Todd Lowe

Associate Professor

  • Ph.D. 2006, Aerospace Engineering, Virginia Tech
  • M.S. 2004, Aerospace Engineering, Virginia Tech
  • B.S. 2001, Aerospace Engineering, Virginia Tech

Aerodynamics and Hydrodynamics

  • 2016 - Present, Associate Professor, Aerospace and Ocean Engineering, Virginia Tech.
  • 2010 - 2016, Assistant Professor, Aerospace and Ocean Engineering, Virginia Tech.
  • 2006 - 2010, Vice President for Research and Development, Applied University Research, Inc.

Professional Leadership

  • Associate Director, Virginia Tech Advanced Propulsion and Power Laboratory
  • Associate Director, Virginia Tech – Pratt & Whitney Center of Excellence
  • Core Member of the Rolls-Royce/Virginia Tech University Technology Center for Advanced Diagnostics
  • Core Member of the Center for Renewable Energy and Aerodynamic Testing (CREATe)
  • Member of the Aerodynamic Measurement Technology Technical Committee, Chair of the Conference Subcommittee, American Institute of Aeronautics and Astronautics (AIAA)
  • Associate Fellow, AIAA
  • P.I., Small Business Innovation Research Program (prior to joining Virginia Tech)

Awards

  • Virginia Space Grant Consortium Young Investigator Award

Professional Organizations

  • American Institute of Aeronautics and Astronautics (AIAA)
  • American Society of Mechanical Engineers (ASME)
  • American Physical Society (APS)

Reviewer for:

  • AIAA Journal
  • Experiments in Fluids
  • Measurement Science and Technology
  • Applied Optics
  • Optics Express
  • Measurement
  • Optics and Lasers in Engineering

Novel flow instrumentation research

Emerging technologies continually provide for improved measurements of complex flow phenomena. Techniques such as particle-image velocimetry and Doppler-based velocimetry yield detailed flow velocity measurements at scales needed in practical aerospace applications. Novel implementation of conventional approaches such as sonic anemometry and physical sensors have been enabled by new understanding gained from advanced instrumentation simulations. In this program, we seek fundamental development that advances the state-of-the-art for applied instrumentation approaches. The developments impact performance, efficiency and noise technologies and propulsion, power and renewable energy technologies.

Supersonic Jet Noise Reduction 

Modern tactical aircraft engines and future propulsion concepts for supersonic transport aircraft produce intense noise familiar to anyone who has attended an airshow. Well beyond the annoyance to the general public, crewpersons on aircraft carriers must work for extended periods in the region of most intense noise emissions of these aircraft. Sadly, these crewpersons can incur lifelong hearing damage from their service. In our program, we seek to obtain new information on the fundamental behaviors of high speed jets, supporting strategies to reduce noise via operational and design changes. Using a new flow diagnostics approach, information about the speed and intensity intermittent turbulent waves is obtained and interpreted based upon nozzle conditions and theory for jet noise radiation. A highlight of the effort is continuing development focused on large-scale applications including measurements in actual tactical aircraft engine exhausts.

Engine/Airframe Integration 

Advanced aircraft concepts are increasingly reliant upon closer coupling of propulsion systems with airframe aerodynamics for optimal performance. A prime example is the NASA Hybrid Wing Body configuration, with some concepts employing boundary layer ingesting engines. While systems-level analysis can indicate that propulsive efficiency gains can result from tight integration, stream-wise vorticity invariably arises and greatly affects the performance of the propulsor. We have developed, in collaboration with Prof. Walter O’Brien, an advanced means for experimentally simulating the aerodynamics arising from engine/airframe integration. A 2000 lbf-thrust class turbofan engine is used for researching the development of vortical flow in the diffuser, as well as fan response to complex swirl and wake-like pressure distortions. The application was one of the first to demonstrate particle-image velocimetry for turbofan engine studies. Continuing developments have led to new understanding of the development and impact of complex inlet flows on turbofan engine performance and operability.

Dr. Todd Lowe

Todd Lowe
Dr. Todd Lowe
  • (540) 231-7650
  • kelowe@vt.edu
  • Aerospace & Ocean Engineering (MC0119)
    McBryde Hall, RM 660C, Virginia Tech
    Blacksburg, VA 24061