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Abstract

The propagation, reflection, and transmission of a plane wave through a column of two fluids with a material discontinuity is studied
by three methods: a mixed finite element formulation with both pressure and velocity at a point taken as independent variables, and a
scaled and an un-scaled acoustic pressure formulation in which only the pressure at a point is taken as an independent variable. It is
found that when mass densities of two fluids are close to each other, the un-scaled acoustic pressure formulation gives reasonable results.
However, when the speeds of sound in two fluids are close to each other but their mass densities are quite different, and for cases where
the first fluid has high impedance relative to that of the second fluid, a mixed or scaled pressure formulation is necessary. Without the
mixed or scaled pressure formulation, the continuity conditions at the interface between two fluids are not well satisfied for the un-scaled
pressure formulation. The consideration of viscosity of the two fluids and using a dispersion correction method in the time integration
scheme in the mixed formulation slightly improves results.
� 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Understanding wave reflection and transmission at inter-
faces between two dissimilar materials is of interest in many
fields, e.g., composites engineering, geology, and acoustics.
Previous work in this area includes that of Mackinnon
and Carey [1], and Cordes and Moran [2] who used the stan-
dard finite element method (FEM) and Batra, Porfiri, and
Spinello [3] who employed a meshless method. These inves-
tigators analyzed wave propagation in isotropic and homo-
geneous linear elastic compressible solids. Other authors
have used the finite difference method [4,5] and more
recently the FEM [6] to examine acoustic and elastic wave
propagation in heterogeneous solid media for geophysics
problems. A difference between wave propagation in solids
and fluids is that most fluids are taken to be incompressible
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but solids are generally modeled as compressible. Whereas
both distortional and dilatational waves can propagate in
a compressible material, only distortional waves propagate
in an incompressible material. For a compressible fluid such
as air, density changes are considerably more than that in a
compressible solid. Thus the problem of wave propagation
in two fluids with a material discontinuity may differ signif-
icantly from that in two solids. Here we study several formu-
lations of a one-dimensional (1-D) problem involving the
reflection and transmission of a plane wave at the boundary
between two fluids; such a problem is encountered in acous-
tics (e.g., see [7]). An analytical solution of the problem is
found by transforming the pressure wave equation to the
Laplace domain as has been done in [3].
2. Problem formulation and solution

A schematic sketch of the problem studied is shown in
Fig. 1. A plane wave propagates in a column of length L
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Fig. 1. Schematic sketch of the one-dimensional wave propagation in two
distinct fluids.
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that is comprised of two distinct fluids, each of length
L/2, with either the two fluids having nearly equal mass
densities and approximately the same speed of sound, or
the two fluids having widely different acoustic impedances.
We note that the axial velocity, v, and the axial traction, bT ,
at the interface between two fluids must be continuous, i.e.,bT 1 ¼ bT 2

v1 ¼ v2

ð1Þ

where subscripts 1 and 2 stand for fluids 1 and 2,
respectively.

For an inviscid fluid the axial traction equals the hydro-
static pressure but that is not necessarily true for a viscous
fluid.

Initially the two fluids are taken to be at rest and sepa-
rated by an imaginary membrane of negligible strength and
thickness that ruptures as soon as a wave arrives there.
This is to keep the two fluids separated which otherwise
may mix with each other. Since plane waves are being stud-
ied, the continuity of axial traction and velocity at the
interface ensures that they do not mix once the fictitious
membrane breaks.
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Fig. 2. Variation with time of the pressure applied at the left end face.
2.1. Acoustic pressure formulation

In the acoustic pressure formulation [8,9] it is assumed
that disturbances are localized, the fluid is compressible
but Dq� q0, the reference mass density q0 is a constant,
and deformations of the fluid are governed by the
Navier–Stokes equations [10,11]:

q
ovi

ot
þ vj

ovi

oxj

� �
¼ qbi þ

orij

oxj
ð2Þ

where

rij ¼ �pdij þ k
ovk

oxk
dij þ l

ovi

oxj
þ ovj

oxi

� �
v is the fluid velocity, p the pressure, b the body force per
unit mass, q the present mass density, Dq the change in
the mass density, k and l fluid viscosities, t the time, x
the present position of a material particle, and dij the Kro-
necker delta. These equations are written in rectangular
Cartesian coordinates, and a repeated index implies sum-
mation over the range of the index. In the acoustic element
formulation, it is also assumed that the body force is neg-
ligible, the fluid is inviscid, and the convective acceleration
is negligible. For the reflection-transmission wave propaga-
tion problem, the inviscid assumption is valid because the
fluid does not see any effects from a boundary layer, as it
would in a fluid–structure interaction problem [12]. With
viscosity effects and body forces neglected, the state of
stress in the fluid is a hydrostatic pressure [13]. Thus for
an one-dimensional problem, Eq. (2) reduces to

ov
ot
¼ � 1

q
op
ox

ð3Þ

where v is the velocity in the x-direction.
The equation of state for the fluid is taken to be

p ¼ c2q ð4Þ

where c is the speed of sound in the fluid.
For the one-dimensional problem, the continuity equa-

tion is

oq
ot
¼ �q

ov
ox

ð5Þ

where the term oq
ox v has been neglected. Eqs. (3)–(5) when

combined together give

ov
ox
¼ � 1

K
op
ot

ð6Þ

o2p
ox2
� 1

c2

o2p
ot2
¼ 0 ð7Þ

where K = qc2 is the bulk modulus, and we have neglected
the term oq

ox
ov
ot.

We assume that the fluid is initially at rest, the right end
face x = L is traction free, and a time-dependent normal
traction given by Eq. (8) with P ¼ 1 kPa, is applied at the
left surface x = 0. Fig. 2 shows the variation in the applied
pressure.

pð0; tÞ ¼ P sin2 p
T

t
� �

½HðtÞ � Hðt � T Þ� ð8Þ

Here H is the Heaviside step function, T the duration of the
pressure pulse, and P the amplitude of the pressure pulse.
The boundary condition at the traction free surface is
inconsequential for our work since numerical solutions
have been computed for times prior to the arrival of the
wave at the right surface.

2.1.1. Analytical solution

The analytical solution of the problem defined by Eqs.
(7) and (8) is obtained by following the procedure outlined
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in [3]. That is, the problem is transformed to the Laplace
domain, the resulting ordinary differential equations are
solved, and then the inverse Laplace transform is found.
Recalling that a quantity for fluids 1 and 2 is denoted by
subscripts 1 and 2 respectively, the Laplace transform of
Eq. (7) gives

o
2P iðx; sÞ

ox2
� s2

c2
i

P iðx; sÞ ¼ 0; i ¼ 1; 2; i not summed ð9Þ

where

P iðx; sÞ ¼
Z 1

0

expð�stÞpiðx; tÞdt

A general solution of Eq. (9) is

P iðx; sÞ ¼ Ai exp � s
ci

x
� �

þ Bi exp
s
ci

x
� �

ð10Þ

wherein coefficients Ai and Bi are determined from the fol-
lowing boundary and interface conditions in the Laplace
transform domain.

P 1ð0; sÞ ¼ bP ðsÞ
P 1ða; sÞ ¼ P 2ða; sÞ
1

q1

oP 1

ox
ða; sÞ ¼ 1

q2

oP 2

ox
ða; sÞ

P 2ðL; sÞ ¼ 0

ð11Þ

where

bP ðsÞ ¼ Z 1

0

expð�stÞpð0; tÞdt

Once coefficients Ai and Bi are known, pressures in the
Laplace domain in the two fluids are given by

P iðx; sÞ ¼ Giðx; sÞbP ðsÞ ð12Þ

where G1(x,s) and G2(x,s) are the transfer functions. The
inverse Laplace transforms of the transfer functions are
found by using the shifting theorem in the time domain
(see e.g., [14]). The convolution theorem [14] applied to
the inverse transforms gives the following expressions for
the pressure, pi(x,t), in the time domain

p1ðx; tÞ¼
X1
j¼0

Xj

k¼0

Xk

h¼0

j

k

� �
k

h

� �
ð�1Þh

� akf t�2
ðj�hÞðL�aÞ

c2

þðjþh�kÞ
c1

aþ x
2c1

� �� ��
�akþ1f t�2

ðj�hþ1ÞðL�aÞ
c2

þðjþh�kÞ
c1

aþ x
2c1

� �� �
þakþ1f t�2

ðj�hÞðL�aÞ
c2

þðjþh�kþ1Þ
c1

a� x
2c1

� �� �
�akf t�2

ðj�hþ1ÞðL�aÞ
c2

þðjþh�kþ1Þ
c1

a� x
2c1

� �� ��
p2ðx; tÞ¼
2q2c2

q2c2þq1c1

X1
j¼0

Xj

k¼0

Xk

h¼0

j

k

 !
k

h

 !
akð�1Þh

� f t�2
ðj�hÞðL�aÞ

c2

þx�a
2c2

þðjþh�kÞ
c1

aþ a
2c1

� �� ��

�f t�2
ðj�hÞðL�aÞ

c2

þ2L�x�a
2c2

þðjþh�kÞ
c1

aþ a
2c1

� �� ��

where

a ¼ q2c2 � q1c1

q2c2 þ q1c1

fðbÞ ¼
P sin2 p

T b
� 	

½HðbÞ �Hðb� T Þ� if 0 6 b < t

0 if b < 0 or b P t

(
ð13Þ

and p1(x, t) holds for x 2 (0, a), and p2(x, t) holds for
x 2 (a,L).

For fixed values of x and t, the upper limit for j in the
above two infinite series is taken to be 100.
2.1.2. Numerical solution of the problem

2.1.2.1. Scaled and un-scaled pressure formulations. An
approximate solution of the 1-D wave problem formulated
above is found by using the FEM with the region [0, L]
divided into uniform elements and one node placed at the
interface between the two fluids. For the inviscid fluids
the continuity conditions (1) at the interface between them
can be taken as the continuity of pressure and the continu-
ity of volume flow [15]. That is

pjx¼a� ¼ pjx¼aþ

1

q1

op
ox






x¼a�
¼ 1

q2

op
ox






x¼aþ

ð14Þ

By placing a node at the interface, the continuity of pres-
sure is automatically enforced but volume flow continuity
is not necessarily satisfied. It is known that for problems
containing a material discontinuity the standard weak
formulation of the afore-stated problem does not properly
enforce the volume flow continuity over the interface. To
enforce it we first multiply both sides of Eq. (7) with //q,
where / is a test function, and then integrate the result-
ing equation over the region [0, L], thereby obtaining
Eq. (15).Z L

0

o
2p

ox2

/
q
� 1

c2

o
2p

ot2

/
q

� �
dx ¼ 0 ð15Þ

This procedure is analogous to that used by Christiansen
and Krenk [15]. Integrating the first term in Eq. (15) by
parts, yields a weak formulation of the problem, given
below as Eq. (16), where the continuity of the volume flow
at the interface of the two fluids has been enforced and
q has been assumed to be constant in each fluid.



Table 2
Combinations of fluids with impedance ratios for the four problems
studied

Problem no. 1st fluid 2nd fluid Z1/Z2

1 Water Oil 1.38
2 Water Mercury 0.078
3 Water Air 3558
4 Water Hypothetical 2.92
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Fig. 3. Spatial variation of pressure at t = 0.257 ms for plane wave
propagation in water–oil using the acoustic pressure formulations.
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The pressure field p and the test function / are approx-
imated by using piecewise linear basis functions. The mass
matrix is lumped using the row-sum technique. The result-
ing system of coupled ordinary differential equations is
integrated by the unconditionally stable and second-order
accurate Newmark family of methods with c = 1/2 and
b = 1/4. For L = 0.4 m, numerical experiments with differ-
ent meshes, time step sizes, and four combinations of fluids,
revealed that the computed solution converged for a uni-
form mesh of 160 elements and a time step equal to the
time taken for the wave to propagate through 1/2 of the
length of an element in the first fluid.

Values of material parameters for the fluids studied
herein are listed in Table 1, and the four combinations of
fluids used in the numerical solution of the problems are
listed in Table 2. Water and oil represent the similar density
case (Problem 1), water and mercury the similar sound
speed case (Problem 2), and water and air the high impen-
dence to low impedance case (Problem 3). Results are
presented as the non-dimensional pressure versus the
non-dimensional x-coordinate at a given time. Pressure is
non-dimensionalized by the maximum of the applied pres-
sure, which in this problem is 1 kPa.

For each case we also include a FE solution obtained
using the un-scaled pressure formulation in which the test
function in Eq. (15) is / rather than //q. In the un-scaled
pressure formulation the continuity condition (14)2 is not
necessarily satisfied unless one uses a Lagrange multiplier
or a penalty parameter which is not done here. The com-
parison of results for the scaled and the un-scaled pressure
formulations will delineate the advantages of properly scal-
ing the pressure field and automatically satisfying the con-
tinuity condition (14)2 at the interface between the two
fluids.

For Case 1 (water–oil), Fig. 3 compares the analytically
and the numerically computed spatial variations of the
pressure at t = 257 ls. It takes 133.4 ls for the wave to
arrive at the interface and at t = 298.6 ls it arrives at the
right end face. Thus the spatial variation of the pressure
Table 1
Values of density (q), bulk modulus (K), speed of sound (c), and acoustic
impedance (Z) for the fluids studied

Fluid q (kg/m3) K (GPa) c (m/s) Z (MPa Æ s/m)

Water 1025 2.3 1498 1.53
Oil 920 1.35 1211 1.11
Mercury 13595 28.5 1448 19.6
Air 1.25 148 · 10�6 344 4.3 · 10�4

Hypothetical 1025 2560 · 10�6 500 0.513
depicted in Fig. 3 is after it has been reflected from and
transmitted through the interface, but before the wave
transmitted through fluid 2 arrives at the right end. It is
transparent that the wave profile has been noticeably
altered because of reflections and transmissions through
the interface, and solutions computed with the scaled and
the un-scaled pressure formulations are close to the analyt-
ical solution of the problem. The numerical solution with
the scaled pressure formulation essentially coincides with
the analytical solution of the problem.

The spatial variations of the pressure for Case 2 (water–
mercury) at t = 257 ls are shown in Fig. 4. The plane wave
takes approximately 138 ls to propagate through 200 mm
of mercury column. As expected, results plotted in Fig. 4
show that the FE solution for the un-scaled pressure for-
mulation differs significantly from the analytical solution
of the problem, as it does not capture the reflected wave
well and erroneously predicts that the incident wave in
water is entirely transmitted into the mercury. The scaled
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Fig. 4. Spatial variation of pressure at t = 0.257 ms for plane wave
propagation in water–mercury using the acoustic pressure formulations.
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pressure formulation results do not exhibit this unphysical
behavior and agree well with the analytical solution. The
difference between the un-scaled and the scaled pressure
formulations is that the former does not impose the conti-
nuity of volume flow at the interface. This was not an issue
in Case 1 where the two fluids have nearly the same mass
densities, because then the densities in the continuity
Eq. (16)2 cancel out. However, as results for Case 2 show,
this is not true when densities of the two fluids are signifi-
cantly different and enforcing volume flow continuity con-
dition at the interface becomes critical for computing
accurate results.

In order to illustrate this further, we study wave propa-
gation in a column of water and a hypothetical fluid, given
in Table 2 as Case 4, that has the same mass density as
water but sound speed of 500 m/s; these results are shown
in Fig. 5. The results for both pressure formulations agree
well with those obtained from the analytical solution which
gives the non-dimensional amplitudes of the reflected and
the transmitted waves to be �0.49 and 0.5, respectively.

We now study the performance of the scaled and the un-
scaled pressure formulations for plane wave propagation
through a column of water and air that have drastically dif-
ferent values of the mass density and the speed of sound.
We expect the incident wave to be almost entirely reflected
back into water, which is consistent with the laws of wave
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x/L

P
re

ss
u

re
/m

ax
 {

P
ap

p
lie

d
}

Analytical
Scaled Pressure
Un-scaled Pressure

Fig. 5. Spatial variation of pressure at t = 0.257 ms for plane wave
propagation in water–hypothetical fluid using the acoustic pressure
formulations; the three solutions are virtually coincident.
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Fig. 6. Spatial variation of pressure at t = 0.257 ms for plane wave
propagation in water–air using the acoustic pressure formulation.
reflection and transmission from a high acoustic impedance
medium into a low acoustic impedance medium [7]. As
shown in Fig. 6, the scaled pressure formulation gives
expected pressure variation while the un-scaled pressure
formulation yields a response similar to that of Case 1,
i.e., reflection and transmission. We thus conclude that
only the scaled pressure formulation gives good results
for wave propagation in a column of two fluids having
widely different values of mass densities and speeds of
sound. Furthermore, we find that the scaled pressure for-
mulation also gives good results for the case where the
two fluids have widely different mass densities but the same
speeds of sound.

2.2. Mixed formulation

Another approach to studying the acoustic reflection
and transmission problem is to use a mixed formulation
[4–6] in which both the axial velocity and the pressure are
taken as unknowns at each node, and Eqs. (3) and (6)
are simultaneously solved. By placing a node at the inter-
face between two fluids the two interface continuity condi-
tions (1) are automatically satisfied. The number of
unknowns in the mixed formulation equals twice of that
in the scaled pressure formulation.

The Galerkin formulation of the problem is derived by
using piecewise linear basis functions, domain integrals
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Fig. 7. Spatial variation of pressure at t = 0.257 ms for plane wave
propagation in water–oil using the mixed formulation; the two solutions
essentially coincide with each other.

-0.2
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x/L

P
re

ss
u

re
/m

ax
 {

P
ap

p
lie

d
} Analytical

Mixed Formulation

Fig. 8. Spatial variation of pressure at t = 0.257 ms for plane wave
propagation in water–mercury using the mixed formulation; the two
solutions essentially coincide with each other.



-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x/L

P
re

ss
u

re
/m

ax
 {

P
ap

p
lie

d
}

Scaled Pressure

Mixed Formulation

Fig. 9. Spatial variation of pressure at t = 0.257 ms for plane wave
propagation in water–air using the mixed formulation; the two solutions
are virtually coincident.

B. Klenow et al. / Computers & Fluids 36 (2007) 1298–1306 1303
are evaluated exactly, the lumped mass matrix is obtained
with the row-sum technique, and the resulting coupled
ordinary differential equations are integrated with the
unconditionally stable Crank–Nicolson method. Numeri-
cal results are computed with a mesh of 160 uniform ele-
ments with one node at the interface and a time step
equal to the time taken for the wave to propagate through
1/2 of the length of an element in the first fluid.

Computed spatial variations of the pressure for the first
three cases studied in Section 2.1 are depicted in Figs. 7–9.
The mixed formulation gives very good results in all three
cases with the numerical solution agreeing well with the
corresponding analytical solution; thus it can be used to
solve acoustic reflection and transmission problems.

3. Comparison of results from the pressure and the mixed

formulations

The L2 error norms for the results from the water–oil
and water–mercury combinations are listed in Table 3.
For all cases studied the scaled pressure formulation yields
better results than the mixed formulation, but both give
significantly superior results than the un-scaled pressure
formulation.
Table 3
L2 error norms over the reflected wave (fluid 1 in Fig. 1), transmitted wave
(fluid 2 in Fig. 1), and the entire fluid domain for two reflection–
transmission problems

Entire
domain

Reflected
wave

Transmitted
wave

Water–oil (mixed formulation) 0.027 0.044 0.026
Water–oil (scaled pressure

formulation)
0.009 0.008 0.009

Water–oil (un-scaled pressure
formulation)

0.093 0.335 0.063

Water–mercury (mixed
formulation)

0.017 0.018 0.017

Water–mercury (scaled pressure
formulation)

0.008 0.008 0.008

Water–mercury (un-scaled
pressure formulation)

0.607 1.020 0.470
4. Effect of mass matrix and the time step size

4.1. Consistent vs. lumped mass matrices

Results presented in previous sections were computed by
using lumped mass matrices because the use of the lumped
mass matrix is computationally less expensive than that of
the consistent mass matrix. We now compare results
obtained using the lumped and the consistent mass matri-
ces for both the scaled pressure formulation and the mixed
formulation.

Fig. 10 exhibits results computed with the consistent and
the lumped mass matrices for both the scaled pressure and
the mixed formulation using 40 uniform elements in the
domain. In each case, results with the consistent mass
matrix are closer to the analytical solution of the problem
than those with the lumped mass matrix. However, with
100 uniform elements in the scaled pressure formulation,
results with the two mass matrices are very close to each
other as can be seen from the L2 error norms listed in
Table 4. With 100 uniform elements in the mixed formula-
tion, results with the two mass matrices are also close to
each other, although not as close as in the scaled pressure
formulation. With both 40 and 100 elements and the
lumped mass matrix, the scaled pressure formulation gives
better results than the mixed formulation. We note that the
numerical solution for both formulations converges when
160 elements are used, and the two sets of results are virtu-
ally identical to each other.

4.2. Time step size

Results for both the scaled pressure and the mixed for-
mulation were obtained using unconditionally stable impli-
cit time integration schemes. In Section 2.1.2, we noted that
the time step Dt used to obtain results was such that in one
time step the wave propagated through 1/2 of the length of
an element in the first fluid. When using the Newmark
method with c = 1/2 and b = 1/4 for the scaled pressure
formulation, we found that a time step as large as 5Dt gave
accurate results. However, this is not true when using the
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

.3

x/L

P
re

ss
ur

e/
m

ax
 {

P
ap

p
lie

d
}

Scaled Pressure, Lumped Mass

Scaled Pressure, Consistent Mass

Mixed Formulation, Lumped Mass

Mixed Formulation, Consistnet Mass

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ig. 10. Spatial variations of pressure at t = 0.257 ms with 40 elements for
lane wave propagation in water–oil using the mixed formulation and the
caled pressure formulation with both lumped and consistent mass
atrices.
F
p
s
m



-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x/LP
re

ss
u

re
/m

ax
 {

P
ap

p
lie

d
} 

t1

t2

t3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 11. Spatial distribution of pressure with artificially increased viscosity
of oil at 0.23 ms (t1), 0.25 ms (t2), and 0.27 ms (t3).

Table 4
L2 error norms over the reflected wave (fluid 1 in Fig. 1), transmitted wave (fluid 2 in Fig. 1), and the entire fluid domain for the water–oil combination
with lumped and consistent mass matrices

Formulation Water–oil combination Entire domain Reflected wave Transmitted wave

Mixed Consistent 40 elements 0.065 0.168 0.056
Lumped 40 elements 0.283 0.583 0.262
Consistent 100 elements 0.012 0.013 0.012
Lumped 100 elements 0.047 0.057 0.046

Scaled pressure Consistent 40 elements 0.047 0.038 0.047
Lumped 40 elements 0.106 0.095 0.106
Consistent 100 elements 0.014 0.012 0.014
Lumped 100 elements 0.016 0.015 0.016
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Crank–Nicolson method for the mixed formulation. In this
case the time step must be taken such that the wave prop-
agates at most through one element per time step. This is
because for the Crank–Nicolson method and the mixed
formulation, the amplification factor, A, is given by

A ¼ h� cDt
hþ cDt

ð17Þ

where h is the element length. Therefore if the wave prop-
agates through more than one element in a time step, A

falls into the range �1 < A < 0, and the solution oscillates.
We have chosen to reduce the time step to avoid oscilla-
tions. This makes the mixed formulation computationally
more expensive than the scaled pressure formulation. How-
ever, if larger time steps are desired in the mixed formula-
tion, one could include an appropriate artificial damping
term to either eliminate or reduce oscillations.

5. Modifications to the mixed formulation

5.1. Viscous fluids

Moura [16] and Ludwig and Levin [17] have shown that
considering viscosity in an acoustic wave propagation
problem can be important. In order to delineate this, we
modify the mixed formulation to include viscosity by using
Stokes’s approximation [10], i.e., k = �2/3l, or equiva-
lently setting the bulk viscosity equal to zero. Thus assum-
ing that the mass density of each fluid does not vary much
in the axial direction, equations governing 1-D deforma-
tions of the viscous fluid become

ov
ox
¼ � 1

K
op
ot

ð18Þ

q
ov
ot
¼ � op

ox
þ 4

3
l

o
2v

ox2
ð19Þ

When viscosity is considered, the traction continuity condi-
tion (1)2 at the interface involves both the pressure and l
(ov/ox).

To test the effect of viscosity in the reflection–transmis-
sion problem, wave propagation in a column of water–oil
was analyzed with l1 = 8.9 · 10�4 Pa s and l2 = 1 Pa s.
No discernable difference in results occurred with the con-
sideration of viscosity. However, the effect of viscosity is
not perceptible in this case because the length of the fluid
column is only 0.4 m. In order to see the effect of viscosity
more clearly, we first artificially increased the viscosity of
oil to 1500 Pa s; the corresponding results are depicted in
Figs. 11 and 12 which vividly reveal that the transmitted
wave begins to disperse as it travels through the highly vis-
cous oil. Subsequently, we increased the length of the fluid
column to 1 m but kept the viscosity of oil as 1 Pa s.
Results computed with 200 uniform elements and a time
step equal to that needed for the wave to propagate
through 1/2 of the length of an element in the first fluid,
depicted in Fig. 13, show that over a large distance the vis-
cosity of both the water and the oil dissipates the propagat-
ing waves (incident, transmitted and reflected). Thus when
studying wave reflection–transmission over large lengths
the mixed formulation of the problem that includes viscos-
ity should be used.
5.2. Dispersion correction

We have used implicit time integration schemes which
when used with consistent mass matrices generally provide
more accurate results than explicit methods [18] employing
lumped mass matrices. However, implicit methods are
computationally more expensive because a system of simul-
taneous equations must be solved at each time step.

The accuracy of implicit schemes is important in wave
propagation problems because numerical integration tech-
niques tend to disperse waves; this effect is more noticeable
with explicit methods. However, explicit techniques are



Table 5
L2 error norms over the reflected wave (fluid 1 in Fig. 1), transmitted wave
(fluid 2 in Fig. 1), and the entire fluid domain for the 40 element water–oil
combination results with and without dispersion correction

Entire
fluid

Reflected
wave

Transmitted
wave

Explicit–implicit,
�c ¼ 1=2

0.183 0.275 0.179

Explicit–implicit,
�c ¼ 3=4

0.117 0.232 0.115

Explicit 0.284 0.556 0.270
Implicit 0.056 0.167 0.048

Fig. 14. Comparison of the spatial variation of pressure at t = 0.257 ms
computed with and without the dispersion correction for a mesh of 40
uniform elements.

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x/LP
re

ss
u

re
/m

ax
 {

P
ap

p
lie

d
} 

viscous t1
viscous t2
viscous t3
inviscid t1
inviscid t2
inviscid t3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 12. Comparison of the spatial distribution of pressure with and
without the consideration of artificially increased viscosity of oil at 0.23 ms
(t1), 0.25 ms (t2), and 0.27 ms (t3).

Fig. 13. Spatial distribution of pressure in the 1 m water–oil column at six
times.
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desirable because they are computationally less expensive
than implicit schemes. A less computationally expensive
scheme is especially well suited for the mixed formulation
because of the time step limits discussed in Section 2.2.
Krenk [18] has proposed a dispersion correction to modify
explicit integration schemes so that they behave like impli-
cit schemes; we use it to study the present problem. It
involves modifying the mass matrix as follows:

Md ¼ ð1þ �cÞM lumped � �cM consistent ð20Þ

where �c is a constant.
The motivation for this modification is that in most

problems the ideal mass matrix for accuracy is between a
fully lumped and a fully consistent matrix [18]. The advan-
tage of this method is that in the integration scheme only a
lumped mass matrix is inverted, thus the efficiency of the
explicit method is retained while the dispersion matrix,
Md, partially restores the accuracy of the implicit scheme.
Krenk gives optimal value of the constant �c as 1/2 but
we experimented with both 1/2 and 3/4.

Here we use the explicit scheme as the standard trapezoi-
dal method [19], and implement the dispersion correction
as follows:

ðM lumped þ aDtKÞvnþ1 ¼ F nþ1 � K~dnþ1

~dnþ1 ¼ dn þ ð1� aÞMdM�1
lumpedDtvn

dnþ1 ¼ ~dnþ1 þ aMdM�1
lumpedDtvnþ1

ð21Þ

where vn+1 denotes the value of v at time tn+1, and
0 6 a 6 1. The column matrix v is comprised of values at
nodes of the first time derivative of axial velocity and pres-
sure. The column matrix d is comprised of values at nodes
of axial velocity and pressure. To see the effectiveness of the
dispersion correction method, we study a ‘‘worst case’’
scenario by setting a = 0 in Eq. (21), taking 40 uniform
elements over the entire fluid column, and time step Dt*

equal to the time taken for the wave to propagate through
2/100 of the length of an element in the first fluid. Fig. 14
depicts the solution for wave propagation in the water–
oil column using a lumped mass matrix (explicit), a consis-
tent mass matrix (implicit), and the dispersion correction
matrix (implicit–explicit) with two values of �c; the L2 error
norms are listed in Table 5. These results show that with
the dispersion correction term included, the wave shape
in both the water and the oil is slightly better preserved
than that in the fully explicit method. The dispersion cor-
rection also damps out numerical oscillations as the wave
propagates through the water–oil interface. Taking
�c ¼ 3=4 tends to damp out these numerical oscillations
more effectively. Results plotted in Fig. 15 and the L2 error
norms given in Table 6 show that the implicit–explicit re-
sults of Fig. 14 can be improved by increasing the total
number of elements from 40 to 60. Thus incorporating
the dispersion correction term in the mixed formulation
is beneficial as it improves the accuracy of the explicit
method. This saves computational time as smaller number
of elements can be used, which is desirable due to the small
time step requirement of the mixed formulation. While
wave dispersion and computational efficiency are not a
major concern in the present problem due to the small



Table 6
L2 error norms over the reflected wave (fluid 1 in Fig. 1), transmitted wave
(fluid 2 in Fig. 1), and the entire fluid domain for the 60 element water–oil
combination results with and without dispersion correction

Entire
fluid

Reflected
wave

Transmitted
wave

Explicit–implicit
�c ¼ 1=2

0.064 0.121 0.059

Explicit 0.112 0.219 0.104
Implicit 0.045 0.068 0.043

Fig. 15. Comparison of the spatial variation of pressure at t = 0.257 ms
computed with and without the dispersion correction for a mesh of 60
uniform elements.
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domain, they ought to be considered in problems involving
larger domains.

6. Conclusions

To properly capture reflection and transmission of a
plane wave through a column of fluid with material discon-
tinuities, the continuity of tractions and velocity (or the
volume flow) at the interface between two fluids must be
well satisfied. When mass densities of the two fluids are
close to each other, the un-scaled acoustic pressure formu-
lation in which the continuity of volume flow is not neces-
sarily well satisfied, gives good results. However, when
either the speeds of sound in the two fluids are very close
to each other but their mass densities are quite different,
or the acoustic impedances of the two fluids are quite dif-
ferent, then the scaled pressure formulation or a mixed for-
mulation in which the velocity and the pressure at a point
are taken as independent variables should be employed.
The scaled pressure formulation gives better results than
the mixed formulation, although both methods perform
exceptionally well when compared to the un-scaled pres-
sure formulation. The scaled pressure formulation is poten-
tially less computationally expensive than the mixed
formulation because a larger time step can be used and
the number of unknowns in the former is one-half of that
in the latter. However, the mixed formulation can be
advantageous for use in fluid–structure reflection and
transmission problems. The computational algorithm for
the mixed formulation can be improved by incorporating
the dispersion correction and the fluid viscosity.
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