac-

tured solution makes the use of an inviscid boundary condition questionable, the order of ac-

curacy of the interior points was not affected. Further investigation of appropriate boundary

conditions for this case is beyond the scope of this paper. 

5. CONCLUSIONS

The method of manufactured solutions has been applied to the compressible fluid dy-

namics codes Premo and Wind. Two cases were examined: a supersonic flow governed by



22

the Euler equations and a subsonic flow governed by the Navier-Stokes equations. By solv-

ing the manufactured solutions on a number of different grid levels, the spatial order of ac-

curacy was ascertained by comparing the numerical solutions to the exact (manufactured)

solutions. Both codes demonstrated second-order spatial accuracy as the mesh was refined.

By demonstrating that the formal order of accuracy was achieved, the codes were verified,

thus providing confidence that there are no mistakes in the spatial discretization for uniform

meshes. For the Navier-Stokes case, the specification of inflow and outflow boundary values

for each of the primitive variables with exact Dirichlet values resulted in over-specified

boundary conditions; however, the order of accuracy was not adversely affected.

The method of manufactured solutions was found to be an invaluable tool for finding

coding mistakes. In one case, a coding mistake allowed the gradient term in the MUSCL ex-

trapolation to be zeroed out when the flux limiter (not used in the current work) was set to

zero. This error resulted in first-order behavior of the spatial discretization error which was

easily found by the manufactured solutions. As another example, an option for a constant

angular rotation was inadvertently activated within the code, which triggered the constant

angular velocity terms. This coding mistake was found since non-ordered errors were gener-

ated.

A number of coding options were verified by the method of manufactured solutions. The

options verified include: inviscid (Euler) and viscous (Navier-Stokes), the Roe upwind

scheme (both subsonic and supersonic), the MUSCL extrapolation for second-order convec-

tion, the viscous terms, and boundary conditions for Dirichlet values and supersonic out-

flow. Options not verified in the current study include: solver efficiency and stability (these
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are not verifiable with the method), nonuniform or curvilinear meshes, temporal accuracy

(the chosen manufactured solutions were not functions of time), and variable transport prop-

erties µ and k.

REFERENCES

1.  Roache PJ. Verification and Validation in Computational Science and Engineering, Her-

mosa Publishers, New Mexico, 1998.

2.  Guide for the Verification and Validation of Computational Fluid Dynamics Simulations, 

AIAA G-077-1998, p. 3.

3.  Knupp P, and Salari K. Verification of Computer Codes in Computational Science and 

Engineering, Rosen KH (ed), Chapman and Hall/CRC, Boca Raton, FL, 2003.

4.  Roache PJ, and Steinberg S. Symbolic manipulation and computational fluid dynamics. 

AIAA Journal 1984; 22(10): 1390-1394.

5.  Roache PJ, Knupp PM, Steinberg S, and Blaine RL 1990. Experience with benchmark 

test cases for groundwater flow. In: Benchmark test cases for computational fluid dy-

namics, Celik I and Freitas CJ (eds), ASME FED 93, Book No. H00598: 49-56.

6.  Oberkampf WL, and Blottner FG. Issues in computational fluid dynamics code verifica-

tion and validation. AIAA Journal 1998; 36(5): 687-695 (see also Oberkampf WL, Blott-

ner FG, and Aeschliman DP. Methodology for computational fluid dynamics code 

verification/validation. AIAA Paper 95-2226, 1995).

7.  Salari K, and Knupp P. Code verification by the method of manufactured solutions. 

SAND 2000-1444, Sandia National Laboratories, Albuquerque, NM, June 2000.



24

8.  Roache PJ. Code verification by the method of manufactured solutions. Journal of Fluids 

Engineering 2002; 124(1): 4-10.

9.  Edwards HC, and Stewart JR. SIERRA: A software environment for developing complex 

multiphysics applications. Proceedings of the First MIT Conference on Computational 

Fluid and Solid Mechanics, Elsevier Scientific, Bathe KJ (Ed), June 2001.

10.  Nelson CC, and Power GD. CHSSI project CFD-7: The NPARC alliance flow simula-

tion system. AIAA Paper 2001-0594, 2001.

11.  Smith TM, Ober CC, and Lorber AA. SIERRA/Premo - A new general purpose com-

pressible flow simulation code. AIAA Paper 2002-3292, 2002.

12.  Roe PL. Approximate Riemann solvers, parameter vectors and difference schemes. 

Journal of Computational Physics 1981; 43(2); 357-372.

13.  van Leer B. Towards the ultimate conservative difference scheme III. upstream-cen-

tered finite-difference schemes for ideal compressible flow. Journal of Computational 

Physics 1977; 23(3): 263-275.

14.  Haselbacher A, and Blazek J. Accurate and efficient discretization of Navier-Stokes 

equations on mixed grids. AIAA Journal 2000; 38(11): 2094-2102.

15.  Fromm JE. A method for reducing dispersion in convective difference schemes. Journal 

of Computational Physics 1968; 3: 176-189.

16.  van der Houwen PJ. Explicit Runge-Kutta formulas with increased stability boundaries. 

Numerische Mathematik 1972; 20: 149-164.

17.  Bush RH. A three dimensional zonal Navier-Stokes code for subsonic through hyper-

sonic propulsion flowfields. AIAA Paper 88-2830, 1988.



25

18.  Bush RH, Power GD, and Towne CE. WIND: The production flow solver of the 

NPARC alliance. AIAA Paper 98-0935, 1998.

19.  Power GD, and Underwood ML. Wind 2.0 - Progress on an applications-oriented CFD 

code. AIAA Paper 99-3212, 1999.

20.  Roy CJ, Smith TM, and Ober CC. Verification of a compressible CFD code using the 

method of manufactured solutions. AIAA Paper 2002-3110, 2002.

21.  Oberkampf WL, and Trucano TG. Verification and validation in computational fluid 

dynamics. Progress in Aerospace Sciences 2002; 38: 209-272.

ACKNOWLEDGEMENTS

The authors would like to thank Patrick Knupp and Stefan Domino of Sandia National

Laboratories for their helpful reviews of this manuscript. 



26

Appendix A: Analytical Manufactured Solution

The form chosen for the manufactured solution for both Euler and Navier-Stokes imple-

mentations is given as follows:

(A.1)

Appendix B: Manufactured Solution Constants

Constants employed for the manufactured solutions include L = 1 m, γ = 1.4, and

R = 287.0 N·m/(kg·K). For the Navier-Stokes calculations, additional constants include the

absolute viscosity µ = 10. N·s/m2 and the Prandtl number Pr = 1.0. The constants for the su-

personic Euler manufactured solution are given in Table B.1, and the constants for the sub-

sonic Navier-Stokes manufactured solution are given in Table B.2. Note that the φ constants

all have the same dimensions as the primitive variable (listed in the first column), and the a

constants are dimensionless.

ρ x y,( ) ρ0 ρx
aρxπx

L
---------------⎝ ⎠

⎛ ⎞ ρy
aρyπy

L
---------------⎝ ⎠

⎛ ⎞ ρxy
aρxyπxy

L2
-------------------- 

⎝ ⎠
⎜ ⎟
⎛ ⎞

cos+cos+sin+=

u x y,( ) u0 ux
auxπx

L
--------------⎝ ⎠

⎛ ⎞ uy
auyπy

L
--------------⎝ ⎠

⎛ ⎞ uxy
auxyπxy

L2
-------------------- 

⎝ ⎠
⎜ ⎟
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v x y,( ) v0 vx
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--------------⎝ ⎠
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⎝ ⎠
⎜ ⎟
⎛ ⎞

sin+sin+cos+=
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Appendix C: Example Source Term

A sample source term is given in Equation (1) for the mass conservation equation. This

source terms is the result of analytically differentiating the general manufactured solution

given in Appendix A for ρ, u, and v according to the mass conservation equation. These

manufactured solutions can be obtained from the first author. 

(A.2)

ρ( )∂
t∂

----------- ρu( )∂
x∂

-------------- ρv( )∂
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--------------+ + fm                                                              = =
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TABLES

  
Table 1  Meshes for the manufactured solutions

Mesh Mesh
Nodes

Grid
Spacing, h

Mesh 1 129×129 1
Mesh 2 65×65 2
Mesh 3 33×33 4
Mesh 4 17×17 8
Mesh 5 9×9 16
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Table B.1  Constants for supersonic Euler manufactured solution

Equation, φ φ0 φx φy φxy aφx aφy aφxy

ρ (kg/m3) 1. 0.15 -0.1 0. 1. 0.5 0.
u (m/s) 800. 50. -30. 0. 1.5 0.6 0.
v (m/s) 800. -75. 40. 0. 0.5 2./3. 0.
p (N/m2) 1.×105 0.2×105 0.5×105 0. 2. 1. 0.
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Table B.2  Constants for subsonic Navier-Stokes manufactured solution

Equation, φ φ0 φx φy φxy aφx aφy aφxy

ρ (kg/m3) 1. 0.1 0.15 0.08 0.75 1.0 1.25
u (m/s) 70. 4. -12. 7. 5./3. 1.5 0.6
v (m/s) 90. -20. 4. -11. 1.5 1.0 0.9
p (N/m2) 1.×105 -0.3×105 0.2×105 -0.25×105 1.0 1.25 0.75
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FIGURES
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Figure 1  Edge-based control volume discretization scheme 
(Premo code).
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Figure 2  Grid nodes and control volumes on a uniform 
nodal mesh (Wind code).
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Figure 3  Grid nodes and control volumes on a nodal mesh 
modified to achieve uniform control volumes (Wind code).
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Figure 4  Supersonic Euler manufactured solution: ρ (top 
left), ρet (top right), ρu (bottom left), and ρv (bottom right).
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Figure 5  Generated source terms for the supersonic 
Euler case: mass (top left), energy (top right), x-

momentum (bottom left), y-momentum (bottom right).
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Figure 6  L2 norms of the steady-state residuals (mass and 
energy equations) and the iterative error (ρ and ρet) for the 

Euler case.
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Figure 7  Behavior of the density discretization error norms 
as the mesh is refined for the Euler case.
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Figure 8  Observed order of accuracy of the density 
discretization error norms as the mesh is refined for the Euler 

case.
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Figure 9  Discretization error in the fine grid Premo solution 
for density for the Euler case.
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Figure 10  Subsonic Navier-Stokes manufactured solution: ρ (top 
left), ρet (top right), ρu (bottom left), and ρv (bottom right).
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Figure 11  Generated source terms for the subsonic Navier-
Stokes case: mass (top left), energy (top right), x-momentum 

(bottom left), y-momentum (bottom right).
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Figure 12  L2 norms of the steady-state residuals (mass and 
energy equations) and the iterative error (ρ and ρet) for the 

Navier-Stokes case.
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Figure 13  Behavior of the energy (ρet) discretization error 
norms as the mesh is refined for the Navier-Stokes case.
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Figure 14  Observed order of accuracy of the energy (ρet) 
discretization error norms as the mesh is refined for the 

Navier-Stokes case.
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Figure 15  Discretization error in the fine grid Wind solution 
for energy (ρet) for the Navier-Stokes case.


